JPH04151881A - Manufacture of thin film thermoelectric device - Google Patents

Manufacture of thin film thermoelectric device

Info

Publication number
JPH04151881A
JPH04151881A JP2277010A JP27701090A JPH04151881A JP H04151881 A JPH04151881 A JP H04151881A JP 2277010 A JP2277010 A JP 2277010A JP 27701090 A JP27701090 A JP 27701090A JP H04151881 A JPH04151881 A JP H04151881A
Authority
JP
Japan
Prior art keywords
thin film
film
iron silicide
thin
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2277010A
Other languages
Japanese (ja)
Other versions
JP2982275B2 (en
Inventor
Yutaka Shimabara
豊 島原
Yukio Yoshino
幸夫 吉野
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2277010A priority Critical patent/JP2982275B2/en
Publication of JPH04151881A publication Critical patent/JPH04151881A/en
Application granted granted Critical
Publication of JP2982275B2 publication Critical patent/JP2982275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a high thermo-electric power and a thin film thermoelectric device capable of operating even in a high temperature region by laminating a thin film thermocouple pattern consisting of impurities arrayed alternately as a donor and an acceptor and a thin film thermocouple pattern made of an iron silicide film so that they may be formed on an insulation substrate respectively and carrying out their heat-treatment as well. CONSTITUTION:A substrate 1 is covered with a mask and Co, which serves as a donor, is sputtered so that a Co thin film 4 is laminated and clad on one side of each thermocouple of the thermocouple patterns of an iron silicide film 2. Then, Mn, which serves as an acceptor, is sputtered so that a thin Mn film 6 may be clad on the surface. After the cladding, the whole substrate is heat- treated in vacuum so that Co and Mn may be diffused on the thin iron silicide film 2 respectively, thereby producing an n type thin semiconductor film 7 and a p type thin semiconductor film 8 respectively and constituting a thermopile to which a plurality of thermocouples are connected in series. This construction makes it possible to provide a thin film thermoelectric device which is small in size, high in sensibility, and excellent in heat resistant properties.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は、赤外線センタ、温度センタ″、熱セン・す
“などに用いられる小型で高感度な熱電素子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Al Industrial Field of Application) This invention relates to a method of manufacturing a small and highly sensitive thermoelectric element used in infrared centers, temperature centers, heat sensors, etc.

(bl従来の技術 従来より、赤外線センナ、温度センサ、熱センタ゛など
として用いられる、熱電対を多数直列接続したいわゆる
り・−モバイル型熱電素子が開発されている。
(Bl. Prior Art) So-called mobile thermoelectric elements, in which a large number of thermocouples are connected in series, have been developed for use as infrared sensors, temperature sensors, heat centers, etc.

一般に、ザーモパイル型熱電素子は、熱電材料が多数直
列接続され、温度差から生しる熱起電力が加算される構
造を有し、大きな熱起電ツノを得ることができる。これ
により高効率の熱電力変換素子や微少温度差を検知する
高感度な赤外線、温度、熱セン・す・として利用りるこ
とができる。特に、センサ用途には小型化、貰感度化、
応答速度の高速化のために、主に薄膜型の熱電素子が用
いられる。
In general, a thermopile type thermoelectric element has a structure in which a large number of thermoelectric materials are connected in series and thermoelectromotive force generated from a temperature difference is added, and a large thermoelectromotive horn can be obtained. This allows it to be used as a highly efficient thermoelectric conversion element or as a highly sensitive infrared, temperature, or heat sensor that detects minute temperature differences. In particular, for sensor applications, miniaturization, increased sensitivity,
Thin film thermoelectric elements are mainly used to increase response speed.

従来の薄膜型熱電素子はn型熱電材料からなる細線パタ
ーンとp型熱電+A料からなる細線パタンを基板上に形
成し、更に電極を形成することによって熱電対を直列接
続している。
In a conventional thin film thermoelectric element, a thin wire pattern made of an n-type thermoelectric material and a thin wire pattern made of a p-type thermoelectric +A material are formed on a substrate, and thermocouples are connected in series by further forming electrodes.

