JP2006200700A - Rolling bearing device for supporting wheel - Google Patents

Rolling bearing device for supporting wheel Download PDF

Info

Publication number
JP2006200700A
JP2006200700A JP2005015468A JP2005015468A JP2006200700A JP 2006200700 A JP2006200700 A JP 2006200700A JP 2005015468 A JP2005015468 A JP 2005015468A JP 2005015468 A JP2005015468 A JP 2005015468A JP 2006200700 A JP2006200700 A JP 2006200700A
Authority
JP
Japan
Prior art keywords
mass
wheel
rolling bearing
content
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015468A
Other languages
Japanese (ja)
Inventor
Kazumi Ochi
和美 越智
Koji Ueda
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005015468A priority Critical patent/JP2006200700A/en
Publication of JP2006200700A publication Critical patent/JP2006200700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing device for supporting a wheel having excellent productivity and long service life and being light in weight. <P>SOLUTION: A hub wheel 2, an inner wheel 3, and an outer wheel 4 of the rolling bearing device 1 for supporting the wheel are formed by applying press machining or plastic working on alloy steel having content of carbon of 0.45 mass% or more and 0.6 mass% or less, content of silicon of 0.5 mass% or more and 0.8 mass% or less, content of manganese of 0.6 mass% or more and 1 mass% or less, and content of vanadium of 0.03 mass% or more and 1 mass% or less. This alloy steel satisfies the expression showing the relation of Vickers hardness Hv and limit compressibility X(%), X≥0.05×Hv+50. Hardened layers 22 formed by high frequency quenching are formed on the hub wheel 2 and the outer wheel 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受装置に関する。   The present invention relates to a wheel bearing rolling bearing device that rotatably supports a wheel of an automobile or the like with respect to a suspension device.

自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受装置は、外周面に軌道面を有する内方部材と、内周面に軌道面を有する外方部材と、これら両軌道面の間に転動自在に配された複数の転動体と、を備えている。また、内方部材の外周面には、車輪を取り付けるためのフランジが設けられ、外方部材の外周面には、懸架装置を取り付けるためのフランジが設けられている。そして、このような車輪支持用転がり軸受装置はユニット化が進んでおり、前述のフランジは内方部材や外方部材に一体化された構造となっている。   A wheel-supporting rolling bearing device that supports a wheel of an automobile or the like so as to be rotatable with respect to a suspension device includes an inner member having a raceway surface on an outer peripheral surface, an outer member having a raceway surface on an inner peripheral surface, And a plurality of rolling elements arranged between the raceway surfaces so as to be freely rollable. Further, a flange for attaching a wheel is provided on the outer peripheral surface of the inner member, and a flange for attaching a suspension device is provided on the outer peripheral surface of the outer member. Such wheel-supporting rolling bearing devices are being unitized, and the aforementioned flange has a structure integrated with an inner member and an outer member.

近年、自動車の燃費向上及び走行性能向上のため、車輪支持用転がり軸受装置の軽量化の要求が高まっており、例えば、車輪や懸架装置を取り付けるためのフランジのさらなる薄肉化も考慮されている。しかしながら、フランジを単に薄肉化した場合には、フランジに加わる応力が大きくなるため、フランジの強度が不足することが懸念される。
特に、車輪が取り付けられる部材に設けられたフランジの付け根部分は、回転しながら曲げ応力が負荷される。また、フランジには、車輪の回転に伴って捩り応力が加わるため、これに対する十分な強度が確保できない場合には疲労破壊が生じるおそれがある。
In recent years, in order to improve the fuel efficiency and driving performance of automobiles, there has been an increasing demand for weight reduction of rolling bearing devices for supporting wheels. For example, further thinning of flanges for mounting wheels and suspension devices is also considered. However, when the flange is simply thinned, the stress applied to the flange increases, and there is a concern that the strength of the flange will be insufficient.
In particular, a bending stress is applied to the base portion of the flange provided on the member to which the wheel is attached while rotating. In addition, since a torsional stress is applied to the flange as the wheel rotates, fatigue failure may occur if sufficient strength against the flange cannot be secured.

また、フランジには、車輪及びディスクロータを取り付けるためのスタッドやボルトを挿通する通孔が形成されるが、薄肉化されるとフランジの強度が低下するので、フランジに車輪を取り付けるためにスタッドとナットとを締結する際や、通孔に挿通したボルトを締結する際に、フランジのうちのスタッドの基端部を内嵌した通孔の周囲部分が変形しやすくなることも懸念される。   In addition, the flange is formed with a through hole through which a stud or bolt for attaching the wheel and the disk rotor is inserted. However, since the strength of the flange is reduced when the thickness is reduced, the stud and the stud are required to attach the wheel to the flange. When fastening a nut or fastening a bolt inserted through a through hole, there is also a concern that the peripheral portion of the through hole into which the base end portion of the stud of the flange is fitted is likely to be deformed.

通孔の周囲部分が変形すると、フランジに取り付けられているディスクロータのハブの回転軸に対する直角度が悪化する。すなわち、被制動面であるディスクロータの両側面は、ハブの回転軸に対し直角をなすべきであるが、上記変形によって回転軸に対する前記両側面の直角度が悪化する。その結果、ディスクロータの両側面が回転に伴って軸方向に変位して、振れが発生する。このような原因で生じる振れの振幅が数十μm程度であっても、制動時にジャダーと呼ばれる振動が発生するおそれがあり、乗り心地性が低下することになる。したがって、フランジを薄肉化して軽量化を図る場合には、非焼入れ部において十分な疲労強度,降伏強度等が必要不可欠となる。   When the peripheral portion of the through hole is deformed, the perpendicularity of the disc rotor attached to the flange with respect to the rotation axis of the hub deteriorates. That is, both side surfaces of the disk rotor, which is the surface to be braked, should be perpendicular to the rotation axis of the hub. As a result, both side surfaces of the disk rotor are displaced in the axial direction with rotation, and vibration occurs. Even if the amplitude of vibration caused by such a cause is about several tens of μm, vibration called judder may occur during braking, resulting in a decrease in riding comfort. Therefore, when the flange is thinned to reduce the weight, sufficient fatigue strength, yield strength, etc. are indispensable in the non-quenched portion.

しかしながら、前述したようにフランジを有する部材にあっては、車輪や懸架装置を取り付けるためのスタッドやボルトを挿通する通孔を精度良く加工する必要があるので、強度向上を図るために単に硬さを増加させると、著しく加工性が低下して大幅に生産性が悪化する。
以上のような観点から、車輪支持用転がり軸受装置においては、転がり疲労を受ける内方部材の軌道面と外方部材の軌道面だけでなく、それ以外の非焼入れ部においても、成形後において十分な強度と加工性とが求められる。
However, in the case of a member having a flange as described above, it is necessary to accurately process a through hole for inserting a stud or bolt for attaching a wheel or a suspension device. When the is increased, the workability is remarkably lowered and the productivity is greatly deteriorated.
From the above viewpoint, in the rolling bearing device for supporting a wheel, not only the raceway surface of the inner member and the raceway surface of the outer member that are subject to rolling fatigue, but also other non-quenched portions are sufficient after molding. High strength and workability are required.

