JP2006241559A - Rolling bearing unit for supporting wheel - Google Patents

Rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2006241559A
JP2006241559A JP2005061312A JP2005061312A JP2006241559A JP 2006241559 A JP2006241559 A JP 2006241559A JP 2005061312 A JP2005061312 A JP 2005061312A JP 2005061312 A JP2005061312 A JP 2005061312A JP 2006241559 A JP2006241559 A JP 2006241559A
Authority
JP
Japan
Prior art keywords
content
wheel
pearlite
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005061312A
Other languages
Japanese (ja)
Inventor
Koji Ueda
光司 植田
Kazumi Ochi
和美 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005061312A priority Critical patent/JP2006241559A/en
Publication of JP2006241559A publication Critical patent/JP2006241559A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

<P>PROBLEM TO BE SOLVED: To improve both of cold workability and strength after cold working in forming a hub ring and outer ring of a rolling bearing unit for supporting wheels by subjecting a stock material composed of carbon steel sheet to cold working. <P>SOLUTION: At least either of the hub ring 10 (the first member) and the outer ring 30 (the second member) is formed by cold working the stock material composed of a steel sheet of ferrite and pearlite structure of ≤82.0 in hardness HRB and ≥0.50 μm in lamellae spacing of pearlite obtained by heating and holding steel having a C content of ≥0.48 but ≤0.58mass%, an Si content of ≤0.50mass%, an Mn content of ≤0.90mass%, a Cr content of ≤0.50mass%, and the balance Fe and inevitable impurities at a temperature above the AC<SB>1</SB>transformation point below the AC<SB>3</SB>transformation point, and subjecting the steel to soft annealing treatment of cooling the steel to a temperature below the Ar<SB>1</SB>transformation point, holding the same at a temperature below the Ar<SB>1</SB>transformation point then slowly cooling the steel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支持するための車輪支持用転がり軸受ユニットに関する。   The present invention relates to a wheel support rolling bearing unit for rotatably supporting a wheel of an automobile or the like with respect to a suspension device.

従来の車輪支持用転がり軸受ユニットの一例を、図12に示す。
この車輪支持用転がり軸受ユニットは、図12に示すように、ハブ輪(第一部材)10と、内輪20と、外輪(第二部材)30と、複数の転動体40と、を備えている。
ハブ輪10のアウトボード側(自動車への組み付け状態で車幅方向外側の端部であり、図12では左端部を指す。)の外周面には、車輪取り付け用フランジ120が一体成形で設けられている。この車輪取り付け用フランジ120の側面には、図示しないブレーキロータ及び車輪をハブボルト60で取り付けるための複数のボルト孔120aが、周方向に略等間隔で設けられている。
An example of a conventional wheel support rolling bearing unit is shown in FIG.
As shown in FIG. 12, the wheel support rolling bearing unit includes a hub wheel (first member) 10, an inner ring 20, an outer ring (second member) 30, and a plurality of rolling elements 40. .
A wheel mounting flange 120 is integrally formed on the outer peripheral surface of the hub wheel 10 on the outboard side (the end portion on the outer side in the vehicle width direction in the assembled state in the automobile, which indicates the left end portion in FIG. 12). ing. On the side surface of the wheel mounting flange 120, a plurality of bolt holes 120a for mounting a brake rotor and wheels (not shown) with hub bolts 60 are provided at substantially equal intervals in the circumferential direction.

一方、ハブ輪10のインボード側(自動車への組み付け状態で車幅方向内側の端部であり、図12では右端部を指す。)には、小径段部130が形成されている。この小径段部130には、内輪20が嵌合されている。そして、ハブ輪10の軸方向の中間部外周面と内輪20の外周面には、それぞれ内輪軌道面10a、20aが形成されている。
また、ハブ輪10のインボード側の先端は円筒状に形成されており、この円筒部(加締め部)を径方向外方に加締め拡げることにより、ハブ輪10の小径段部130の所定位置に内輪20が固定されている。なお、内輪20は、加締めの他、ナットの締結によって必要な与圧を加えることもある。
On the other hand, a small-diameter step portion 130 is formed on the inboard side of the hub wheel 10 (the end portion on the inner side in the vehicle width direction in the assembled state in the automobile, which indicates the right end portion in FIG. 12). The inner ring 20 is fitted to the small diameter step portion 130. Inner ring raceway surfaces 10 a and 20 a are formed on the outer peripheral surface of the intermediate portion in the axial direction of the hub wheel 10 and the outer peripheral surface of the inner ring 20, respectively.
Further, the tip of the hub wheel 10 on the inboard side is formed in a cylindrical shape, and the cylindrical portion (clamping portion) is caulked and expanded outward in the radial direction, whereby the small-diameter step portion 130 of the hub wheel 10 is predetermined. The inner ring 20 is fixed at the position. In addition, the inner ring 20 may apply a necessary pressurizing force by tightening a nut in addition to caulking.

外輪30の内周面には、ハブ輪10及び内輪20の内輪軌道面10a、20aに対応する複列の外輪軌道面30a,30bが形成されている。この外輪30において、ハブ輪10の車輪取り付け用フランジ120から離間する側の端部には、懸架装置取り付け用フランジ310が一体成形で形成されている。
そして、ハブ輪10及び内輪20に形成された内輪軌道面10a,10bと、外輪30に形成された外輪軌道面30a,30bとの間には、複数の転動体40が保持器50を介して転動自在に配設されている。
Double row outer ring raceway surfaces 30 a and 30 b corresponding to the inner ring raceway surfaces 10 a and 20 a of the hub wheel 10 and the inner ring 20 are formed on the inner peripheral surface of the outer ring 30. In the outer ring 30, a suspension device mounting flange 310 is integrally formed at the end of the hub wheel 10 on the side away from the wheel mounting flange 120.
A plurality of rolling elements 40 are interposed between the inner ring raceway surfaces 10 a and 10 b formed on the hub wheel 10 and the inner ring 20 and the outer ring raceway surfaces 30 a and 30 b formed on the outer ring 30 via the cage 50. It is arranged so that it can roll freely.

なお、図12においては、転動体40として玉を用いた場合について説明しているが、重量の嵩む車輪支持用転がり軸受ユニットの場合には、転動体40としてテーパころを使用する場合もある。
上記構成の車輪支持用転がり軸受ユニットを自動車に組み付けるには、非回転側である外輪30の懸架装置取り付け用フランジ310を図示しない懸架装置に固定し、回転側であるハブ輪10の車輪取り付け用フランジ120に、ハブボルト60を介して、図示しないブレーキロータ及び車輪を固定する。これにより、車輪を懸架装置に対して回転自在に支持することができる。
In addition, in FIG. 12, although the case where a ball is used as the rolling element 40 is described, a tapered roller may be used as the rolling element 40 in the case of a wheel support rolling bearing unit that is heavy.
In order to assemble the wheel bearing rolling bearing unit having the above-described configuration to the automobile, the suspension device mounting flange 310 of the outer ring 30 on the non-rotating side is fixed to the suspension device (not shown) and the wheel ring of the hub wheel 10 on the rotating side is mounted. A brake rotor and a wheel (not shown) are fixed to the flange 120 via the hub bolt 60. Thereby, a wheel can be rotatably supported with respect to a suspension apparatus.