このような従来の薄膜熱電素子の熱電材料にはコンスタ
ンタン−ニクロム(特公昭57−40154号)、As
−Te(特開昭53−132282号)、Si、Ge(
特開昭57−7172号)、B1−3b−Te (特開
昭61−22676号)などの半W体材料が用いられて
きた。
Thermoelectric materials for such conventional thin film thermoelectric elements include constantan-nichrome (Japanese Patent Publication No. 57-40154), As
-Te (JP 53-132282), Si, Ge (
Half-W body materials such as JP-A-57-7172) and B1-3b-Te (JP-A-61-22676) have been used.

(C)発明が解決しようとする課題 これら従来の熱電材料は比抵抗が小さく熱電変換効率が
高いという長所があるが、ゼーベック係数が小さく、ま
た酸化し易いため、高温下で使用できないという欠点を
有している。
(C) Problems to be Solved by the Invention These conventional thermoelectric materials have the advantage of low resistivity and high thermoelectric conversion efficiency, but they have the disadvantage that they cannot be used at high temperatures because they have a small Seebeck coefficient and are easily oxidized. have.

本発明はこのような従来の問題点を解消して、薄膜でか
つ高い熱起電力が得られ、尚温度域でも使用可能なセン
サ用薄膜熱電素子の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional problems and provide a method for manufacturing a thin film thermoelectric element for a sensor, which is thin, has a high thermoelectromotive force, and can be used even in a temperature range.

fd1課題を解決するための手段 前記目的を達成するためには高温度下で使用でき、かつ
ゼーベック係数の高い材料が必要である珪化物半導体は
300〜700μV/にという高いゼーベック係数を有
し、耐熱性が高く高温度下での熱電力変換素子として注
目されている。
Means for solving the fd1 problem In order to achieve the above object, a material that can be used at high temperatures and has a high Seebeck coefficient is required.A silicide semiconductor has a high Seebeck coefficient of 300 to 700 μV/, It has high heat resistance and is attracting attention as a thermoelectric power conversion element at high temperatures.

発明者らは珪化鉄半導体材料を薄膜化することによって
、高感度で高温下でも使用でるザーモパイル型熱電素子
が得られることを見出した。
The inventors have discovered that by making an iron silicide semiconductor material into a thin film, a thermopile type thermoelectric element with high sensitivity and usable even at high temperatures can be obtained.

この発明の薄膜熱電素子の製造方法は、ドナーおよびア
クセプタとしての不純物を交互に配列してなる薄膜熱電
対パターンと珪化鉄膜の薄膜熱電対パターンとをそれぞ
れ絶縁基板上に積層形成し、熱処理により上記珪化鉄膜
に対する上記不純物の熱拡散を行い、珪化鉄n型半導体
膜と珪化鉄p型半導体膜による熱電対パターンを形成す
ることを特徴とする。
The method for manufacturing a thin film thermoelectric element of the present invention involves laminating a thin film thermocouple pattern formed by alternately arranging impurities as donors and acceptors and a thin film thermocouple pattern made of an iron silicide film on an insulating substrate, and then applying heat treatment to the thin film thermocouple pattern. The method is characterized in that the impurity is thermally diffused into the iron silicide film to form a thermocouple pattern of an iron silicide n-type semiconductor film and an iron silicide p-type semiconductor film.

(Q1作用 この発明の薄膜熱電素子の製造方法では、珪化鉄膜の熱
電対パターンと不純物膜の熱電対パターンがそれぞれ上
記絶縁基板上に薄膜形成される。
(Q1 Effect) In the method for manufacturing a thin film thermoelectric element of the present invention, a thermocouple pattern of an iron silicide film and a thermocouple pattern of an impurity film are formed as thin films on the insulating substrate, respectively.