一般に、鋼の強度は硬さと良好な相関性があり、例えば、0.7質量%以上の炭素を含有する高炭素鋼を用いて成形後の硬さを向上させれば、強度を向上させることが可能である。ただし、その反面、加工性が著しく低下して、大幅なコストアップを余儀なくされる。また、この場合には、加締め方式の車輪支持用転がり軸受装置においては、加締め部の塑性加工性が低下して、加締め加工自体が困難となる。   Generally, the strength of steel has a good correlation with hardness. For example, if the hardness after molding is improved using high carbon steel containing 0.7% by mass or more of carbon, the strength can be improved. Is possible. However, on the other hand, the workability is remarkably lowered, and the cost is inevitably increased. Also, in this case, in the caulking type wheel support rolling bearing device, the plastic workability of the caulking portion is lowered, and the caulking process itself becomes difficult.

車輪支持用転がり軸受装置を構成する材料としては、日本工業規格のS53CやSAE1055等の構造用炭素鋼がよく用いられている。そして、内方部材の軌道面及び外方部材の軌道面には、転動体から高面圧が繰り返し負荷されるので、十分な転がり疲労寿命と耐摩耗性とを兼ね備えるように、高周波焼入れによる硬化層が形成されている。一方、外方部材の軌道面以外の部分や内方部材の軌道面以外の部分は、加工性等の観点から、焼入れ等の硬化処理を施さずに、焼鈍しと冷間成形とを施したままの状態で使用される(本明細書においては、このような状態の部分を「非焼入れ部」と記す)。   As a material constituting the wheel-supporting rolling bearing device, structural carbon steel such as Japanese Industrial Standards S53C and SAE1055 is often used. Since the raceway surface of the inner member and the raceway surface of the outer member are repeatedly loaded with high surface pressure from the rolling elements, hardening by induction quenching is provided so as to have sufficient rolling fatigue life and wear resistance. A layer is formed. On the other hand, the part other than the raceway surface of the outer member and the part other than the raceway surface of the inner member were subjected to annealing and cold forming without performing hardening treatment such as quenching from the viewpoint of workability and the like. (In this specification, a portion in such a state is referred to as a “non-quenched portion”).

特許文献1には、合金元素として、炭素を0.5〜0.7質量%、ケイ素を0.6〜1.2質量%、マンガンを0.6〜1.0質量%含有し、且つ、11271C%+5796Si%+2665Mn%−6955なる式で算出されるLが5000以上で、48.0C%+5.7Si%+11.5Mn%−16.2なる式で算出されるHが23〜25である、加工性,疲労強度,及び転がり疲労寿命に優れる転動部品が開示されている。ただし、非焼入れ部の硬さ及び硬化層の表面硬さについて言及されているのみである。
特開2002−363700号公報
Patent Document 1 contains 0.5 to 0.7% by mass of carbon, 0.6 to 1.2% by mass of silicon, 0.6 to 1.0% by mass of manganese as alloy elements, and L calculated by the formula 11271C% + 5796Si% + 2665Mn% -6955 is 5000 or more, and H calculated by the formula 48.0C% + 5.7Si% + 11.5Mn% -16.2 is 23-25. A rolling part having excellent workability, fatigue strength, and rolling fatigue life is disclosed. However, only the hardness of the non-quenched part and the surface hardness of the hardened layer are mentioned.
JP 2002-363700 A

このように、特許文献1に記載のものは、非焼入れ部の強度と加工性との両方を十分に満足するものではない。また、車輪支持用転がり軸受装置は、一般の転がり軸受と同様に、内方部材の軌道面及び外方部材の軌道面において転がり疲労を受けるため、軌道面の硬化層においては十分な転がり疲労寿命が求められるが、特許文献1に記載のものは、軌道面の硬化層の転がり疲労寿命に関してほとんど考慮されていない。   Thus, the thing of patent document 1 does not fully satisfy both the intensity | strength and workability of a non-hardening part. In addition, since the rolling bearing device for supporting a wheel is subjected to rolling fatigue on the raceway surface of the inner member and the raceway surface of the outer member as in the case of a general rolling bearing, a sufficient rolling fatigue life is obtained in the hardened layer of the raceway surface. However, the thing of patent document 1 hardly considers about the rolling fatigue life of the hardened layer of a raceway surface.

さらに、車輪支持用転がり軸受装置の場合は、成形時の素材の状態によっても、硬さ,組織,及び強度が多様に変化するので、製品の品質を向上させるためには、成形された車輪支持用転がり軸受装置の硬さやミクロ組織なども考慮する必要がある。
そこで、本発明は上記のような従来技術が有する問題点を解決し、生産性に優れることに加えて軽量で長寿命な車輪支持用転がり軸受装置を提供することを課題とする。
Furthermore, in the case of a rolling bearing device for wheel support, the hardness, structure, and strength vary depending on the state of the material at the time of molding, so in order to improve the quality of the product, the molded wheel support It is also necessary to consider the hardness and microstructure of the rolling bearing device used.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a wheel support rolling bearing device that is lightweight and has a long life in addition to being excellent in productivity.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の車輪支持用転がり軸受装置は、外周面に軌道面を有する内方部材と、前記内方部材の軌道面に対向する軌道面を有し前記内方部材の外方に配された外方部材と、前記両軌道面間に転動自在に配された複数の転動体と、前記内方部材及び前記外方部材の少なくとも一方に設けられ車輪又は懸架装置が取り付けられるフランジと、を備えるとともに、前記内方部材及び前記外方部材の一方が回転輪、他方が固定輪とされる車輪支持用転がり軸受装置において、前記内方部材及び前記外方部材の少なくとも一方が下記の4つの条件を満足することを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, the wheel support rolling bearing device according to claim 1 of the present invention includes an inner member having a raceway surface on an outer peripheral surface, and a raceway surface facing the raceway surface of the inner member. An outer member disposed outward, a plurality of rolling elements disposed so as to be freely rollable between the both raceway surfaces, and a wheel or a suspension device provided on at least one of the inner member and the outer member. A wheel support rolling bearing device in which one of the inner member and the outer member is a rotating wheel and the other is a fixed wheel, and at least one of the inner member and the outer member. One of the characteristics satisfies the following four conditions.

条件1:炭素の含有量が0.45質量%以上0.6質量%以下、ケイ素の含有量が0.5質量%以上0.8質量%以下、マンガンの含有量が0.6質量%以上1質量%以下、バナジウムの含有量が0.03質量%以上1質量%以下である合金鋼で構成されている。
条件2:前記合金鋼のビッカース硬さHvと限界圧縮率X(%)とがX≧0.05×Hv+50なる式を満足する。
条件3:プレス加工又は塑性加工で成形されたものである。
条件4:前記軌道面に高周波焼入れによる硬化層が形成されている。
Condition 1: The carbon content is 0.45 mass% or more and 0.6 mass% or less, the silicon content is 0.5 mass% or more and 0.8 mass% or less, and the manganese content is 0.6 mass% or more. It is made of an alloy steel having a content of 1% by mass or less and a vanadium content of 0.03% by mass to 1% by mass.
Condition 2: Vickers hardness Hv and critical compression ratio X (%) of the alloy steel satisfy the expression X ≧ 0.05 × Hv + 50.
Condition 3: It is formed by press working or plastic working.
Condition 4: A hardened layer by induction hardening is formed on the raceway surface.