このような車輪支持用転がり軸受ユニットを構成するハブ輪10は、S53C等の中炭素鋼からなる素材を熱間鍛造(熱間加工)にて所定形状に成形した後、放冷して初析フェライト及びパーライト組織の中間素材としたものに対して、旋削,研削,削孔等が施されることで形成されている。
また、内輪軌道面10a,20aや外輪軌道面30a,30bには、転がり疲れ寿命の確保と内輪20の嵌合部におけるフレッチング防止のために、高周波焼入れによる硬化層Tが形成されている。
The hub wheel 10 constituting such a wheel-supporting rolling bearing unit is formed by forming a material made of medium carbon steel such as S53C into a predetermined shape by hot forging (hot working), and then allowing to cool and performing initial analysis. It is formed by turning, grinding, drilling, etc. on the intermediate material of ferrite and pearlite structure.
Further, the inner ring raceway surfaces 10a and 20a and the outer ring raceway surfaces 30a and 30b are formed with a hardened layer T by induction hardening in order to ensure a rolling fatigue life and prevent fretting at the fitting portion of the inner ring 20.

一方、車輪取り付け用フランジ120及び懸架装置取り付け用フランジ310を含む大部分は、支持孔やボルト孔120aを切削する作業を容易にするために、焼入れ及び焼戻し処理を施すことなく、熱間鍛造後に放冷された状態の中間素材のままで形成されている。
すなわち、車輪取り付け用フランジ120及び懸架装置取り付け用フランジ310には、所定形状に成形する際の熱間加工性と、ボルト孔120a等を形成する際の切削加工性と、車輪支持用転がり軸受ユニットとして使用する際の強度と、が要求されている。このため、熱間加工により成形されるハブ輪10や外輪30においては、フランジの肉厚を厚くすることで強度を付与する手段が用いられており、軽量化を図るという点でさらなる改善の余地があった。
On the other hand, most of the wheels including the wheel mounting flange 120 and the suspension device mounting flange 310 are not subjected to quenching and tempering treatment to facilitate the work of cutting the support holes and the bolt holes 120a. It is formed as an intermediate material in a cooled state.
That is, in the wheel mounting flange 120 and the suspension device mounting flange 310, hot workability when forming into a predetermined shape, cutting workability when forming the bolt hole 120a and the like, and a wheel bearing rolling bearing unit. And strength when used as a battery is required. For this reason, in the hub ring 10 and the outer ring 30 formed by hot working, means for imparting strength by increasing the thickness of the flange is used, and there is room for further improvement in terms of weight reduction. was there.

特許文献1には、強度及び軽量化をともに実現させるために、回転側となる外輪を、鋼板からなる素材に冷間鍛造(冷間加工)を施すことにより形成することが提案されている。この方法によれば、冷間加工時の加工硬化によって、従来の熱間加工により形成する場合と比べて、加工精度及び強度を向上できる。また、鋼板からなる素材を用いることによって、従来の熱間加工により形成した場合と比べて、フランジの肉厚を薄くできるため、外輪全体の軽量化を図ることができる。さらに、冷間加工により形成する場合には、フランジの支持孔やボルト孔を孔あけ(ピアス)加工で形成できるため、切削加工を省略でき、低コストで形成できる。
特開平7−317777号公報
Patent Document 1 proposes that an outer ring on the rotating side is formed by subjecting a material made of a steel plate to cold forging (cold working) in order to realize both strength and weight reduction. According to this method, processing accuracy and strength can be improved by work hardening at the time of cold processing as compared with the case of forming by conventional hot processing. Further, by using a material made of a steel plate, the thickness of the flange can be reduced as compared with the case where it is formed by conventional hot working, so that the weight of the entire outer ring can be reduced. Furthermore, in the case of forming by cold working, since the support hole and bolt hole of the flange can be formed by drilling (piercing), cutting can be omitted, and it can be formed at low cost.
JP 7-317777 A

ところで、冷間加工時の成形性(以下、「冷間加工性」と記す。)は、冷間加工前の素材の硬さや金属組織の状態に依存することが知られている。しかしながら、上述した特許文献1では、冷間加工の方法については言及されているものの、冷間加工前の素材の硬さや金属組織の状態に関する開示はなされていない。
ここで、車輪支持用転がり軸受ユニットのハブ輪や外輪の素材としては、軌道面に高周波焼入れを施して必要な強度を確保するために、S53C等の中炭素鋼が用いられている。
By the way, it is known that the formability during cold working (hereinafter referred to as “cold workability”) depends on the hardness of the material and the state of the metal structure before cold working. However, in Patent Document 1 described above, although a method of cold working is mentioned, no disclosure is made regarding the hardness of the material and the state of the metal structure before cold working.
Here, as a material for the hub wheel and the outer ring of the wheel bearing rolling bearing unit, medium carbon steel such as S53C is used in order to ensure the necessary strength by subjecting the raceway surface to induction hardening.

このため、特許文献1に記載の外輪の素材として、上述したS53C等からなる炭素鋼板を用いると、素材が硬すぎることから、冷間加工性が低下して割れが生じたり、冷間加工時に用いる金型の寿命を低下させたりする場合がある。一方、特許文献1に記載の外輪の素材として、上述した炭素鋼板よりも低硬度の素材を用いると、冷間加工性は向上するが、冷間加工後の強度が不十分となる。
そこで、本発明は、このような事情に鑑みてなされたものであり、車輪支持用転がり軸受ユニットのハブ輪や外輪を、炭素鋼板からなる素材に冷間加工を施すことで形成する場合において、冷間加工性及び冷間加工後の強度をともに向上できるようにすることを課題としている。
For this reason, if the carbon steel plate which consists of S53C etc. which were mentioned above is used as a raw material of the outer ring | wheel described in patent document 1, since a raw material is too hard, a cold workability will fall and a crack will arise, or at the time of cold work The life of the mold used may be reduced. On the other hand, when a material having a hardness lower than that of the carbon steel plate described above is used as the material of the outer ring described in Patent Document 1, the cold workability is improved, but the strength after the cold work becomes insufficient.
Therefore, the present invention has been made in view of such circumstances, in the case of forming the hub ring and the outer ring of the wheel bearing rolling bearing unit by subjecting a material made of a carbon steel plate to cold working, It is an object to improve both cold workability and strength after cold work.

このような課題を解決するために、本発明の車輪支持用転がり軸受ユニットは、外周面に軌道面が形成された第一部材と、内周面に軌道面が形成された第二部材と、前記第一部材及び前記第二部材間に転動自在に配設された複数の転動体と、を備え、前記第一部材及び前記第二部材のうち一方の部材が懸架装置に取り付けられ、他方の部材に車輪が取り付けられることにより、前記車輪を前記懸架装置に対して回転自在に支持するための車輪支持用転がり軸受ユニットにおいて、前記第一部材及び前記第二部材のうち少なくとも一つは、C含有率が0.48質量%以上0.58質量%以下で、Si含有率が0.50質量%以下で、Mn含有率が0.90質量%以下で、Cr含有率が0.50質量%以下で、残部がFe及び不可避不純物である鋼に対して、Ac1変態点以上Ac3変態点以下の温度で加熱保持し、次にAr1変態点未満の温度に冷却してAr1変態点未満の温度で保持し、次に徐冷する軟化焼なまし処理が施されて得られた、硬さがHRB82.0以下で、パーライトのラメラ間隔(層状パーライトの層間隔)が0.50μm以上のフェライト及びパーライト組織の鋼からなる素材に、冷間加工が施されることで形成されていることを特徴とするものである。
つまり、本発明では、車輪支持用転がり軸受ユニットを構成する第一部材及び第二部材のうち少なくとも一つを、以下に示す特定の鋼板からなる素材に、冷間加工を施すことで形成する。
In order to solve such a problem, the wheel support rolling bearing unit of the present invention includes a first member having a raceway surface formed on the outer peripheral surface, a second member having a raceway surface formed on the inner peripheral surface, A plurality of rolling elements disposed between the first member and the second member so as to be freely rollable, wherein one of the first member and the second member is attached to a suspension device, and the other In the wheel bearing rolling bearing unit for rotatably supporting the wheel with respect to the suspension device by attaching a wheel to the member, at least one of the first member and the second member is: C content is 0.48 mass% or more and 0.58 mass% or less, Si content is 0.50 mass% or less, Mn content is 0.90 mass% or less, and Cr content is 0.50 mass. % And the balance is Fe and inevitable impurities Respect, and heated and held at A c1 transformation point or above A c3 transformation point temperature, then cooled to a temperature lower than A r1 transformation temperature and held at a temperature of less than A r1 transformation temperature, then gradually cooled The material obtained by the softening and annealing treatment, the hardness is HRB82.0 or less, and the pearlite lamellar spacing (layer spacing of the layered pearlite) is 0.50 μm or more of a material composed of ferrite and pearlite steel. It is characterized by being formed by cold working.
That is, in the present invention, at least one of the first member and the second member constituting the wheel support rolling bearing unit is formed by subjecting a material made of the following specific steel plate to cold working.

以下、本発明において冷間加工が施される前の素材について詳細に説明する。
〔素材をなす鋼板について〕
第一に、本発明者らは、炭素鋼に軟化焼なまし処理を施すことで得られる金属組織のうち、冷間加工性と冷間加工後の強度とを兼ね備えた組織について検証した。
まず、硬さがHRB92のS55C(C含有率:0.53質量%、Si含有率:0.2質量%,Mn含有率:0.76質量%,Cr含有率:0.11質量%)からなる熱間圧延鋼板を用意した。
次に、この鋼板に、図1に示す軟化焼なまし処理を施すことにより、図2に示すフェライト及びパーライト組織とした。同様に、この鋼板に、図3に示す軟化焼なまし処理を施すことにより、図4に示すフェライト及び球状化セメンタイト組織とした。
Hereinafter, the material before cold working in the present invention will be described in detail.
[Regarding the steel plate of the material]
First, the present inventors verified a structure having both cold workability and strength after cold working out of a metal structure obtained by subjecting carbon steel to soft annealing.
First, from S55C having a hardness of HRB92 (C content: 0.53 mass%, Si content: 0.2 mass%, Mn content: 0.76 mass%, Cr content: 0.11 mass%) A hot rolled steel sheet was prepared.
Next, this steel sheet was subjected to the softening annealing process shown in FIG. 1 to obtain the ferrite and pearlite structure shown in FIG. Similarly, the steel and the spheroidized cementite structure shown in FIG. 4 were obtained by subjecting the steel sheet to a softening annealing treatment shown in FIG.

次に、上述した熱処理が施された後の鋼板からなる素材に、下記式(1)で算出される冷間加工率が0%,30%,50%の各条件で冷間圧延(冷間加工)を施した。
冷間加工率(%)=(圧延後の板厚)/(圧延前の板厚)×100 ・・・(1)
次に、冷間加工後の鋼板に対して、JIS Z 2241に規定された引張試験を行って降伏応力(0.2%の残留ひずみを生じる応力)を測定し、各鋼板の強度を評価した。そして、冷間加工率と鋼板の降伏応力との関係を示す図5のグラフを作成した。
Next, cold rolling (cold rolling) is performed on the material made of the steel sheet after the above-described heat treatment under the conditions that the cold working rate calculated by the following formula (1) is 0%, 30%, and 50%. Processing).
Cold work rate (%) = (plate thickness after rolling) / (plate thickness before rolling) × 100 (1)
Next, the steel sheet after cold working was subjected to a tensile test specified in JIS Z 2241 to measure the yield stress (stress that produces a residual strain of 0.2%), and the strength of each steel sheet was evaluated. . And the graph of FIG. 5 which shows the relationship between the cold work rate and the yield stress of a steel plate was created.

図5に示すように、フェライト及びパーライト組織の鋼板からなる素材も、フェライト及び球状化セメンタイト組織の鋼板からなる素材も、冷間加工率の増加に伴い、降伏応力が大きくなっていることがわかる。また、冷間加工率が0%の時の降伏応力は、フェライト及び球状化セメンタイト組織の鋼板からなる素材のほうが大きく、冷間加工率が30%以上の時の降伏応力は、フェライト及びパーライト組織の鋼板からなる素材のほうが大きくなっていることが分かる。   As shown in FIG. 5, it can be seen that the yield stress increases in both the material made of the steel plate of ferrite and pearlite structure and the material of the steel plate made of ferrite and spheroidized cementite structure as the cold working rate increases. . Moreover, the yield stress when the cold work rate is 0% is larger in the material made of steel sheets of ferrite and spheroidized cementite structure, and the yield stress when the cold work rate is 30% or more is the ferrite and pearlite structure. It can be seen that the material made of the steel plate is larger.

このことから、フェライト及びパーライト組織の鋼板は、フェライト及び球状化セメンタイト組織の鋼板と比べて、冷間加工前の変形抵抗性が小さく、冷間加工性に優れ、且つ、冷間加工後の強度が高いことが分かる。よって、冷間加工性及び冷間加工後の強度を兼ね備えるために、本発明では、冷間加工が施される前の素材をフェライト及びパーライト組織の鋼板とした。   From this, steel sheets with ferrite and pearlite structure are less deformable before cold working than steel sheets with ferrite and spheroidized cementite structure, excellent in cold workability, and strength after cold working Is high. Therefore, in order to have both the cold workability and the strength after the cold work, in the present invention, the steel before the cold work is made a steel plate of ferrite and pearlite structure.

第二に、本発明者らは、フェライト及びパーライト組織の鋼板からなる素材の冷間加工性をより向上できる組織条件について鋭意検討を行った。この結果、本発明者らは、硬度向上に影響を与えるパーライトのラメラ間隔を大きくして、粗いパーライト組織とすればよいことを見出し、最適なラメラ間隔について検証した。
まず、上述と同様のS55Cからなる熱間圧延鋼板に対して、図6に示すように、760℃で4時間加熱保持した後、580〜710℃の間の所定温度(580℃,600℃,630℃,650℃,680℃,690℃,690℃,700℃,710℃)に冷却して4時間保持し、さらに、10時間かけて550℃まで徐冷する軟化焼なまし処理を施して、フェライト及びパーライト組織とした。
Secondly, the present inventors have conducted intensive studies on the structure conditions that can further improve the cold workability of a material made of a steel plate having a ferrite and pearlite structure. As a result, the present inventors have found that it is sufficient to increase the pearlite lamella spacing, which affects the hardness improvement, to obtain a rough pearlite structure, and verified the optimum lamella spacing.
First, as shown in FIG. 6, a hot-rolled steel sheet made of S55C similar to that described above was heated and maintained at 760 ° C. for 4 hours, and then a predetermined temperature between 580 to 710 ° C. (580 ° C., 600 ° C., 630 ° C., 650 ° C., 680 ° C., 690 ° C., 690 ° C., 700 ° C., 710 ° C.) and held for 4 hours, followed by a soft annealing treatment that gradually cools to 550 ° C. over 10 hours. , Ferrite and pearlite structure.

次に、熱処理後の鋼板において、硬さとパーライトのラメラ間隔とを測定した。
硬さは、JIS Z 2245に規定されたロックウェル硬さ試験法を用いて、表面から少なくとも200μmの深さまでの部分を測定した。
パーライトのラメラ間隔は、以下の手順で測定した。まず、熱処理後の鋼板に鏡面研磨を施した後、ナイタール腐食液でエッチングし、500倍の光学顕微鏡で観察した。次に、
1視野中で最もパーライト密度の高い部分を、1000倍の光学顕微鏡又は2000倍の走査型電子顕微鏡で観察し、任意の5本のラメラ間隔を測定した。この測定は、5視野分行って、5視野分のラメラ間隔の平均値を算出した。
Next, the hardness and the lamellar spacing of pearlite were measured in the steel plate after the heat treatment.
The hardness was measured from the surface to a depth of at least 200 μm using the Rockwell hardness test method defined in JIS Z 2245.
The pearlite lamella spacing was measured by the following procedure. First, the heat-treated steel sheet was mirror-polished, etched with a nital etchant, and observed with a 500 × optical microscope. next,
A portion having the highest pearlite density in one field of view was observed with a 1000 × optical microscope or a 2000 × scanning electron microscope, and an arbitrary five lamellar spacing was measured. This measurement was performed for five visual fields, and the average value of lamella intervals for five visual fields was calculated.

そして、熱処理後の鋼板の硬さとパーライトのラメラ間隔との関係を示す図7のグラフを作成した。
図7に示すように、パーライトのラメラ間隔が大きくなるにつれて硬さが低下していることが分かる。本発明においては、ハブ輪及び外輪に優れた冷間加工性を付与できる硬さ(HRB82.0以下)とするために、冷間加工前の鋼板からなる素材において、パーライトのラメラ間隔を0.50μm以上、好ましくは0.55μm以上とする。
And the graph of FIG. 7 which shows the relationship between the hardness of the steel plate after heat processing, and the lamellar space | interval of a pearlite was created.
As shown in FIG. 7, it can be seen that the hardness decreases as the pearlite lamella spacing increases. In the present invention, in order to obtain a hardness (HRB82.0 or less) that can impart excellent cold workability to the hub wheel and the outer ring, the pearlite lamella spacing is set to 0. 50 μm or more, preferably 0.55 μm or more.

一方、鋼板からなる素材におけるパーライトのラメラ間隔を0.65μm超過とするためには、長時間の熱処理が必要となり、製造効率が低下するとともに、長時間の熱処理によりセメンタイトの球状化が進行するため、冷間加工性が低下する。よって、鋼板からなる素材におけるパーライトのラメラ間隔は、0.65μm以下とすることが好ましい。   On the other hand, in order to make the pearlite lamella spacing in the material made of steel sheets exceed 0.65 μm, a long-time heat treatment is required, resulting in a decrease in production efficiency and an increase in cementite spheroidization due to the long-time heat treatment. , Cold workability decreases. Therefore, it is preferable that the pearlite lamella spacing in the material made of the steel plate is 0.65 μm or less.

次に、以下に示す特定の鋼を用いて、硬さがHRB82.0以下で、パーライトのラメラ間隔が0.50μm以上のフェライト及びパーライト組織の鋼板からなる素材を形成するための軟化焼なまし処理について、図8を参照しながら説明する。
〔特定の鋼について〕
<C含有率(質量%):0.48%以上0.58%以下>
C(炭素)は、焼入れ硬さを向上させる作用があり、高周波焼入れによって軌道面を硬化させるために必要な元素である。C含有率は、車輪支持用転がり軸受ユニットの軌道面に必要な硬さ(HRC58以上)を付与するために、0.48%以上とする。
一方、C含有率が多すぎると、冷間加工性が低下するため、C含有率は0.58%以下、好ましくは0.55%以下とする。
Next, using the specific steel shown below, soft annealing is performed to form a material composed of a steel plate of ferrite and pearlite structure having a hardness of HRB 82.0 or less and a pearlite lamellar spacing of 0.50 μm or more. The processing will be described with reference to FIG.
[About specific steel]
<C content (mass%): 0.48% or more and 0.58% or less>
C (carbon) has an effect of improving quenching hardness, and is an element necessary for curing the raceway surface by induction quenching. The C content is set to 0.48% or more in order to impart the necessary hardness (HRC 58 or more) to the raceway surface of the wheel supporting rolling bearing unit.
On the other hand, if the C content is too high, the cold workability deteriorates, so the C content is 0.58% or less, preferably 0.55% or less.

<Si含有率(質量%):0.50%以下>
Si(珪素)は、基地に固溶して転がり疲れ寿命を向上させる作用がある。この作用を得るために、Si含有率は0.1%以上とすることが好ましい。しかしながら、Si含有率が多すぎると、Siがフェライトに固溶して硬化し、冷間加工性が低下するため、Si含有率は0.50%以下とする。
<Si content (mass%): 0.50% or less>
Si (silicon) has the effect of improving the rolling fatigue life by dissolving in the base. In order to obtain this effect, the Si content is preferably 0.1% or more. However, when the Si content is too high, Si is solid-solved in the ferrite and hardened, and the cold workability is lowered. Therefore, the Si content is set to 0.50% or less.

<Mn含有率(質量%):0.90%以下>
Mn(マンガン)は、脱酸剤として添加される元素であり、鋼の焼入れ性を向上させる作用を有する。この作用を得るために、Mn含有率は0.3%以上とすることが好ましい。しかしながら、Mn含有率が多すぎると、Mnがフェライトに固溶して硬化し、冷間加工性を低下させるため、Mn含有率は0.90%以下とする。
<Mn content (mass%): 0.90% or less>
Mn (manganese) is an element added as a deoxidizer and has the effect of improving the hardenability of steel. In order to obtain this effect, the Mn content is preferably 0.3% or more. However, if the Mn content is too high, Mn is solid-solved in the ferrite and hardens to lower the cold workability, so the Mn content is set to 0.90% or less.

<Cr含有率(質量%):0.50%以下>
Cr(クロム)は、炭化物形成元素であり、硬さ及び焼入れ性を向上させる作用がある。この作用を得るために、Cr含有率は0.10%以上とすることが好ましい。しかしながら、Cr含有率が多すぎると、Crがフェライトに固溶して硬化し、冷間加工性が低下するため、Cr含有率は0.50%以下とする。
<Cr content (mass%): 0.50% or less>
Cr (chromium) is a carbide forming element and has an effect of improving hardness and hardenability. In order to obtain this effect, the Cr content is preferably 0.10% or more. However, if the Cr content is too high, Cr is solid-solved in the ferrite and hardened, and the cold workability is lowered. Therefore, the Cr content is set to 0.50% or less.

〔軟化焼なまし処理について〕
まず、図8に示すように、室温からオーステナイト化温度域(Ac1変態点以上)まで昇温する(工程1)。この昇温時間は、被加熱物の均熱処理を可能とするために、1〜4時間とすることが好ましい。
次に、Ac1変態点以上Ac3変態点以下のオーステナイト化温度域(例えば、740〜770℃)で加熱保持する(工程2)。
ここで、Ac1変態点を越えると、鋼の金属組織はオーステナイト単相組織となり、その後の冷却工程で過冷状態のオーステナイトからフェライトとパーライトが析出する。しかしながら、オーステナイト化温度が高いと、過冷度が高くなりパーライトのラメラ間隔が大きくなる傾向があるため、Ac3変態点以下で加熱保持する。
[About softening and annealing treatment]
First, as shown in FIG. 8, the temperature is raised from room temperature to the austenitizing temperature range (above the A c1 transformation point) (step 1). The temperature raising time is preferably 1 to 4 hours in order to allow soaking of the object to be heated.
Next, A c1 transformation point or above A c3 transformation point of austenitizing temperature range (e.g., seven hundred forty to seven hundred seventy ° C.) for heating and maintaining at (Step 2).
Here, when the A c1 transformation point is exceeded, the metal structure of the steel becomes an austenite single phase structure, and ferrite and pearlite are precipitated from the supercooled austenite in the subsequent cooling step. However, when the austenitizing temperature is high, the degree of supercooling tends to be high and the lamella spacing of pearlite tends to be large, so the heat is held below the A c3 transformation point.

また、Ac1変態点以上Ac3変態点以下では、γ−フェライトとα−フェライトとの二相領域となり、フェライト量が理論析出量よりも高くなるため、軟化する。しかしながら、Ac3変態点直下では、フェライトの析出量が小さくなるため不適である。したがって、オーステナイト化温度域の上限値は、(Ac3変態点−20)℃とすることが好ましい。
一方、オーステナイト化温度域の下限値は、オーステナイトの過冷度が小さくなると、フェライトの理論析出量が高くなることからAc1変態点に近いほうが好ましいが、被加熱物の均熱処理や炉内の温度ばらつきを考慮して、(Ac1変態点+20)℃とすることが好ましい。
Further, in the range from the A c1 transformation point to the A c3 transformation point, it becomes a two-phase region of γ-ferrite and α-ferrite, and the amount of ferrite becomes higher than the theoretical precipitation amount, so that it softens. However, just below the A c3 transformation point, it is not suitable because the amount of ferrite precipitated becomes small. Therefore, the upper limit value of the austenitizing temperature range is preferably set to ( Ac3 transformation point −20) ° C.
On the other hand, the lower limit of the austenitizing temperature range is preferably close to the A c1 transformation point because the theoretical precipitation amount of ferrite increases as the degree of supercooling of austenite decreases. Considering temperature variation, it is preferable to set it to (A c1 transformation point + 20) ° C.

なお、オーステナイト化温度域での加熱保持時間は、生産効率を考慮して、0.5時間以上4時間とすることが好ましく、1時間以上2時間以下とすることがさらに好ましい。
次に、Ar1変態点(恒温変態点)未満まで冷却する(工程3)。この冷却時間は、被加熱物の均熱処理や生産効率を考慮して、1時間以上4時間以下とすることが好ましい。なお、この範囲の冷却時間で変態点を通過する際の冷却速度は、10〜60℃/Hrとなる。
The heating and holding time in the austenitizing temperature range is preferably 0.5 hours to 4 hours, more preferably 1 hour to 2 hours in consideration of production efficiency.
Next, it is cooled to less than the A r1 transformation point (constant temperature transformation point) (step 3). This cooling time is preferably set to 1 hour or more and 4 hours or less in consideration of soaking of the object to be heated and production efficiency. In addition, the cooling rate at the time of passing through the transformation point in this range of cooling time is 10 to 60 ° C./Hr.

次に、Ar1変態点(恒温変態点)未満の温度(例えば、685〜715℃)で保持する(工程4)。この工程では、恒温変態によって、フェライト及びオーステナイトの二相組織からオーステナイトがパーライトに変態して、フェライト及びパーライト組織になるとともに、パーライトのラメラ間隔が決定する。
ここで、Ar1変態点直下の温度で保持すると、最もパーライトのラメラ間隔が大きくなり軟化するが、長時間の熱処理が必要となる。一方、(Ar1変態点−40)℃よりも低い温度で保持すると、オーステナイトの過冷度が大きくなり、パーライトのラメラ間隔が小さくなり硬化する。したがって、冷却後の保持は、(Ar1変態点−40)℃以上(Ar1変態点−10)℃以下の温度で保持することが好ましい。
Next, a temperature of less than A r1 transformation temperature (isothermal transformation point) (e.g., six hundred and eighty-five to seven hundred fifteen ° C.) and held at (step 4). In this process, austenite is transformed into pearlite from the two-phase structure of ferrite and austenite by isothermal transformation, and becomes a ferrite and pearlite structure, and the lamella spacing of pearlite is determined.
Here, if it is held at a temperature just below the A r1 transformation point, the pearlite lamella spacing becomes the largest and softens, but a long-time heat treatment is required. On the other hand, when it is held at a temperature lower than (A r1 transformation point −40) ° C., the degree of supercooling of austenite increases, the lamella spacing of pearlite decreases, and it hardens. Therefore, retention after cooling is preferably kept at (A r1 transformation temperature -40) ° C. or higher (A r1 transformation temperature -10) ° C. or lower.

なお、オーステナイトの変態が全て完了しないと、次の徐冷工程で未変態のオーステナイトからラメラ間隔の小さいパーライトが析出して軟化し難くなるため、Ar1変態点未満の温度での保持時間は、オーステナイトの変態が全て完了する時間(例えば、2〜20時間)とする。
次に、徐冷を行う(工程5)。この工程は、まず、変態が完了してフェライト及びパーライト組織のうち、層状パーライトが分断するように、例えば650〜685℃の温度まで2〜10時間かけて冷却する(工程5A)。続いて、変態が完了したフェライト及びパーライト組織において、フェライト中にわずかに固溶残存する炭素をパーライトとして析出させることで軟化を進行させるために、例えば500〜580℃の温度まで5〜10時間かけて冷却する(工程5B)。
If the transformation of austenite is not completely completed, pearlite with a small lamellar interval is precipitated from untransformed austenite in the next slow cooling step and is difficult to soften. Therefore , the holding time at a temperature below the Ar1 transformation point is A time (for example, 2 to 20 hours) in which all transformations of austenite are completed is taken.
Next, slow cooling is performed (step 5). In this step, first, the transformation is completed and the ferrite layer and the pearlite structure are cooled to a temperature of, for example, 650 to 685 ° C. over 2 to 10 hours so that the layered pearlite is divided (step 5A). Subsequently, in the ferrite and pearlite structure after the transformation is completed, in order to advance softening by precipitating carbon slightly remaining in the ferrite as pearlite, it takes 5 to 10 hours, for example, to a temperature of 500 to 580 ° C. (Step 5B).

なお、この徐冷工程は、図8に示すように、二段階に分けて冷却してもよいし、図9に示すように、Ar1変態点未満の温度で保持した後に500〜580℃の温度まで5〜15時間かけて冷却するようにしてもよい。
そして、このようにして得られた、硬さがHRB82.0以下で、パーライトのラメラ間隔が0.50μm以上のフェライト及びパーライト組織の鋼板からなる素材に、冷間加工を施すことにより、ハブ輪及び外輪のうち少なくとも一方を形成する。
なお、本発明における冷間加工とは、特に限定されないが、例えば、冷間鍛造,冷間圧延,冷間プレスが挙げられる。
In this annealing step, as shown in FIG. 8, it may be cooled in two stages, as shown in FIG. 9, after holding at a temperature of less than A r1 transformation temperature of 500 to 580 ° C. You may make it cool to temperature over 5 to 15 hours.
A hub wheel is obtained by cold-working a material made of a ferrite and a pearlite steel plate having a hardness of HRB 82.0 or less and a pearlite lamella spacing of 0.50 μm or more obtained in this way. And at least one of the outer rings.
In addition, although it does not specifically limit with the cold work in this invention, For example, cold forging, cold rolling, and cold press are mentioned.

本発明の車輪支持用転がり軸受ユニットによれば、ハブ輪及び外輪のうち少なくとも一つを、硬さとパーライトのラメラ間隔とが特定されたフェライト及びパーライト組織の鋼板からなる素材に冷間加工を施すことにより形成したため、冷間加工性及び冷間加工後の強度とをともに向上させることができる。   According to the rolling bearing unit for supporting a wheel of the present invention, at least one of the hub ring and the outer ring is cold worked on a material made of a steel plate of ferrite and pearlite structure in which hardness and lamella spacing of pearlite are specified. Therefore, both the cold workability and the strength after cold working can be improved.

以下、本発明の実施形態について図面を参照しながら説明する。
〔第一実施形態〕
本実施形態では、既に図12で説明した従来の車輪支持用転がり軸受ユニットのハブ輪(第一部材)10を、以下に示す手順で形成した。
まず、硬さがHRB97のS55C(C含有率:0.53質量%,Si含有率:0.22質量%,Mn含有率:0.76質量%,Cr含有率:0.11質量%)からなる熱間圧延鋼板(板厚:9mm)を用意した。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
In the present embodiment, the hub wheel (first member) 10 of the conventional wheel support rolling bearing unit already described with reference to FIG. 12 is formed by the following procedure.
First, from S55C having a hardness of HRB97 (C content: 0.53 mass%, Si content: 0.22 mass%, Mn content: 0.76 mass%, Cr content: 0.11 mass%) A hot-rolled steel sheet (thickness: 9 mm) was prepared.

次に、この鋼板に、表1に示す各熱処理条件で図8に示す軟化焼なまし処理を施した。
このようにして得られた鋼板において、上述と同様の方法を用いて、硬さとパーライトのラメラ間隔とを測定した。この結果は、表1に併せて示した。
次に、得られた鋼板を打ち抜いて素材として、図10に示す冷間鍛造(冷間加工)を施して、ハブ輪10を完成させた。つまり、図10に示すように、まず、素材に深絞りとピアスを順に施した後、ハブ輪10の最終形状に成形し、トリムにより車輪取り付け用フランジ120を形成し、且つ、ピアスにより車輪取り付け用フランジ120にボルト穴120aを形成した。
そして、完成後のハブ輪10の表面形状を目視により確認し、1000個当たりの割れ発生数を算出した。この結果は、表1に併せて示した。
Next, the steel plate was subjected to the softening annealing treatment shown in FIG. 8 under the respective heat treatment conditions shown in Table 1.
In the steel plate thus obtained, hardness and pearlite lamella spacing were measured using the same method as described above. The results are also shown in Table 1.
Next, the obtained steel plate was punched out, and the material was subjected to cold forging (cold working) shown in FIG. 10 to complete the hub wheel 10. That is, as shown in FIG. 10, first, the material is first subjected to deep drawing and piercing in order, then formed into the final shape of the hub wheel 10, the wheel mounting flange 120 is formed by trim, and the wheel is mounted by piercing. Bolt holes 120a were formed in the flange 120 for use.
And the surface shape of the hub wheel 10 after completion was confirmed visually, and the crack generation number per 1000 pieces was calculated. The results are also shown in Table 1.

Figure 2006241559
Figure 2006241559

表1に示すように、冷間加工を施す前の鋼板からなる素材の硬さと、パーライトのラメラ間隔とを本発明の範囲内としたNo.1〜No.33では、冷間加工時の割れ発生数がゼロであった。
一方、No.34〜No.43では、冷間加工を施す前の鋼板からなる素材の硬さ及びパーライトのラメラ間隔の少なくとも一方が本発明の範囲外であったため、冷間加工時の割れが発生した。
以上の結果より、車輪支持用転がり軸受ユニットのハブ輪10の素材として、硬さとパーライトのラメラ間隔が本発明の範囲内のフェライト及びパーライト組織の鋼板を用いることにより、優れた冷間加工性が得られることが分かった。
As shown in Table 1, the hardness of the material made of the steel plate before cold working and the lamella spacing of pearlite are No. in the scope of the present invention. 1-No. In No. 33, the number of cracks generated during cold working was zero.
On the other hand, no. 34-No. In No. 43, since at least one of the hardness of the material made of the steel plate before cold working and the lamella spacing of pearlite was outside the scope of the present invention, cracks during cold working occurred.
From the above results, excellent cold workability can be obtained by using a steel plate of ferrite and pearlite structure with hardness and pearlite lamella spacing within the scope of the present invention as the material of the hub wheel 10 of the wheel bearing rolling bearing unit. It turns out that it is obtained.

〔第二実施形態〕
本実施形態では、既に図12で説明した車輪支持用転がり軸受ユニットのハブ輪(第一部材)10を、以下に示す手順で形成した。
まず、表2に示す各含有率のC,Si,Mn,Crを含む鋼に表1に示すNo.2の軟化焼なまし処理を施して鋼板からなる素材を形成した。
このようにして得られた鋼鈑において、上述と同様の方法を用いて、硬さとパーライトのラメラ間隔とを測定した。この結果は、表2に併せて示した。
次に、得られた鋼鈑を打ち抜いて素材として、上述した図10に示す冷間鍛造(冷間加工)を施して、ハブ輪10を完成させた。
そして、完成後のハブ輪10において、上述と同様に、1000個当たりの割れ発生数を算出した。この結果は、表2に併せて示した。
[Second Embodiment]
In the present embodiment, the hub wheel (first member) 10 of the wheel support rolling bearing unit already described with reference to FIG. 12 is formed by the following procedure.
First, the steels containing C, Si, Mn, and Cr having the respective contents shown in Table 2 were subjected to No. 1 shown in Table 1. The softening annealing process of 2 was given and the raw material which consists of a steel plate was formed.
In the steel plate thus obtained, the hardness and the lamella spacing of pearlite were measured using the same method as described above. The results are also shown in Table 2.
Next, the obtained steel sheet was punched out, and the above-described cold forging (cold working) shown in FIG. 10 was performed as a material to complete the hub wheel 10.
Then, in the hub wheel 10 after completion, the number of cracks generated per 1000 pieces was calculated in the same manner as described above. The results are also shown in Table 2.

Figure 2006241559
Figure 2006241559

表2に示すように、冷間加工が施される前の素材である鋼鈑が、本発明の範囲内である鋼から形成されたNo.51〜No.58では、硬さ及びパーライトのラメラ間隔が本発明の範囲内のフェライト及びパーライト組織にでき、冷間加工時の割れ発生数がゼロであた。
一方、冷間加工が施される前の素材である鋼板が、本発明の範囲外の鋼から形成されたNo.59〜No.62では、パーライトのラメラ間隔が本発明の範囲内であっても硬さを本発明の範囲内にできず、冷間加工時に割れが発生した。
以上の結果より、車輪支持用転がり軸家ユニットのハブ輪10の素材である鋼板を、本発明の鋼で構成することにより、硬さとパーライトのラメラ間隔が本発明の範囲内のフェライト及びパーライト組織にでき、優れた冷間加工性が得られることが分かった。
As shown in Table 2, a steel plate which is a raw material before being cold worked is No. formed from steel which is within the scope of the present invention. 51-No. In No. 58, the hardness and the lamella spacing of pearlite were able to be a ferrite and pearlite structure within the range of the present invention, and the number of cracks during cold working was zero.
On the other hand, the steel plate which is a raw material before cold working is No. formed from steel outside the scope of the present invention. 59-No. No. 62, even if the pearlite lamella spacing was within the range of the present invention, the hardness could not be within the range of the present invention, and cracking occurred during cold working.
From the above results, the steel sheet as the material of the hub wheel 10 of the rolling shaft housing unit for supporting the wheel is composed of the steel of the present invention, so that the ferrite and pearlite structure whose hardness and pearlite lamellar spacing are within the scope of the present invention are obtained. It was found that excellent cold workability was obtained.

〔第三実施形態〕
本実施形態では、既に図12で説明した従来の車輪支持用転がり軸受ユニットのハブ輪(第一部材)10を、以下に示す手順で形成した。
まず、No.71〜No.73では、第一実施形態と同様のS55Cからなる熱間圧延鋼鈑(板厚:9mm)を用いて、表3に示す各熱処理条件で図8に示す軟化焼なまし処理を施した。
一方、No.74では、第一実施形態と同様のS55Cからなる熱間圧延鋼鈑(板厚:9mm)を用いて、上述した図3に示す軟化焼なまし処理を施した。
[Third embodiment]
In the present embodiment, the hub wheel (first member) 10 of the conventional wheel support rolling bearing unit already described with reference to FIG. 12 is formed by the following procedure.
First, no. 71-No. In 73, the soft annealing process shown in FIG. 8 was performed on each heat treatment condition shown in Table 3 using the hot rolled steel plate (sheet thickness: 9 mm) which consists of S55C similar to 1st embodiment.
On the other hand, no. In 74, the softening annealing process shown in FIG. 3 mentioned above was performed using the hot rolled steel plate (sheet thickness: 9 mm) made of S55C as in the first embodiment.

このようにして得られた鋼鈑において、上述と同様の方法を用いて、表面から少なくとも200μmの深さまでの部分の硬さを測定した。また、得られた鋼鈑を、上述と同様の方法を用いて、500倍の光学顕微鏡で観察して、構成組織を確認した。この結果は、表3に併せて示した。また、図11は、No.71の鋼鈑の光学顕微鏡写真である。
次に、得られた鋼鈑を打ち抜いて素材として、上述した図10に示す冷間鍛造(冷間加工)を施して、ハブ輪10を完成させた。
このようにして得られたハブ輪10の車輪取り付け用フランジ120の側面において、上述と同様の方法で、表面から少なくとも200μmの深さまでの部分の硬さを測定した。この結果は、表3に併せて示した。
In the steel sheet thus obtained, the hardness of the part from the surface to a depth of at least 200 μm was measured using the same method as described above. Further, the obtained steel sheet was observed with a 500-fold optical microscope using the same method as described above, and the structural structure was confirmed. The results are also shown in Table 3. In addition, FIG. It is an optical microscope photograph of 71 steel plates.
Next, the obtained steel sheet was punched out, and the above-described cold forging (cold working) shown in FIG. 10 was performed as a material to complete the hub wheel 10.
On the side surface of the wheel mounting flange 120 of the hub wheel 10 obtained in this way, the hardness of the portion from the surface to a depth of at least 200 μm was measured by the same method as described above. The results are also shown in Table 3.

そして、得られたハブ輪10と、ブレーキロータ(通常品)とを、車輪取付け用フランジ120に、ハブボルト60及びナットを介して100N・mで締結した。その後、ハブボルト60とナットとを取りはずして、ハブボルト60のボルト孔120aのPCD位置において内側と外側の±10mm位置でフランジ面の変形量を測定した。そして、その最大変形量に基づいて、フランジ面の変形抵抗値を算出した。この結果は、No.71の変形抵抗値を1とした時の比として、表3に併せて示した。   The obtained hub wheel 10 and the brake rotor (ordinary product) were fastened to the wheel mounting flange 120 at 100 N · m via the hub bolt 60 and the nut. Thereafter, the hub bolt 60 and the nut were removed, and the deformation amount of the flange surface was measured at ± 10 mm positions inside and outside at the PCD position of the bolt hole 120a of the hub bolt 60. And the deformation resistance value of the flange surface was calculated based on the maximum deformation amount. This result is shown in No. The ratio when the deformation resistance value of 71 is 1 is also shown in Table 3.

Figure 2006241559
Figure 2006241559

表3に示すように、冷間加工を施す前の鋼板からなる素材を、フェライト及びパーライト組織としたNo.71〜No.73では、フェライト及び球状化セメンタイト組織としたNo.74と比べて、フランジ面の変形抵抗値が大きく、冷間加工性に優れていることが分かる。また、冷間加工を施す前の素材をフェライト及びパーライト組織としたNo.71〜No.73は、フェライト及び球状化セメンタイト組織としたNo.74と比べて、素材の段階では同程度の硬さであったが、冷間加工後の硬さは大きくなっていることが分かる。
以上の結果より、ハブ輪10を、フェライト及びパーライト組織の鋼板からなる素材に冷間加工を施して形成することにより、冷間加工性と冷間加工後の強度とをともに向上できることが分かった。
As shown in Table 3, a material made of a steel sheet before cold working was made into a ferrite and pearlite structure. 71-No. No. 73, a ferrite and spheroidized cementite structure. It can be seen that the deformation resistance value of the flange surface is larger than 74, and the cold workability is excellent. In addition, the material before cold working was ferrite and pearlite structure No. 71-No. No. 73 is a ferrite and spheroidized cementite structure. Compared to 74, it was the same degree of hardness at the material stage, but it can be seen that the hardness after cold working is increased.
From the above results, it was found that both the cold workability and the strength after cold working can be improved by forming the hub wheel 10 by cold working a material made of a steel plate of ferrite and pearlite structure. .

軟化焼きなまし処理の一例を示す模式図である。It is a schematic diagram which shows an example of a softening annealing process. 図1の熱処理で得られたフェライト及びパーライト組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the ferrite and pearlite structure | tissue obtained by the heat processing of FIG. 軟化焼きなまし処理の他の例を示す模式図である。It is a schematic diagram which shows the other example of a softening annealing process. 図3の熱処理で得られたフェライト及び球状化セメンタイト組織を示す光学顕微鏡写真である。4 is an optical micrograph showing the ferrite and spheroidized cementite structure obtained by the heat treatment of FIG. 3. 冷間加工率と、鋼板の降伏応力との関係を示すグラフである。It is a graph which shows the relationship between a cold work rate and the yield stress of a steel plate. 軟化焼きなまし処理の他の例を示す模式図である。It is a schematic diagram which shows the other example of a softening annealing process. パーライトのラメラ間隔と、鋼板の硬さとの関係を示すグラフである。It is a graph which shows the relationship between the lamella space | interval of a pearlite, and the hardness of a steel plate. 本発明に係る軟化焼きなまし処理の一例を示す模式図である。It is a schematic diagram which shows an example of the softening annealing process which concerns on this invention. 本発明に係る軟化焼きなまし処理の他の例を示す模式図である。It is a schematic diagram which shows the other example of the softening annealing process which concerns on this invention. 冷間加工の一例を示す模式図である。It is a schematic diagram which shows an example of cold work. No.71の素材をなす鋼板の光学顕微鏡写真である。No. It is an optical microscope photograph of the steel plate which makes the material of 71. 車輪支持用転がり軸受ユニットの一例を示す断面図である。It is sectional drawing which shows an example of the rolling bearing unit for wheel support.

符号の説明Explanation of symbols

10 ハブ輪(第一部材)
10a 内輪軌道面(軌道面)
20 内輪
30 外輪(第二部材)
30a 外輪軌道面(軌道面)
40 転動体
10 Hub wheel (first member)
10a Inner ring raceway surface (track surface)
20 Inner ring 30 Outer ring (second member)
30a Outer ring raceway surface (track surface)
40 Rolling elements

Claims (1)

外周面に軌道面が形成された第一部材と、内周面に軌道面が形成された第二部材と、前記第一部材及び前記第二部材間に転動自在に配設された複数の転動体と、を備え、前記第一部材及び前記第二部材のうち一方の部材が懸架装置に取り付けられ、他方の部材に車輪が取り付けられることにより、前記車輪を前記懸架装置に対して回転自在に支持するための車輪支持用転がり軸受ユニットにおいて、
前記第一部材及び前記第二部材のうち少なくとも一つは、
C含有率が0.48質量%以上0.58質量%以下で、Si含有率が0.50質量%以下で、Mn含有率が0.90質量%以下で、Cr含有率が0.50質量%以下で、残部がFe及び不可避不純物である鋼に対して、Ac1変態点以上Ac3変態点以下の温度で加熱保持し、次にAr1変態点未満の温度に冷却してAr1変態点未満の温度で保持し、次に徐冷する軟化焼なまし処理が施されて得られた、硬さがHRB82.0以下で、パーライトのラメラ間隔が0.50μm以上のフェライト及びパーライト組織の鋼からなる素材に、冷間加工が施されることで形成されていることを特徴とする車輪支持用転がり軸受ユニット。
A first member having a raceway surface formed on an outer peripheral surface; a second member having a raceway surface formed on an inner peripheral surface; and a plurality of members disposed so as to be freely rollable between the first member and the second member. A rolling element, wherein one member of the first member and the second member is attached to a suspension device, and a wheel is attached to the other member, whereby the wheel is rotatable with respect to the suspension device. In the wheel bearing rolling bearing unit for supporting
At least one of the first member and the second member is
C content is 0.48 mass% or more and 0.58 mass% or less, Si content is 0.50 mass% or less, Mn content is 0.90 mass% or less, and Cr content is 0.50 mass. %, With the balance being Fe and inevitable impurities, heat and hold at a temperature not lower than the A c1 transformation point and not higher than the A c3 transformation point, and then cooled to a temperature lower than the A r1 transformation point to cause the A r1 transformation. Of ferrite and pearlite structure obtained by a softening and annealing treatment that is held at a temperature below the point and then gradually cooled, with a hardness of HRB 82.0 or less and a pearlite lamellar spacing of 0.50 μm or more. A rolling bearing unit for supporting a wheel, which is formed by subjecting a material made of steel to cold working.
JP2005061312A 2005-03-04 2005-03-04 Rolling bearing unit for supporting wheel Withdrawn JP2006241559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061312A JP2006241559A (en) 2005-03-04 2005-03-04 Rolling bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061312A JP2006241559A (en) 2005-03-04 2005-03-04 Rolling bearing unit for supporting wheel

Publications (1)

Publication Number Publication Date
JP2006241559A true JP2006241559A (en) 2006-09-14

Family

ID=37048251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061312A Withdrawn JP2006241559A (en) 2005-03-04 2005-03-04 Rolling bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2006241559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223990A (en) * 2007-03-15 2008-09-25 Nsk Ltd Rolling bearing unit for supporting wheel
WO2009101777A1 (en) * 2008-02-13 2009-08-20 Ntn Corporation Automotive bearing device
JP2014177693A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability
EP2666875A4 (en) * 2011-01-21 2015-11-18 Ntn Toyo Bearing Co Ltd Method for manufacturing bearing ring, bearing ring, and rolling bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223990A (en) * 2007-03-15 2008-09-25 Nsk Ltd Rolling bearing unit for supporting wheel
WO2009101777A1 (en) * 2008-02-13 2009-08-20 Ntn Corporation Automotive bearing device
US8215846B2 (en) 2008-02-13 2012-07-10 Ntn Corporation Wheel support bearing assembly
EP2666875A4 (en) * 2011-01-21 2015-11-18 Ntn Toyo Bearing Co Ltd Method for manufacturing bearing ring, bearing ring, and rolling bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2014177693A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability

Similar Documents

Publication Publication Date Title
CN102803522B (en) Method for producing harmonic drive gear base material
WO2004007219A1 (en) Rolling bearing unit for supporting wheel
JP2006200700A (en) Rolling bearing device for supporting wheel
JP2012162799A (en) Rolling bearing, method for manufacturing the same, and induction heat treatment apparatus used for the method
JP4423858B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2006241559A (en) Rolling bearing unit for supporting wheel
JP2006064036A (en) Bearing device for supporting axle
JP2005256898A (en) Bearing device for wheel
EP1183399B2 (en) Method of production of rolling bearing steel having a surface with a lower bainitic structure
JP2004156764A (en) Bearing unit with flange and manufacturing method thereof
JP2006142916A (en) Rolling bearing unit for supporting vehicle wheel
JP2006329287A (en) Wheel supporting rolling bearing unit and its inner ring manufacturing method
JP2006029543A (en) Wheel supporting bearing device
WO2021193808A1 (en) Train wheel
JP4628077B2 (en) Roll for scale breaker, manufacturing method thereof, and quenching device
JP5050587B2 (en) Rolling bearing device for wheel support
JP4712603B2 (en) Rolling part manufacturing method, race ring and bearing
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2006299313A (en) Rolling supporter
JP2003194072A (en) Rolling device
JP2007107647A (en) Rolling bearing device for supporting wheel
JP4016721B2 (en) Seamless steel pipe manufacturing method
JP2006153188A (en) Roller bearing system for supporting wheel
WO2005033346A1 (en) Thin-walled part producing method, bearing raceway ring, thrust needle roller bearing, rolling bearing raceway ring producing method, rolling bearing raceway ring, and rolling bearing
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090901