そして熱処理により不純物が珪化鉄膜に熱拡散して、ド
ナーの拡散した部分がn型半導体化され、アクセプタの
拡散した領域がp型半導体化される。これにより絶縁基
板上に珪化鉄n型半導体膜と珪化鉄p型半導体膜による
熱電対パターンが形成される。このよ・)に真性半導体
である珪化鉄膜とそれに対するドナーまたはアクセプタ
としての不純物をそれぞれ熱電対パターン状に薄膜形成
するよ・)にしたため、各組成物の量を正確に制御する
ことができ、所望のキャリア濃度を有する珪化鉄半導体
膜からなる薄膜熱電素子が得られる。
Then, by heat treatment, impurities are thermally diffused into the iron silicide film, and the region where the donor is diffused becomes an n-type semiconductor, and the region where the acceptor is diffused becomes a p-type semiconductor. As a result, a thermocouple pattern of the iron silicide n-type semiconductor film and the iron silicide p-type semiconductor film is formed on the insulating substrate. Since the iron silicide film, which is an intrinsic semiconductor, and the impurity as a donor or acceptor for it are formed into thin films in the shape of a thermocouple pattern, it is possible to precisely control the amount of each component. , a thin film thermoelectric element made of an iron silicide semiconductor film having a desired carrier concentration can be obtained.

(fl実施例 この発明の実施例を第1図〜第8図に基づいて製造工程
順に説明する。
(flEmbodiment) An embodiment of the present invention will be explained in the order of manufacturing steps based on FIGS. 1 to 8.

先ず、FeとSiの粉末を混合して、高周波溶解炉で1
600℃で溶解し円板状の金型に鋳込み冷却する。これ
により円板状の珪化鉄インゴットを得る。そしてその表
面を研磨して珪化鉄ターゲットとする。
First, Fe and Si powders are mixed and melted in a high frequency melting furnace.
It is melted at 600°C, cast into a disk-shaped mold, and cooled. As a result, a disk-shaped iron silicide ingot is obtained. Then, the surface is polished to obtain an iron silicide target.

次に、第1図に示すようにSiO□基板1の上部にマス
クを用いて、上記珪化鉄ターゲットをAI・中でRFス
パッタリングして熱電対パターン状に珪化鉄薄膜2を成
膜する。このときのスパッタリング条件は次のとおりで
ある。
Next, as shown in FIG. 1, using a mask on the SiO□ substrate 1, the iron silicide target is subjected to RF sputtering in AI to form an iron silicide thin film 2 in the shape of a thermocouple pattern. The sputtering conditions at this time are as follows.

基板温度=300°C 高周波量カニsoow〜1.5kW レート:1〜10μm/hr 次に第2図のようにドナーを拡散させる部分を開口した
マスク3により基板上を覆い、ドナーとしてのCOをA
r中てRFスパッタリングする。
Substrate temperature = 300°C High frequency power: soow ~ 1.5 kW Rate: 1 ~ 10 μm/hr Next, as shown in Figure 2, the substrate is covered with a mask 3 with an opening in the portion where the donor is diffused, and CO as a donor is diffused. A
RF sputtering in r.

このときの、スパッタリング条件は次のとおりである。The sputtering conditions at this time are as follows.

基板温度:、150℃ 裔周波出カニ500W〜1.5kW レー ト ニ 2〜20 μ rn/ h rこれによ
り第3図に示すように珪化鉄薄膜2からなる熱電対パタ
ーンの各熱電対の片側にそれぞれCo薄膜4が積層被着
される。
Substrate temperature: 150 degrees Celsius Frequency output: 500 W to 1.5 kW Rate: 2 to 20 μrn/hr As shown in FIG. A Co thin film 4 is laminated and deposited on each.