このような構成であれば、内方部材や外方部材が優れた静的強度及び疲労強度を有しているので、内方部材や外方部材に過大なモーメント荷重や衝撃荷重が加わるような条件下で使用されても、変形が生じにくい。よって、肉厚を厚くしたり、製造工程を通常よりも増やすことにより、強度向上を図る必要がない。また、合金鋼の加工性が優れているため、フランジを有する内方部材や外方部材を容易に加工することができる。よって、車輪支持用転がり軸受装置は、製造が容易である。   With such a configuration, the inner member and the outer member have excellent static strength and fatigue strength, so that an excessive moment load and impact load are applied to the inner member and the outer member. Even when used under conditions, deformation hardly occurs. Therefore, it is not necessary to improve the strength by increasing the thickness or increasing the number of manufacturing steps. Moreover, since the workability of the alloy steel is excellent, the inner member and the outer member having the flange can be easily processed. Therefore, the wheel support rolling bearing device is easy to manufacture.

以下に、本発明の車輪支持用転がり軸受装置について、さらに詳細に説明する。
〔炭素の含有量について〕
炭素(C)は、非焼入れ部の硬さと、焼入れ,焼戻し後の硬化層の硬さとを確保するために、なくてはならない元素である。転がり疲労寿命の観点から0.45質量%以上必要であるが、多すぎると非焼入れ部の硬さが高くなりすぎるとともに、塑性加工性が低下するおそれがある。よって、合金鋼中のC含有量は、0.45質量%以上0.6質量%以下とする必要がある。
Below, the rolling bearing apparatus for wheel support of this invention is demonstrated in detail.
[Carbon content]
Carbon (C) is an element that is essential for ensuring the hardness of the non-quenched portion and the hardness of the hardened layer after quenching and tempering. Although 0.45 mass% or more is required from a viewpoint of rolling fatigue life, when too much, the hardness of a non-hardened part will become high too much and there exists a possibility that plastic workability may fall. Therefore, the C content in the alloy steel needs to be 0.45 mass% or more and 0.6 mass% or less.

〔ケイ素の含有量について〕
ケイ素(Si)は、製鋼時に脱酸剤として作用するとともに、非焼入れ部の硬さと焼入れ性とを向上させる作用を有している。特に、焼入れ,焼戻し後においては、マルテンサイト組織を強化し、転がり疲労寿命を向上させるだけでなく、非焼入れ部においては、フェライトに固溶し、フェライト組織の強度を向上させ、降伏強度や疲労強度を高める作用を有している。
ただし、Siが多すぎると、非焼入れ部の硬さが高くなりすぎて、成形時及び成形後の塑性加工性が低下するおそれがある。よって、合金鋼中のSi含有量は、0.5質量%以上0.8質量%以下とする必要がある。
[About silicon content]
Silicon (Si) acts as a deoxidizer during steelmaking and has the effect of improving the hardness and hardenability of the non-quenched part. In particular, after quenching and tempering, not only strengthens the martensite structure and improves the rolling fatigue life, but also in the non-quenched part, it dissolves in ferrite and improves the strength of the ferrite structure, yield strength and fatigue. Has the effect of increasing strength.
However, if there is too much Si, the hardness of the non-quenched part becomes too high, and the plastic workability at the time of molding and after molding may be reduced. Therefore, the Si content in the alloy steel needs to be 0.5 mass% or more and 0.8 mass% or less.

〔マンガンの含有量について〕
マンガン(Mn)は、Siと同様に脱酸剤として作用するとともに、非焼入れ部の硬さと焼入れ性とを向上させる作用を有しているので、0.6質量%以上添加する必要がある。ただし、Mnが多すぎると、非焼入れ部の硬さが高くなりすぎて、成形時及び成形後の冷間加工性が低下するおそれがある。よって、合金鋼中のMn含有量は、1質量%以下とする必要がある。
[About manganese content]
Manganese (Mn) acts as a deoxidizer like Si, and has the effect of improving the hardness and hardenability of the non-quenched part, so it is necessary to add 0.6 mass% or more. However, when there is too much Mn, the hardness of the non-quenched portion becomes too high, and the cold workability at the time of molding and after molding may be reduced. Therefore, the Mn content in the alloy steel needs to be 1% by mass or less.

〔バナジウムの含有量について〕
バナジウム(V)は、合金鋼中で安定な炭化物又は炭窒化物を形成し、焼鈍し時及び高周波焼入れ時に旧オーステナイト結晶粒が成長することを極少量で効果的に抑制する作用を有している。また、旧オーステナイト結晶粒を微細化することにより、フェライトを分断化し、強度と加工性とのバランスを著しく改善する作用を有している。
このようなことから、Vは必要に応じて添加してもよいが、その効果を十分に得るためには、0.03質量%以上添加する必要がある。ただし、Vが多すぎると、非焼入れ部の硬さが高くなりすぎて、成形時及び成形後の冷間加工性が低下するおそれがある。よって、合金鋼中のV含有量は、1質量%以下とする必要があり、0.5質量%以下とすることがより好ましい。
[Vanadium content]
Vanadium (V) has a function of forming a stable carbide or carbonitride in alloy steel and effectively suppressing the growth of old austenite crystal grains during annealing and induction hardening. Yes. Further, by refining the prior austenite crystal grains, the ferrite is divided, and the balance between strength and workability is remarkably improved.
For this reason, V may be added as necessary, but in order to obtain the effect sufficiently, it is necessary to add 0.03% by mass or more. However, when V is too much, the hardness of the non-quenched portion becomes too high, and the cold workability at the time of molding and after molding may be deteriorated. Therefore, the V content in the alloy steel needs to be 1% by mass or less, and more preferably 0.5% by mass or less.

〔条件2について〕
塑性加工性は変形抵抗及び限界圧縮率で表され、変形抵抗及び限界圧縮率は材料の合金成分と組織とに影響される。良好な塑性加工性を得るためには、変形抵抗が低く限界圧縮率が高い材料を用いることが好ましい。一般に変形抵抗は硬さに依存し、変形抵抗が高い材料は硬度が高くなり、変形抵抗が低い材料は硬度が低くなる。一方、変形抵抗が低すぎると一般に硬さが低下し、軸受装置としての使用に耐えない。
[Condition 2]
Plastic workability is expressed by deformation resistance and critical compressibility, and the deformation resistance and critical compressibility are affected by the alloy composition and structure of the material. In order to obtain good plastic workability, it is preferable to use a material having a low deformation resistance and a high critical compressibility. In general, deformation resistance depends on hardness, and a material having a high deformation resistance has a high hardness, and a material having a low deformation resistance has a low hardness. On the other hand, when the deformation resistance is too low, the hardness is generally lowered and the bearing device cannot be used.

そこで、本発明においては、硬さの上限をHv300とし、硬さそのものよりも、むしろ硬さと限界圧縮率との比に着目した。すなわち、ビッカース硬さHvと限界圧縮率X(%)とがX≧0.05×Hv+50なる式を満足する合金鋼で、内方部材や外方部材を構成した。前記式を満足する合金鋼は、塑性加工性が良好である。
なお、外方部材の軌道面以外の部分や内方部材の軌道面以外の部分(非焼入れ部)は、ビッカース硬度Hvが180以上300以下とすることが好ましい。
Therefore, in the present invention, the upper limit of the hardness is set to Hv300, and attention is paid to the ratio between the hardness and the limit compressibility rather than the hardness itself. That is, the inner member and the outer member were made of alloy steel satisfying the formula where Vickers hardness Hv and critical compression ratio X (%) satisfy X ≧ 0.05 × Hv + 50. An alloy steel that satisfies the above formula has good plastic workability.
In addition, it is preferable that Vickers hardness Hv is 180 or more and 300 or less in a portion other than the raceway surface of the outer member and a portion other than the raceway surface of the inner member (non-quenched portion).

また、限界圧縮率及び硬さは組織に影響されるため、合金鋼中のフェライトの含有量を面積率で10%以上25%以下とし、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度を粒度番号で6以上とすることが好ましい。詳述すると、非焼入れ部のフェライトの含有量が多いと強度面で問題が生じるおそれがあるため、面積率で25%以下であることが好ましい。また、非焼入れ部の旧オーステナイト結晶粒及び初析フェライトが共に微細化して組織が緻密化されるためには、非焼入れ部の旧オーステナイト結晶粒度が粒度番号で6以上であること、及び、フェライトの含有率が面積率で10%以上であることが好ましい。   In addition, since the critical compressibility and hardness are affected by the structure, the ferrite content in the alloy steel is 10% or more and 25% or less in area ratio, and is measured by the method defined in Japanese Industrial Standard JIS G0551. The austenite grain size is preferably 6 or more in terms of grain size number. More specifically, if the ferrite content in the non-quenched portion is large, there is a possibility that a problem may occur in terms of strength. Therefore, the area ratio is preferably 25% or less. In addition, in order for both the prior austenite crystal grains and the pro-eutectoid ferrite in the non-quenched part to be refined and the structure to be densified, the prior austenite crystal grain size in the non-quenched part is 6 or more in grain size number Is preferably 10% or more in terms of area ratio.

軌道面を含む部分に成形される硬化層においては、転がり疲労寿命の観点から、十分な表面硬さと硬化層深さとが要求されるが、硬化層の諸品質は、非焼入れ部の諸品質と同様に、高周波焼入れ条件等によって異なるが、十分な転がり疲労寿命を確保するためには、硬化層の表面硬さはビッカース硬さHvで650以上780以下とすることが好ましく、硬化層の有効硬化層深さは1.5mm以上とすることが好ましい。   In the hardened layer formed in the part including the raceway surface, sufficient surface hardness and hardened layer depth are required from the viewpoint of rolling fatigue life, but the quality of the hardened layer is the same as the quality of the non-quenched part. Similarly, the surface hardness of the hardened layer is preferably 650 to 780 in terms of Vickers hardness Hv in order to ensure a sufficient rolling fatigue life, although it depends on the induction hardening conditions and the like, and effective hardening of the hardened layer. The layer depth is preferably 1.5 mm or more.

ただし、必要以上の有効硬化層深さを得ようとすると、合金鋼に高い焼入れ性が要求されることによって加工性が犠牲となったり、加熱条件によっては硬化層の結晶粒の粗大化を招いて転がり疲労寿命が不十分となる場合があるため、有効硬化層深さは4mm以下とすることが好ましい。また、硬化層の旧オーステナイト結晶粒が粗大であると転がり疲労寿命が不十分となる場合があるため、硬化層の旧オーステナイト結晶粒度(日本工業規格JIS G0551に規定の方法で測定されたもの)は粒度番号で8以上であることが望ましい。   However, if an effective hardened layer depth greater than necessary is obtained, the workability is sacrificed due to the high hardenability of the alloy steel, and depending on the heating conditions, the crystal grains of the hardened layer become coarse. Therefore, the effective hardened layer depth is preferably 4 mm or less because the rolling fatigue life may be insufficient. In addition, if the old austenite crystal grains of the hardened layer are coarse, the rolling fatigue life may be insufficient. The particle size number is desirably 8 or more.

本発明の車輪支持用転がり軸受装置は、優れた静的強度及び疲労強度を有し、大きな荷重が負荷されても変形が生じにくい。また、加工性に優れるため製造が容易であることに加えて、軽量で長寿命である。   The rolling bearing device for supporting a wheel of the present invention has excellent static strength and fatigue strength, and is not easily deformed even when a large load is applied. Moreover, since it is excellent in workability, in addition to being easy to manufacture, it is lightweight and has a long life.

本発明に係る車輪支持用転がり軸受装置の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る車輪支持用転がり軸受装置の一実施形態の構造を示す断面図である。なお、本実施形態においては、車輪支持用転がり軸受装置を自動車等の車両に取り付けた状態において、車両の幅方向外側を向いた部分を外端側部分と称し、幅方向中央側を向いた部分を内端側部分と称する。すなわち、図1においては、左側が外端側となり、右側が内端側となる。   DESCRIPTION OF EMBODIMENTS Embodiments of a wheel bearing rolling bearing device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of an embodiment of a wheel bearing rolling bearing device according to the present invention. In the present embodiment, in a state where the wheel bearing rolling bearing device is attached to a vehicle such as an automobile, the portion facing the width direction outer side of the vehicle is referred to as an outer end side portion, and the portion facing the width direction center side Is referred to as an inner end portion. That is, in FIG. 1, the left side is the outer end side, and the right side is the inner end side.

図1の車輪支持用転がり軸受装置1は、ハブ輪2と、内輪3と、外輪4と、二列の転動体5,5と、転動体5を保持する保持器6,6と、を備えている。また、外輪4の内端側部分の内周面と内輪3の内端側部分の外周面との間、並びに、外輪4の外端側部分の内周面とハブ輪2の中間部の外周面との間には、それぞれシール装置7a,7bが設けられている。   The wheel support rolling bearing device 1 of FIG. 1 includes a hub wheel 2, an inner ring 3, an outer ring 4, two rows of rolling elements 5, 5, and cages 6, 6 that hold the rolling elements 5. ing. Further, between the inner peripheral surface of the inner end side portion of the outer ring 4 and the outer peripheral surface of the inner end side portion of the inner ring 3, and the outer periphery of the inner peripheral surface of the outer end side portion of the outer ring 4 and the intermediate portion of the hub ring 2. Sealing devices 7a and 7b are provided between the surfaces.

さらに、ハブ輪2の外周面の外端側部分には、図示しない車輪を支持するための車輪取り付け用フランジ10が設けられている。そして、外輪4の外周面には、車輪取り付け用フランジ10から離間する側の端部に、懸架装置取り付け用フランジ13が設けられている。
ハブ輪2の内端側部分には外径の小さい円筒部11が形成されており、該円筒部11に内輪3が圧入され、内輪3とハブ輪2とが一体的に固定されている。なお、内輪3とハブ輪2とが一体的に固定されたものが、本発明の構成要件である内方部材に相当し、外輪4が本発明の構成要件である外方部材に相当する。
Further, a wheel mounting flange 10 for supporting a wheel (not shown) is provided on the outer end side portion of the outer peripheral surface of the hub wheel 2. A suspension device mounting flange 13 is provided on the outer peripheral surface of the outer ring 4 at the end portion on the side away from the wheel mounting flange 10.
A cylindrical portion 11 having a small outer diameter is formed at the inner end side portion of the hub wheel 2. The inner ring 3 is press-fitted into the cylindrical portion 11, and the inner ring 3 and the hub wheel 2 are integrally fixed. In addition, what fixed the inner ring | wheel 3 and the hub ring | wheel 2 integrally is corresponded to the inner member which is the structural requirements of this invention, and the outer ring | wheel 4 is equivalent to the outer member which is the structural requirements of this invention.

この車輪支持用転がり軸受装置1においては、ハブ輪2,内輪3,及び外輪4は、炭素の含有量が0.45質量%以上0.6質量%以下、ケイ素の含有量が0.5質量%以上0.8質量%以下、マンガンの含有量が0.6質量%以上1質量%以下、バナジウムの含有量が0.03質量%以上1質量%以下であり、残部が鉄及び不可避的不純物元素である合金鋼で構成されている。また、この合金鋼は、ビッカース硬さHvと限界圧縮率X(%)とがX≧0.05×Hv+50なる式を満足するものである。そして、ハブ輪2,内輪3,及び外輪4は、上記のような合金鋼にプレス加工又は塑性加工を施すことにより成形されたものである。   In the wheel support rolling bearing device 1, the hub wheel 2, the inner ring 3, and the outer ring 4 have a carbon content of 0.45 mass% to 0.6 mass% and a silicon content of 0.5 mass. % To 0.8% by mass, manganese content from 0.6% to 1% by mass, vanadium content from 0.03% to 1% by mass, the balance being iron and inevitable impurities It is composed of alloy steel, which is an element. Moreover, this alloy steel satisfies the formula where Vickers hardness Hv and critical compression ratio X (%) are X ≧ 0.05 × Hv + 50. The hub wheel 2, the inner ring 3, and the outer ring 4 are formed by subjecting the above alloy steel to press working or plastic working.

ハブ輪2の外周面の軸方向中間部及び内輪3の外周面には、それぞれ軌道面が形成されており、ハブ輪2の軌道面は第一内側軌道面20a、内輪3の軌道面は第二内側軌道面20bとされている。また、外輪4の内周面には、前記両内側軌道面20a,20bに対向する軌道面が形成されており、第一内側軌道面20aに対向する軌道面は第一外側軌道面21a、第二内側軌道面20bに対向する軌道面は第二外側軌道面21bとされている。さらに、第一内側軌道面20aと第一外側軌道面21aとの間、及び、第二内側軌道面20bと第二外側軌道面21bとの間には、それぞれ複数の転動体5が転動自在に配置されている。なお、図示の例では、転動体として玉を使用しているが、車輪支持用転がり軸受装置1の用途等に応じて、ころを使用してもよい。   A raceway surface is formed on each of the axially intermediate portion of the outer peripheral surface of the hub wheel 2 and the outer peripheral surface of the inner ring 3. The raceway surface of the hub wheel 2 is the first inner raceway surface 20a, and the raceway surface of the inner ring 3 is the first. Two inner raceway surfaces 20b are provided. Further, a raceway surface facing both the inner raceway surfaces 20a and 20b is formed on the inner peripheral surface of the outer ring 4, and the raceway surface facing the first inner raceway surface 20a is the first outer raceway surface 21a and the second raceway surface. The track surface facing the second inner track surface 20b is a second outer track surface 21b. Further, a plurality of rolling elements 5 are freely rollable between the first inner raceway surface 20a and the first outer raceway surface 21a and between the second inner raceway surface 20b and the second outer raceway surface 21b. Is arranged. In the illustrated example, balls are used as the rolling elements, but rollers may be used depending on the application of the wheel bearing rolling bearing device 1 or the like.

また、ハブ輪2の第一内側軌道面20a,内輪3の第二内側軌道面20b,及び外輪4の第一,第二内側軌道面21a,21bには、転動体5から高面圧が繰り返し負荷されるため、十分な転がり疲労寿命と耐摩耗性とを兼ね備えるように、ハブ輪2の外周面のうち、円筒部11の外端に形成された段差部12の近傍から第一内側軌道面20aの近傍までの部分と、外輪4の内周面のうち、第一外側軌道面21aの近傍から第二外側軌道面21bの近傍までの部分とに、高周波焼入れによる硬化層22が形成されている。この硬化層22のビッカース硬さHvは650以上780以下であり、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度は粒度番号で6以上である。   Further, high surface pressure is repeatedly applied from the rolling elements 5 to the first inner raceway surface 20a of the hub wheel 2, the second inner raceway surface 20b of the inner ring 3, and the first and second inner raceway surfaces 21a and 21b of the outer ring 4. The first inner raceway surface from the vicinity of the stepped portion 12 formed at the outer end of the cylindrical portion 11 in the outer peripheral surface of the hub wheel 2 so as to have sufficient rolling fatigue life and wear resistance. A hardened layer 22 is formed by induction hardening in a portion up to the vicinity of 20a and a portion of the inner peripheral surface of the outer ring 4 from the vicinity of the first outer raceway surface 21a to the vicinity of the second outer raceway surface 21b. Yes. The Vickers hardness Hv of this hardened layer 22 is 650 or more and 780 or less, and the prior austenite grain size measured by the method defined in Japanese Industrial Standard JIS G0551 is 6 or more in terms of grain size number.

ハブ輪2及び外輪4のうち硬化層22が形成されていない部分には焼入れは施されておらず、この非焼入れ部のビッカース硬さHvは180以上300以下とされている。また、フェライトの含有量が面積率で10%以上25%以下であり、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度が、粒度番号で6以上である。そして、内輪3には浸炭処理又は浸炭窒化処理と焼入れと焼戻しとが施され、第二内側軌道面20bには浸炭処理又は浸炭窒化処理による硬化層(図示せず)が形成されている。   The portions of the hub wheel 2 and the outer ring 4 where the hardened layer 22 is not formed are not quenched, and the Vickers hardness Hv of the non-quenched portion is 180 or more and 300 or less. Further, the ferrite content is 10% or more and 25% or less in terms of area ratio, and the prior austenite grain size measured by the method defined in Japanese Industrial Standard JIS G0551 is 6 or more in grain size number. The inner ring 3 is subjected to carburizing or carbonitriding, quenching and tempering, and a hardened layer (not shown) is formed on the second inner raceway surface 20b by carburizing or carbonitriding.

このような車輪支持用転がり軸受装置1を自動車に組み付けるには、懸架装置取り付け用フランジ13を懸架装置に固定し、車輪を車輪取り付け用フランジ10に固定する。その結果、車輪支持用転がり軸受装置1によって車輪が懸架装置に対し回転自在に支持される。すなわち、内輪3とハブ輪2とが一体的に固定されたものが回転輪となり、外輪4が固定輪となる。   In order to assemble such a wheel support rolling bearing device 1 to an automobile, the suspension device mounting flange 13 is fixed to the suspension device, and the wheel is fixed to the wheel mounting flange 10. As a result, the wheel is supported rotatably by the wheel support rolling bearing device 1 with respect to the suspension device. That is, the inner ring 3 and the hub ring 2 that are integrally fixed are rotating wheels, and the outer ring 4 is a fixed ring.

このような車輪支持用転がり軸受装置1は、ハブ輪2及び外輪4が優れた静的強度及び疲労強度を有しているので、フランジ10,13等に過大な荷重(モーメント荷重や衝撃荷重)が負荷されても変形が生じにくい。よって、肉厚を厚くしたり、製造工程を通常よりも増やすことにより、強度向上を図る必要がない。また、合金鋼の加工性が優れているため、フランジ10,13を有するハブ輪2及び外輪4を容易に加工することができる。よって、車輪支持用転がり軸受装置1は、製造が容易である。   In such a wheel-supporting rolling bearing device 1, since the hub wheel 2 and the outer ring 4 have excellent static strength and fatigue strength, an excessive load (moment load or impact load) is applied to the flanges 10 and 13. Even if a load is applied, deformation hardly occurs. Therefore, it is not necessary to improve the strength by increasing the thickness or increasing the number of manufacturing steps. Moreover, since the workability of the alloy steel is excellent, the hub wheel 2 and the outer ring 4 having the flanges 10 and 13 can be easily processed. Therefore, the wheel support rolling bearing device 1 is easy to manufacture.

以下に、前述のハブ輪2の製造方法の一例を、図2を参照しながら説明する。まず、前述の合金鋼製の圧延鋼板をA1変態点以上に加熱した後、A1変態点未満の温度に冷却して焼鈍しを施す。次に、この圧延鋼板を打ち抜いて得た円板状の素材(図2の(a)を参照)に、深絞りを施して椀型に成形した後(図2の(b)を参照)、底部に貫通孔を形成した(図2の(c)を参照)。そして、ハブ輪2の形状に成形した後(図2の(d)を参照)、ピアッシングによりフランジにボルト孔を設けた(図2の(e)を参照)。前述の合金鋼は良好な塑性加工性を有しているので、このような加工度の高い成形も容易である。また、冷間鍛造で成形することにより、従来の熱間鍛造による成形よりも格段に精度良く成形できるため、切削加工を省略することができる。よって、非焼入れ部の強度向上とともに、製造コストの低減が図られる。   Below, an example of the manufacturing method of the above-mentioned hub wheel 2 is demonstrated, referring FIG. First, the above-described rolled steel sheet made of alloy steel is heated to the A1 transformation point or higher, and then cooled to a temperature below the A1 transformation point and annealed. Next, the disk-shaped material obtained by punching the rolled steel sheet (see (a) of FIG. 2) is deep-drawn and formed into a bowl shape (see (b) of FIG. 2). A through hole was formed in the bottom (see (c) of FIG. 2). And after shape | molding in the shape of the hub wheel 2 (refer FIG.2 (d)), the bolt hole was provided in the flange by piercing (refer (e) of FIG. 2). Since the alloy steel described above has good plastic workability, it is easy to form such a high workability. Further, by forming by cold forging, it can be formed with much higher precision than conventional forming by hot forging, so that cutting can be omitted. Thus, the strength of the non-quenched portion is improved and the manufacturing cost is reduced.

得られたハブ輪2の軌道面を含む外周面に高周波焼入れ及び焼戻しを施して、硬化層22を形成した後、研削及び超仕上げ又は超仕上げのみを施して、ハブ輪2を完成した。
内輪3及び外輪4もハブ輪2と同様に製造して、これらを組み立てれば、車輪支持用転がり軸受装置1が得られる。
〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。表1,2に示すような組成の合金鋼の冷間加工性を、限界圧縮率により評価した。また、非焼入れ部の物性を、旧オーステナイト結晶粒度,フェライトの含有量,硬さ,降伏強度,及び疲労強度により評価した。以下に、その評価方法について説明する。
The outer peripheral surface including the raceway surface of the obtained hub wheel 2 was subjected to induction hardening and tempering to form a hardened layer 22, and then grinding and superfinishing or superfinishing alone were performed to complete the hub wheel 2.
When the inner ring 3 and the outer ring 4 are manufactured in the same manner as the hub ring 2 and are assembled, the wheel bearing rolling bearing device 1 can be obtained.
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples. The cold workability of the alloy steels having the compositions shown in Tables 1 and 2 was evaluated based on the critical compression ratio. Further, the physical properties of the non-quenched part were evaluated by the prior austenite grain size, ferrite content, hardness, yield strength, and fatigue strength. The evaluation method will be described below.

Figure 2006200700
Figure 2006200700

Figure 2006200700
Figure 2006200700

合金鋼からなる棒材から切り出した素材を切削し、下記の条件で焼鈍しを施して、直径60mm,高さ90mmの円柱状の試験片を作製した。
焼鈍し条件:室温からA1変態点以上の温度(760〜820℃)に2〜4時間かけて昇温し、その温度で1〜4時間保持した後、A1変態点未満の温度(680〜720℃)に1〜4時間かけて冷却し、その温度で2〜10時間保持した。そして、660〜700℃へ2〜6時間、さらに480〜520℃へ5〜15時間かけて炉冷した後、室温まで空冷した。
A material cut out from a bar made of alloy steel was cut and annealed under the following conditions to prepare a cylindrical test piece having a diameter of 60 mm and a height of 90 mm.
Annealing conditions: The temperature was raised from room temperature to a temperature higher than the A1 transformation point (760 to 820 ° C.) over 2 to 4 hours, held at that temperature for 1 to 4 hours, and then the temperature below the A1 transformation point (680 to 720). C.) over 1 to 4 hours and held at that temperature for 2 to 10 hours. Then, the furnace was cooled to 660 to 700 ° C. for 2 to 6 hours and further to 480 to 520 ° C. for 5 to 15 hours, and then cooled to room temperature.

限界圧縮率は、冷間鍛造時の圧力や割れ発生限界評価の指針の一つである据え込み試験における割れ発生限界歪により算出した。すなわち、前述の試験片に据え込み加工を施し、目視によりクラックの発生が確認された試験片の高さHfを測定した。そして、Hfと試験片の初期の高さH0(90mm)とから、{(H0−Hf)/H0}×100なる式により限界圧縮率を算出した。   The critical compressibility was calculated from the pressure during cold forging and the crack initiation limit strain in the upsetting test which is one of the guidelines for evaluation of crack initiation limit. That is, the above-mentioned test piece was upset, and the height Hf of the test piece in which the occurrence of cracks was confirmed by visual observation was measured. Then, the critical compression ratio was calculated from Hf and the initial height H0 (90 mm) of the test piece according to the formula {(H0−Hf) / H0} × 100.

また、非焼入れ部の硬さは、図1のような車輪支持用転がり軸受装置1のハブ輪(表1,2に示す合金鋼で構成されている)のフランジの平滑部を切り出し、樹脂に包理して、切断面をエメリー紙で仕上げ研磨した後、ビッカース硬度計を用いて測定した。また、硬さを測定した面と同一面をピクラール腐食液でエッチングした後、ミクロ組織観察及び画像処理を行うことによって、初析フェライトの含有量(面積率)及び旧オーステナイト結晶粒度を測定した。   Further, the hardness of the non-quenched part is obtained by cutting out the smooth part of the flange of the hub wheel (made of alloy steel shown in Tables 1 and 2) of the wheel bearing rolling bearing device 1 as shown in FIG. After embedding, the cut surface was finished and polished with emery paper, and then measured using a Vickers hardness tester. Further, after etching the same surface as the surface where the hardness was measured with a picral corrosion solution, the content (area ratio) of pro-eutectoid ferrite and the prior austenite grain size were measured by performing microstructure observation and image processing.

さらに、非焼入れ部の降伏強度は、ハブ輪のフランジから切り出して作製したJIS 14A号試験片(直径8.5mm)を用いて測定した。また、非焼入れ部の疲労強度は、小野式回転曲げ疲労試験機を用いて測定した。試験条件は、回転速度3700min-1、回転数107 サイクルである。用いた試験片は、JIS Z2271に規定された1−8号試験片であり、ハブ輪のフランジから切り出して作製した。 Furthermore, the yield strength of the non-quenched part was measured using a JIS 14A test piece (diameter 8.5 mm) cut out from the flange of the hub wheel. Further, the fatigue strength of the non-quenched part was measured using an Ono type rotating bending fatigue tester. The test conditions are a rotation speed of 3700 min −1 and a rotation speed of 10 7 cycles. The test piece used was a No. 1-8 test piece specified in JIS Z2271, which was cut out from the flange of the hub wheel.

各評価結果を表3,4に示す。表3,4から分かるように、各実施例は好適な合金成分により旧オーステナイト結晶粒や初析フェライトが微細化されているため、冷間加工性(限界圧縮率)と強度(降伏強度,疲労強度)とのバランスが優れていた。硬さと限界圧縮率との関係を図3のグラフに示し、硬さと疲労強度との関係を図4のグラフに示す。各グラフから分かるように、硬さが同一である場合には冷間加工性,疲労強度ともに実施例が比較例よりも優れていた。   Each evaluation result is shown in Tables 3 and 4. As can be seen from Tables 3 and 4, since the prior austenite grains and proeutectoid ferrite are refined by suitable alloy components, each of the examples has cold workability (critical compressibility) and strength (yield strength, fatigue). The balance with (strength) was excellent. The relationship between hardness and critical compressibility is shown in the graph of FIG. 3, and the relationship between hardness and fatigue strength is shown in the graph of FIG. As can be seen from the graphs, when the hardness is the same, both the cold workability and the fatigue strength were superior to the comparative example.

Figure 2006200700
Figure 2006200700

Figure 2006200700
Figure 2006200700

また、表3,4から分かるように、硬さが同一である場合には、実施例は比較例よりも降伏強度が優れており、フェライトの含有量が好適な量であった。そして、冷間加工性(限界圧縮率)を著しく低下させることなく、降伏強度500MPa及び107 サイクル疲労強度400MPaを十分に達成することができるため、車輪支持用転がり軸受装置の冷間加工性及び軽量化に有利である。 Further, as can be seen from Tables 3 and 4, when the hardness was the same, the example was superior in yield strength to the comparative example, and the ferrite content was a suitable amount. And since the yield strength of 500 MPa and 10 7 cycle fatigue strength of 400 MPa can be sufficiently achieved without significantly reducing the cold workability (limit compressibility), the cold workability of the wheel bearing rolling bearing device and It is advantageous for weight reduction.

次に、車輪支持用転がり軸受装置について回転試験を行い、その寿命を評価した。その際には、外輪の外周面に設けられた懸架装置取り付け用フランジを固定し、ハブ輪の外周面に設けられた車輪取り付け用フランジに荷重を負荷して、下記の条件で回転試験を行った。そして、ハブ輪及び外輪の振動を測定することによりフレーキングの発生を検知し、内輪の軌道面又は外輪の軌道面にフレーキングが生じるまでの総回転数により寿命を評価した。結果を表5,6に示す。また、硬化層の表面硬さHvと寿命との関係を図5のグラフに示し、硬化層の旧オーステナイト結晶粒度と寿命との関係を図6のグラフに示す。なお、表5,6及び図5,6に示した寿命の数値は、比較例23の寿命を1とした場合の相対値で示してある。
ラジアル荷重 :7000N
アキシアル荷重:5000N
回転速度 :300min-1
Next, a rotation test was conducted on the wheel-supporting rolling bearing device, and its life was evaluated. At that time, fix the suspension mounting flange provided on the outer peripheral surface of the outer ring, apply a load to the wheel mounting flange provided on the outer peripheral surface of the hub wheel, and perform a rotation test under the following conditions. It was. Then, the occurrence of flaking was detected by measuring the vibration of the hub ring and the outer ring, and the life was evaluated by the total number of revolutions until flaking occurred on the raceway surface of the inner ring or the raceway surface of the outer ring. The results are shown in Tables 5 and 6. Further, the relationship between the surface hardness Hv and the life of the hardened layer is shown in the graph of FIG. 5, and the relationship between the prior austenite crystal grain size and the life of the hardened layer is shown in the graph of FIG. The life values shown in Tables 5 and 6 and FIGS. 5 and 6 are relative values when the life of Comparative Example 23 is 1.
Radial load: 7000N
Axial load: 5000N
Rotational speed: 300 min -1

Figure 2006200700
Figure 2006200700

Figure 2006200700
Figure 2006200700

表5,6及び図5,6から分かるように、実施例の車輪支持用転がり軸受装置は、比較例の車輪支持用転がり軸受装置と比べて寿命が優れていた。   As can be seen from Tables 5 and 6 and FIGS. 5 and 6, the wheel support rolling bearing device of the example had a longer life than the wheel support rolling bearing device of the comparative example.

本発明に係る車輪支持用転がり軸受装置の一実施形態の構造を示す断面図である。It is sectional drawing which shows the structure of one Embodiment of the rolling bearing apparatus for wheel support which concerns on this invention. ハブ輪の製造方法を説明する図である。It is a figure explaining the manufacturing method of a hub ring. 非焼入れ部の硬さと限界圧縮率との関係を示すグラフである。It is a graph which shows the relationship between the hardness of a non-hardened part, and a limit compression rate. 非焼入れ部の硬さと疲労強度との関係を示すグラフである。It is a graph which shows the relationship between the hardness of a non-hardened part, and fatigue strength. 硬化層の表面硬さHvと車輪支持用転がり軸受装置の寿命との関係を示すグラフである。It is a graph which shows the relationship between the surface hardness Hv of a hardened layer, and the lifetime of the rolling bearing apparatus for wheel support. 硬化層の旧オーステナイト結晶粒度と車輪支持用転がり軸受装置の寿命との関係を示すグラフである。It is a graph which shows the relationship between the old austenite grain size of a hardened layer, and the lifetime of the rolling bearing apparatus for wheel support.

符号の説明Explanation of symbols

1 車輪支持用転がり軸受装置
2 ハブ輪
3 内輪
4 外輪
5 転動体
10 車輪取り付け用フランジ
13 懸架装置取り付け用フランジ
20a 第一内側軌道面
20b 第二内側軌道面
21a 第一外側軌道面
21b 第二外側軌道面
22 硬化層
DESCRIPTION OF SYMBOLS 1 Rolling bearing apparatus for wheel support 2 Hub wheel 3 Inner ring 4 Outer ring 5 Rolling element 10 Wheel mounting flange 13 Suspension apparatus mounting flange 20a First inner raceway surface 20b Second inner raceway surface 21a First outer raceway surface 21b Second outer race Raceway 22 Hardened layer

Claims (1)

外周面に軌道面を有する内方部材と、前記内方部材の軌道面に対向する軌道面を有し前記内方部材の外方に配された外方部材と、前記両軌道面間に転動自在に配された複数の転動体と、前記内方部材及び前記外方部材の少なくとも一方に設けられ車輪又は懸架装置が取り付けられるフランジと、を備えるとともに、前記内方部材及び前記外方部材の一方が回転輪、他方が固定輪とされる車輪支持用転がり軸受装置において、前記内方部材及び前記外方部材の少なくとも一方が下記の4つの条件を満足することを特徴とする車輪支持用転がり軸受装置。
条件1:炭素の含有量が0.45質量%以上0.6質量%以下、ケイ素の含有量が0.5質量%以上0.8質量%以下、マンガンの含有量が0.6質量%以上1質量%以下、バナジウムの含有量が0.03質量%以上1質量%以下である合金鋼で構成されている。 条件2:前記合金鋼のビッカース硬さHvと限界圧縮率X(%)とがX≧0.05×Hv+50なる式を満足する。
条件3:プレス加工又は塑性加工で成形されたものである。
条件4:前記軌道面に高周波焼入れによる硬化層が形成されている。
An inner member having a raceway surface on the outer peripheral surface, an outer member having a raceway surface opposite to the raceway surface of the inner member, and disposed on the outer side of the inner member, and a roll between the raceway surfaces. A plurality of rolling elements arranged movably and a flange provided on at least one of the inner member and the outer member to which a wheel or a suspension device is attached; and the inner member and the outer member In a wheel support rolling bearing device in which one of them is a rotating wheel and the other is a fixed wheel, at least one of the inner member and the outer member satisfies the following four conditions: Rolling bearing device.
Condition 1: The carbon content is 0.45 mass% or more and 0.6 mass% or less, the silicon content is 0.5 mass% or more and 0.8 mass% or less, and the manganese content is 0.6 mass% or more. It is made of an alloy steel having a content of 1% by mass or less and a vanadium content of 0.03% by mass to 1% by mass. Condition 2: Vickers hardness Hv and critical compression ratio X (%) of the alloy steel satisfy the expression X ≧ 0.05 × Hv + 50.
Condition 3: It is formed by press working or plastic working.
Condition 4: A hardened layer by induction hardening is formed on the raceway surface.
JP2005015468A 2005-01-24 2005-01-24 Rolling bearing device for supporting wheel Pending JP2006200700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015468A JP2006200700A (en) 2005-01-24 2005-01-24 Rolling bearing device for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015468A JP2006200700A (en) 2005-01-24 2005-01-24 Rolling bearing device for supporting wheel

Publications (1)

Publication Number Publication Date
JP2006200700A true JP2006200700A (en) 2006-08-03

Family

ID=36958876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015468A Pending JP2006200700A (en) 2005-01-24 2005-01-24 Rolling bearing device for supporting wheel

Country Status (1)

Country Link
JP (1) JP2006200700A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008045719A (en) * 2006-08-21 2008-02-28 Nsk Ltd Bearing unit
WO2008059617A1 (en) * 2006-11-14 2008-05-22 Ntn Corporation Bearing device for wheel
JP2008121838A (en) * 2006-11-14 2008-05-29 Ntn Corp Bearing device for wheel
WO2008102540A1 (en) * 2007-02-23 2008-08-28 Ntn Corporation Bearing device for wheel and method of producing the same
JP2008207600A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel
JP2008223990A (en) * 2007-03-15 2008-09-25 Nsk Ltd Rolling bearing unit for supporting wheel
JP2008249044A (en) * 2007-03-30 2008-10-16 Nsk Ltd Wheel supporting rolling bearing device and its bearing ring manufacturing method
JP2008266667A (en) * 2007-04-16 2008-11-06 Nsk Ltd Rolling bearing device for supporting wheel
DE102010021813A1 (en) * 2010-05-27 2011-12-01 Schaeffler Technologies Gmbh & Co. Kg Shockproof angular contact ball bearing
JP2013164160A (en) * 2013-03-05 2013-08-22 Nsk Ltd Method for manufacturing rolling bearing device for supporting wheel
CN103442906A (en) * 2011-03-07 2013-12-11 株式会社捷太格特 Shaft member for wheel rolling bearing device
JP2014190466A (en) * 2013-03-27 2014-10-06 Ntn Corp Outer member for wheel bearing, and method of manufacturing the same
US9404531B2 (en) 2007-02-23 2016-08-02 Ntn Corporation Bearing apparatus for wheel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008045719A (en) * 2006-08-21 2008-02-28 Nsk Ltd Bearing unit
WO2008059617A1 (en) * 2006-11-14 2008-05-22 Ntn Corporation Bearing device for wheel
JP2008121838A (en) * 2006-11-14 2008-05-29 Ntn Corp Bearing device for wheel
DE112007002699B4 (en) 2006-11-14 2021-10-07 Ntn Corporation Wheel bearing device for a vehicle
US9097284B2 (en) 2006-11-14 2015-08-04 Ntn Corporation Wheel bearing apparatus for a vehicle
CN101636282B (en) * 2007-02-23 2011-09-14 Ntn株式会社 Wheel support bearing assembly and method of making the same
US8192088B2 (en) 2007-02-23 2012-06-05 Ntn Corporation Wheel support bearing assembly and method of making the same
WO2008102540A1 (en) * 2007-02-23 2008-08-28 Ntn Corporation Bearing device for wheel and method of producing the same
US9404531B2 (en) 2007-02-23 2016-08-02 Ntn Corporation Bearing apparatus for wheel
JP2008207589A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel and its manufacturing method
JP2008207600A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel
JP2008223990A (en) * 2007-03-15 2008-09-25 Nsk Ltd Rolling bearing unit for supporting wheel
JP2008249044A (en) * 2007-03-30 2008-10-16 Nsk Ltd Wheel supporting rolling bearing device and its bearing ring manufacturing method
JP2008266667A (en) * 2007-04-16 2008-11-06 Nsk Ltd Rolling bearing device for supporting wheel
DE102010021813B4 (en) * 2010-05-27 2012-05-31 Schaeffler Technologies Gmbh & Co. Kg Shockproof angular contact ball bearing
DE102010021813A1 (en) * 2010-05-27 2011-12-01 Schaeffler Technologies Gmbh & Co. Kg Shockproof angular contact ball bearing
CN103442906A (en) * 2011-03-07 2013-12-11 株式会社捷太格特 Shaft member for wheel rolling bearing device
JP2013164160A (en) * 2013-03-05 2013-08-22 Nsk Ltd Method for manufacturing rolling bearing device for supporting wheel
JP2014190466A (en) * 2013-03-27 2014-10-06 Ntn Corp Outer member for wheel bearing, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2006200700A (en) Rolling bearing device for supporting wheel
JP2006291250A (en) Rolling bearing unit for wheel supporting
JP2001200314A (en) Wheel bearing device
JP4423858B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2002021858A (en) Wheel axle bearing device
US9097284B2 (en) Wheel bearing apparatus for a vehicle
JP2006064036A (en) Bearing device for supporting axle
JP2006142916A (en) Rolling bearing unit for supporting vehicle wheel
JP2007182609A (en) Rolling member for use in wheel bearing device, manufacturing method therefor and wheel bearing device
JP4893585B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP5994377B2 (en) Radial rolling bearing inner ring and manufacturing method thereof
JP5050587B2 (en) Rolling bearing device for wheel support
JP2006329287A (en) Wheel supporting rolling bearing unit and its inner ring manufacturing method
JP5644881B2 (en) Manufacturing method of wheel bearing rolling bearing device
JP2006046353A (en) Wheel supporting hub bearing unit
JP2006153188A (en) Roller bearing system for supporting wheel
JP2011190921A (en) Thrust roller bearing
JP2007107647A (en) Rolling bearing device for supporting wheel
JP2006226373A (en) Rolling bearing unit for supporting wheel
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP4225061B2 (en) Rolling bearing unit for wheel support
JP5105859B2 (en) Wheel bearing device
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same
JP2009299759A (en) Wheel supporting rolling bearing unit
JP5195089B2 (en) Hub unit bearing and manufacturing method thereof