続いて第4図のようにアクセプタを拡散させる部分に開
口部を形成したマスク5を用い、アクセプタとしてのM
nをAr中でRFスパッタリングする。このときのスパ
ッタリング条件は次のとおりである。
Next, as shown in FIG. 4, using a mask 5 with openings formed in the portion where the acceptor is to be diffused, M.
RF sputtering of n in Ar. The sputtering conditions at this time are as follows.

基板温度:150”C 高周波出カニ500W〜1.5kW レートニ1〜15μm/hr これにより、第5図に示すように珪化鉄薄膜の表面にM
n!膜6が被着される。
Substrate temperature: 150"C High frequency output power 500W~1.5kW Rate power 1~15μm/hr As a result, the surface of the iron silicide thin film is
n! A membrane 6 is applied.

その後、基板全体を真空中1200〜1300°Cで熱
処理を行う。これにより第6図に示すように、珪化鉄薄
膜にCo、Mnがそれぞれ拡散して1〕、p型半導体薄
膜7,8となって、基板の中心部と周辺部にそれぞれ温
冷接を有する複数の熱電対が多数直列接続されたり゛−
モバイルが構成される。
Thereafter, the entire substrate is heat-treated in a vacuum at 1200 to 1300°C. As a result, as shown in FIG. 6, Co and Mn are diffused into the iron silicide thin film (1), forming p-type semiconductor thin films 7 and 8, which have hot and cold junctions at the center and periphery of the substrate, respectively. Many thermocouples are connected in series.
Mobile is configured.

最後に、第7図に示すように端子形成部に切欠を形成し
たマスク9を用いて電極材料を蒸着することによって、
第8図に示すようにリード取り付は端子10.11を形
成する。
Finally, as shown in FIG. 7, an electrode material is deposited using a mask 9 with a notch formed in the terminal forming part.
As shown in FIG. 8, the lead attachment forms terminals 10.11.

以上に示した実施例では、図面を明瞭化するために熱電
対の対数を少なく描いたが、各パターンはスパッタリン
グ法などにより薄膜形成するものであるため、その熱電
対パターンを微細化することによって熱起電圧を裔める
ことができる。例えば第8図に示した構造において5m
m角基板で100対の珪化鉄熱電対を存する熱電素子を
作成し、その感度を計測したところ、約100 V/W
であった。また、その素子を700℃で1000時間放
置しても特性に変化はなかった。
In the embodiments shown above, the number of thermocouple pairs is small in order to make the drawings clearer, but since each pattern is formed as a thin film by sputtering method, it is possible to make the thermocouple pattern finer. It can absorb thermoelectromotive force. For example, in the structure shown in Figure 8, 5 m
When we created a thermoelectric element with 100 pairs of iron silicide thermocouples on an m-square substrate and measured its sensitivity, it was approximately 100 V/W.
Met. Further, even when the device was left at 700° C. for 1000 hours, there was no change in characteristics.

(g1発明の効果 この発明によれは小型で高感度且つ耐熱性に優れた薄膜
熱電素子が1Mられるため、例えば自動車エンジン用や
溶鉱炉用の非接触温度センソ°またば熱センサに応用す
ることができる。また、薄膜形成の際不純物を含んだタ
ーケソトを用いないため、半導体膜の不純物濃度の制御
が容易になり、特性の揃った薄膜熱電素子が得られる。
(g1 Effects of the Invention This invention produces a 1M thin film thermoelectric element that is small, highly sensitive, and has excellent heat resistance, so it can be applied to, for example, non-contact temperature sensors for automobile engines and blast furnaces, or thermal sensors. In addition, since a substrate containing impurities is not used during thin film formation, the impurity concentration of the semiconductor film can be easily controlled, and a thin film thermoelectric element with uniform characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図はこの発明の実施例に係る薄膜熱電素子
の製造時の各工程における基板上の状態を表す平面図、
第8図は完成した薄膜熱電素子の平面図である。 ■一基板、 2−珪化鉄薄膜、 3.5.9−マスク、 不純物(ドナー)膜、 不純物(アクセプタ)膜、 珪化鉄n型半導体膜、 珪化鉄p型半導体膜、 0.11−リード取付端子。
FIGS. 1 to 7 are plan views showing the state on a substrate in each step of manufacturing a thin film thermoelectric element according to an embodiment of the present invention;
FIG. 8 is a plan view of the completed thin film thermoelectric element. ■One substrate, 2-Iron silicide thin film, 3.5.9-Mask, impurity (donor) film, impurity (acceptor) film, iron silicide n-type semiconductor film, iron silicide p-type semiconductor film, 0.11-Lead attachment terminal.

Claims (1)

【特許請求の範囲】[Claims] (1)ドナーおよびアクセプタとしての不純物を交互に
配列してなる薄膜熱電対パターンと珪化鉄膜の薄膜熱電
対パターンとをそれぞれ絶縁基板上に積層形成し、 熱処理により上記珪化鉄膜に対する上記不純物の熱拡散
を行い、珪化鉄n型半導体膜と珪化鉄p型半導体膜によ
る熱電対パターンを形成することを特徴とする薄膜熱電
素子の製造方法。
(1) A thin film thermocouple pattern formed by alternately arranging impurities as donors and acceptors and a thin film thermocouple pattern of an iron silicide film are respectively laminated on an insulating substrate, and heat treatment is performed to remove the impurities from the iron silicide film. A method of manufacturing a thin film thermoelectric element, comprising performing thermal diffusion to form a thermocouple pattern of an iron silicide n-type semiconductor film and an iron silicide p-type semiconductor film.
JP2277010A 1990-10-15 1990-10-15 Manufacturing method of thin film thermoelectric element Expired - Fee Related JP2982275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277010A JP2982275B2 (en) 1990-10-15 1990-10-15 Manufacturing method of thin film thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277010A JP2982275B2 (en) 1990-10-15 1990-10-15 Manufacturing method of thin film thermoelectric element

Publications (2)

Publication Number Publication Date
JPH04151881A true JPH04151881A (en) 1992-05-25
JP2982275B2 JP2982275B2 (en) 1999-11-22

Family

ID=17577508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277010A Expired - Fee Related JP2982275B2 (en) 1990-10-15 1990-10-15 Manufacturing method of thin film thermoelectric element

Country Status (1)

Country Link
JP (1) JP2982275B2 (en)

Also Published As

Publication number Publication date
JP2982275B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US4098617A (en) Method of manufacturing film thermopile
JPS6136616B2 (en)
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JP2001330511A (en) Infrared sensor
US5886390A (en) Thermoelectric material with diffusion-preventive layer
JPH04151881A (en) Manufacture of thin film thermoelectric device
JPH02214175A (en) Thin-film thermoelectric element
JP2004146586A (en) ZnO-BASED THIN FILM, THERMOELECTRIC CONVERTER ELEMENT AND INFRARED SENSOR USING THE SAME
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JP3217533B2 (en) Infrared sensor
JPH02260581A (en) Thick film thermoelectric device
JPH04151882A (en) Thin film thermoelectric device
JP3134359B2 (en) Thin film thermoelectric element
JPH0311672A (en) Thermoelectric element and its manufacture
JPH03270084A (en) Manufacture of thermoelectric element
JPH10247752A (en) Thermoelectric conversion device and manufacture thereof
JPH04313284A (en) Thin-film thermoelectric element
JP2727541B2 (en) Manufacturing method of thin film thermistor
JP2645552B2 (en) Silicon / germanium / gold mixed crystal thin film conductor
JPH02206733A (en) Infrared ray sensor
JPH04150076A (en) Manufacture of thin film termoelectric device
CA1037614A (en) Method for manufacturing film thermopile
JPH07146187A (en) Thermal element and its manufacturing method
KR970006040B1 (en) Sensor manufacturing method
JPH03131001A (en) Resistance temperature sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees