JP3134360B2 - Manufacturing method of thin film thermoelectric element - Google Patents

Manufacturing method of thin film thermoelectric element

Info

Publication number
JP3134360B2
JP3134360B2 JP03156795A JP15679591A JP3134360B2 JP 3134360 B2 JP3134360 B2 JP 3134360B2 JP 03156795 A JP03156795 A JP 03156795A JP 15679591 A JP15679591 A JP 15679591A JP 3134360 B2 JP3134360 B2 JP 3134360B2
Authority
JP
Japan
Prior art keywords
thin film
film pattern
type
thermoelectric element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03156795A
Other languages
Japanese (ja)
Other versions
JPH057021A (en
Inventor
豊 島原
康信 米田
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03156795A priority Critical patent/JP3134360B2/en
Publication of JPH057021A publication Critical patent/JPH057021A/en
Application granted granted Critical
Publication of JP3134360B2 publication Critical patent/JP3134360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、赤外線センサー、温
度センサー、熱センサーなどに用いられる薄膜熱電素子
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film thermoelectric element used for an infrared sensor, a temperature sensor, a heat sensor, and the like.

【0002】[0002]

【従来の技術】熱電対を多数直列接続したサーモパイル
(熱電堆)型熱電素子が赤外線センサ、温度センサ、熱
センサなどとして従来より用いられている。このような
サーモパイル型熱電素子は、温度差から生じる各熱電対
の熱起電力が加算されるため大きな熱起電力を得ること
ができ、高効率の熱電力変換素子や微小温度差を検知す
る高感度な赤外線センサ、温度センサまたは熱センサと
て利用することができる。特に、センサ用途には小型
化、高感度化、高応答速度化のために、主に薄膜型の熱
電素子が用いられている。
2. Description of the Related Art A thermopile (thermopile) type thermoelectric element in which a large number of thermocouples are connected in series has been conventionally used as an infrared sensor, a temperature sensor, a heat sensor and the like. In such a thermopile type thermoelectric element, a large thermoelectromotive force can be obtained because the thermoelectromotive force of each thermocouple generated by the temperature difference is added. It can be used as a sensitive infrared sensor, temperature sensor or heat sensor. In particular, thin-film thermoelectric elements are mainly used for sensor applications in order to reduce the size, increase the sensitivity, and increase the response speed.

【0003】従来の薄膜熱電材料としてはコンスタンタ
ン−ニクロム(特公昭61−40154号)、Si,G
e(特開昭57−7172号)、Bi−Sb−Te(特
開昭53−132282号,特開昭61−22676
号)などの金属系または半導体系材料が用いられてき
た。
Conventional thin film thermoelectric materials include Constantan-Nichrome (Japanese Patent Publication No. 61-40154), Si, G
e (JP-A-57-7172), Bi-Sb-Te (JP-A-53-132282, JP-A-61-22676)
No.) or other metal-based or semiconductor-based materials.

【0004】[0004]

【発明が解決しようとする課題】これら従来の薄膜用熱
電材料は電気伝導率が高く熱電変換効率が高いという長
所があるが、ゼーベック係数が小さい、ゼーベック係数
の温度変化が大きい、高温下で使用できないという欠点
を備えている。また、焦電型赤外線センサに比べ赤外線
を充分検知するにはまだ感度が低い。
These conventional thermoelectric materials for thin films have the advantages of high electric conductivity and high thermoelectric conversion efficiency, but have a small Seebeck coefficient, a large temperature change in the Seebeck coefficient, and are used at high temperatures. It has the disadvantage of not being able to. In addition, the sensitivity is still low for detecting infrared light sufficiently compared to a pyroelectric infrared sensor.

【0005】この発明の目的は高感度でかつ高温域まで
使用可能な薄膜熱電素子の製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing a thin film thermoelectric element which has high sensitivity and can be used up to a high temperature range.

【0006】[0006]

【課題を解決するための手段】高感度な薄膜熱電素子を
得るためには、ゼーベック係数の高い熱電材料を用いな
ければならない。珪化物半導体、特に鉄珪化物半導体は
300〜700μV/Kという高いゼーベック係数を有
し、耐熱性が高く、高温度下での熱電力変換素子として
注目されている。
In order to obtain a highly sensitive thin film thermoelectric element, a thermoelectric material having a high Seebeck coefficient must be used. Silicide semiconductors, particularly iron silicide semiconductors, have a high Seebeck coefficient of 300 to 700 μV / K, have high heat resistance, and are attracting attention as thermoelectric power conversion elements at high temperatures.

【0007】発明者らは、珪化物半導体材料を薄膜化す
ることによって、高温下でも使用可能な薄膜熱電材料お
よびそれを用いた高感度な薄膜熱電素子が得られること
を見出した。
The inventors have found that a thin film of a silicide semiconductor material can provide a thin film thermoelectric material usable even at high temperatures and a highly sensitive thin film thermoelectric element using the same.

【0008】この発明の請求項1に係る薄膜熱電素子の
製造方法は、Siを主体とする基板または薄膜の表面に
合金によるp型用薄膜パターンとn型用薄膜パターン
を、絶縁膜を介して熱電堆状に形成し、その表面にSi
を主体とする薄膜を形成し、熱処理により前記p型用薄
膜パターンとn型用薄膜パターンをそれぞれ遷移金属珪
化物化する。
According to a first aspect of the present invention, there is provided a method for manufacturing a thin-film thermoelectric element, comprising the steps of:
A p-type thin film pattern and an n-type thin film pattern made of an iron alloy are formed in the form of a thermopile through an insulating film, and a Si
Is formed, and the p-type thin film pattern and the n-type thin film pattern are each converted into a transition metal silicide by heat treatment.

【0009】また、請求項2に係る薄膜熱電素子の製造
方法は、合金によるp型用薄膜パターンとn型用薄膜
パターンを熱電堆状に形成した熱電堆単位層をSiを主
体とする薄膜を介して多層化し、熱処理により前記p型
用薄膜パターンとn型用薄膜パターンをそれぞれ遷移金
属珪化物化する。
A method of manufacturing a thin film thermoelectric element according to a second aspect of the present invention is a thin film mainly composed of a thermoelectric bank unit layer in which a p-type thin film pattern and an n-type thin film pattern made of an iron alloy are formed in a thermoelectric bank shape. The thin film pattern for p-type and the thin film pattern for n-type are each converted into a transition metal silicide by heat treatment.

【0010】[0010]

【作用】この発明の請求項1に記載した薄膜熱電素子の
製造方法では、まず、Siを主体とする基板または薄膜
の表面に、合金によるp型用薄膜パターンとn型用薄
膜パターンが絶縁膜を介して熱電堆状に形成され、その
表面にSiを主体とする薄膜が形成され、熱処理によっ
てp型用薄膜パターンとn型用薄膜パターンがそれぞれ
基板または薄膜のSiと反応して、遷移金属珪化物のp
型半導体薄膜パターンとn型半導体薄膜パターンとにな
る。このようにして高温下で使用可能な遷移金属珪化物
による薄膜熱電素子が得られる。また、p型半導体薄膜
パターンとn型半導体薄膜パターンとが絶縁膜を介して
熱電堆状に構成されるため、単位面積あたりの熱電対の
対数が多くなり、小型で高感度な薄膜熱電素子が得られ
る。
In the method for manufacturing a thin-film thermoelectric element according to the first aspect of the present invention, first, a p-type thin film pattern and an n-type thin film pattern made of an iron alloy are insulated on the surface of a substrate or a thin film mainly composed of Si. A thin film mainly composed of Si is formed on the surface thereof through a film, and a thin film mainly composed of Si is formed on the surface thereof. P of metal silicide
A semiconductor thin film pattern and an n-type semiconductor thin film pattern. In this manner, a thin film thermoelectric element made of a transition metal silicide that can be used at a high temperature is obtained. In addition, since the p-type semiconductor thin film pattern and the n-type semiconductor thin film pattern are formed in a thermopile shape via an insulating film, the number of thermocouples per unit area increases, and a small and highly sensitive thin-film thermoelectric element is provided. can get.

【0011】また、請求項2に記載した薄膜熱電素子の
製造方法では、合金によるp型用薄膜パターンとn型
用薄膜パターンが熱電堆状に形成され、これが熱電堆単
位層として、Siを主体とする薄膜を介して多層化さ
れ、その後の熱処理によってp型用薄膜パターンとn型
用薄膜パターンがそれぞれ薄膜のSiと反応して遷移金
属珪化物の半導体薄膜パターンとなる。このようにして
遷移金属珪化物半導体薄膜パターンによる熱電対が多層
化されて、単位面積あたりの熱電対の対数が非常に多い
薄膜熱電素子が得られる。
In the method for manufacturing a thin-film thermoelectric device according to the second aspect, the p-type thin film pattern and the n-type thin film pattern made of an iron alloy are formed in a thermoelectric bank shape. The multi-layered structure is formed through the main thin film, and the subsequent heat treatment causes the p-type thin film pattern and the n-type thin film pattern to react with Si of the thin film to form a transition metal silicide semiconductor thin film pattern. In this way, the thermocouples using the transition metal silicide semiconductor thin film pattern are multilayered, and a thin film thermoelectric element having a very large number of thermocouples per unit area is obtained.

【0012】[0012]

【実施例】この発明の実施例である薄膜熱電素子の製造
工程を図1〜図9に基づいて説明する。なお各図におい
て(A)は上面図、(B)は断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A manufacturing process of a thin-film thermoelectric device according to an embodiment of the present invention will be described with reference to FIGS. In each figure, (A) is a top view and (B) is a sectional view.

【0013】まず、図1に示すようにSi基板1の表面
を酸化させてSiO2 膜2を形成する。
First, as shown in FIG. 1, the surface of a Si substrate 1 is oxidized to form a SiO 2 film 2.

【0014】次に図2に示すように、後の感熱部となる
基板中央部をマスクしてCVD法によりSi薄膜3を製
膜する。
Next, as shown in FIG. 2, an Si thin film 3 is formed by a CVD method using a central portion of the substrate which will be a heat sensitive portion later.

【0015】続いてアクセプタとしての不純物をドープ
した遷移金属合金を図3に示すようにp型用薄膜パター
ン4として形成する。ここではFe 99mol%、M
n1mol%からなる鉄合金を作成し、マスクを用いて
真空蒸着により膜厚約10μmのp型用薄膜パターンを
製膜する。
Subsequently, a transition metal alloy doped with an impurity as an acceptor is formed as a p-type thin film pattern 4 as shown in FIG. Here, Fe 99 mol%, M
An n1 mol% iron alloy is prepared, and a p-type thin film pattern having a thickness of about 10 μm is formed by vacuum evaporation using a mask.

【0016】次に図4に示す破線部5の内側と外側をマ
スクして、Si単結晶ターゲットを用いて、N2 下の反
応スパッタ法により、図5に示すように熱電対の接合部
を残してSi3 4 薄膜6を形成する。
Next, the inside and outside of the dashed line portion 5 shown in FIG. 4 are masked, and the junction of the thermocouple is formed as shown in FIG. 5 by reactive sputtering under N 2 using a Si single crystal target. The Si 3 N 4 thin film 6 is formed while leaving.

【0017】その後、ドナーとしての不純物をドープし
た遷移金属合金を図6に示すようにn型用薄膜パターン
7として形成する。ここでは、Fe 99mol%、C
o1mol%からなる鉄合金を作成し、マスクを用いて
真空蒸着により膜厚約10μmのn型用薄膜パターンを
製膜する。
Thereafter, a transition metal alloy doped with an impurity as a donor is formed as an n-type thin film pattern 7 as shown in FIG. Here, 99 mol% of Fe, C
An iron alloy of o1 mol% is prepared, and a thin film pattern for n-type having a thickness of about 10 μm is formed by vacuum evaporation using a mask.

【0018】そして図7に示すように、CVD法により
全面にSi薄膜8を形成する。
Then, as shown in FIG. 7, a Si thin film 8 is formed on the entire surface by the CVD method.

【0019】その後、Arなどの不活性気流中または真
空中で700℃以上、約4時間以上の熱処理を行う。こ
のことにより、p型用薄膜パターンとn型用薄膜パター
ンである鉄合金がSi薄膜3およびSi薄膜8と反応し
てそれぞれ珪化鉄半導体となり、図8に示すように、p
型の珪化鉄半導体薄膜パターン9とn型の珪化鉄半導体
薄膜パターン10による熱電対が形成される。
Thereafter, heat treatment is performed in an inert gas stream such as Ar or in a vacuum at 700 ° C. or higher for about 4 hours or longer. As a result, the iron alloys serving as the p-type thin film pattern and the n-type thin film pattern react with the Si thin film 3 and the Si thin film 8 to become iron silicide semiconductors, respectively, as shown in FIG.
A thermocouple is formed by the n-type iron silicide semiconductor thin film pattern 9 and the n-type iron silicide semiconductor thin film pattern 10.

【0020】以上の処理によって薄膜熱電素子の主要部
が構成される。続いて図9に示すように、基板中央部の
Si膜8の上部に白金黒などの集熱黒体12を形成し、
またリード取付部にNiなどからなる電極11を蒸着
し、さらに電極11以外の基板表面全面にSiO2 から
なるコーティング膜13をCVD法などにより形成す
る。最後に同図に示すように、Si基板の裏面側中央部
をエッチングなどにより除去してダイアフラム構造とす
る。
The above processing constitutes the main part of the thin film thermoelectric element. Subsequently, as shown in FIG. 9, a heat-collecting black body 12 such as platinum black is formed on the Si film 8 at the center of the substrate.
Further, an electrode 11 made of Ni or the like is deposited on the lead mounting portion, and a coating film 13 made of SiO 2 is formed on the entire surface of the substrate other than the electrode 11 by a CVD method or the like. Finally, as shown in the figure, the central portion on the back side of the Si substrate is removed by etching or the like to obtain a diaphragm structure.

【0021】以上のようにしてSi基板の中央部を受光
/受熱部とした薄膜熱電素子が得られる。
As described above, a thin film thermoelectric element having the central portion of the Si substrate as the light receiving / heating portion is obtained.

【0022】図9に示した構造で、5mm角基板で20
0対の珪化鉄熱電対を有する薄膜熱電素子を作成し、そ
の感度を計測したところ、約220V/Wであった。
In the structure shown in FIG.
When a thin film thermoelectric element having zero pairs of iron silicide thermocouples was prepared and its sensitivity was measured, it was about 220 V / W.

【0023】図1〜図9に示した実施例では、p型用半
導体薄膜パターンの形成層とn型用半導体薄膜パターン
の形成層を絶縁層を介してそれぞれ1層づつ形成した
が、これを多層化することによって、単位面積当たりの
熱電対の対数をさらに増すことができる。具体的には、
図7に示した状態から更に図3〜図7に示した工程を繰
り返すことにより、p型用薄膜パターン、絶縁層、n型
用薄膜パターンおよびSi薄膜の形成工程を繰り返し行
い、熱電堆単位層を多層化した後、熱処理によって各p
型用薄膜パターンとn型用薄膜パターンをそれぞれ珪化
物化する。これにより熱電堆層が多層化された薄膜熱電
素子が得られる。
In the embodiment shown in FIGS. 1 to 9, the formation layer of the p-type semiconductor thin film pattern and the formation layer of the n-type semiconductor thin film pattern are formed one by one via an insulating layer. The number of thermocouples per unit area can be further increased by forming a multilayer structure. In particular,
By repeating the steps shown in FIGS. 3 to 7 further from the state shown in FIG. 7, the steps of forming the p-type thin film pattern, the insulating layer, the n-type thin film pattern, and the Si thin film are repeated. And then heat treating each p
The thin film pattern for the mold and the thin film pattern for the n-type are each silicidized. As a result, a thin-film thermoelectric element having a plurality of thermoelectric layers can be obtained.

【0024】[0024]

【発明の効果】この発明によれば、遷移金属珪化物の半
導体薄膜パターンからなる薄膜熱電素子が得られるた
め、高温下での使用が可能となる。また、単位面積当た
りの熱電対の対数を多くすることができ、赤外線センサ
ーとしても充分な感度を得ることができる。
According to the present invention, a thin-film thermoelectric element comprising a semiconductor thin-film pattern of a transition metal silicide can be obtained, so that it can be used at a high temperature. Further, the number of thermocouples per unit area can be increased, and sufficient sensitivity can be obtained as an infrared sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 1A and 1B are diagrams showing a state in the process of manufacturing a thin film thermoelectric element, wherein FIG. 1A is a top view and FIG. 1B is a cross-sectional view.

【図2】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 2A and 2B are diagrams showing a state in the process of manufacturing the thin-film thermoelectric element, wherein FIG. 2A is a top view and FIG.

【図3】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 3A and 3B are views showing a state in the process of manufacturing the thin film thermoelectric element, wherein FIG. 3A is a top view and FIG. 3B is a cross-sectional view.

【図4】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 4A and 4B are views showing a state in the course of manufacturing the thin-film thermoelectric element, wherein FIG. 4A is a top view and FIG.

【図5】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 5A and 5B are views showing a state in the process of manufacturing the thin film thermoelectric element, wherein FIG. 5A is a top view and FIG.

【図6】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 6A and 6B are views showing a state of the thin film thermoelectric element in the process of being manufactured, wherein FIG. 6A is a top view and FIG.

【図7】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 7A and 7B are views showing a state in the process of manufacturing the thin film thermoelectric element, wherein FIG. 7A is a top view and FIG.

【図8】薄膜熱電素子の製造途中の状態を示す図であ
り、(A)は上面図、(B)は断面図である。
FIGS. 8A and 8B are diagrams showing a state of the thin film thermoelectric element in the process of being manufactured, wherein FIG. 8A is a top view and FIG.

【図9】完成した薄膜熱電素子を示す図であり、(A)
は上面図、(B)は断面図である。
FIG. 9 is a view showing a completed thin-film thermoelectric element, and FIG.
Is a top view, and (B) is a sectional view.

【符号の説明】[Explanation of symbols]

1 Si基板 2 SiO2 膜 3 Si膜 4 遷移金属合金(鉄合金)によるp型用薄膜パターン 5 マスク領域 6 絶縁膜(Si3 4 薄膜) 7 遷移金属合金(鉄合金)によるn型用薄膜パターン 8 Si薄膜 9 p型遷移金属珪化物(珪化鉄)半導体薄膜パターン 10 n型遷移金属珪化物(珪化鉄)半導体薄膜パター
ン 11 電極 12 集熱黒体 13 SiO2 コーティング膜
Reference Signs List 1 Si substrate 2 SiO 2 film 3 Si film 4 Thin film pattern for p-type using transition metal alloy (iron alloy) 5 Mask region 6 Insulating film (Si 3 N 4 thin film) 7 Thin film for n-type using transition metal alloy (iron alloy) Pattern 8 Si thin film 9 p-type transition metal silicide (iron silicide) semiconductor thin film pattern 10 n-type transition metal silicide (iron silicide) semiconductor thin film pattern 11 electrode 12 heat-collecting black body 13 SiO 2 coating film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−258185(JP,A) 特開 平3−129782(JP,A) 特開 昭58−6186(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 35/32 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-258185 (JP, A) JP-A-3-129782 (JP, A) JP-A-58-6186 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 35/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Siを主体とする基板または薄膜の表面に
合金によるp型用薄膜パターンとn型用薄膜パターン
を、絶縁膜を介して熱電堆状に形成し、その表面にSi
を主体とする薄膜を形成し、熱処理により前記p型用薄
膜パターンとn型用薄膜パターンをそれぞれ遷移金属珪
化物化する薄膜熱電素子の製造方法。
1. The method according to claim 1, wherein the substrate or the thin film is composed mainly of Si.
A p-type thin film pattern and an n-type thin film pattern made of an iron alloy are formed in the form of a thermopile through an insulating film, and a Si
A method for producing a thin-film thermoelectric element, wherein a thin film mainly composed of a p-type thin film pattern and a thin-film pattern for n-type are each converted into a transition metal silicide by heat treatment.
【請求項2】合金によるp型用薄膜パターンとn型用
薄膜パターンを熱電堆状に形成した熱電堆単位層をSi
を主体とする薄膜を介して多層化し、熱処理により前記
p型用薄膜パターンとn型用薄膜パターンをそれぞれ遷
移金属珪化物化する薄膜熱電素子の製造方法。
2. A thermoelectric bank unit layer in which a p-type thin film pattern and an n-type thin film pattern made of an iron alloy are formed in the shape of a thermoelectric bank.
A method for producing a thin-film thermoelectric element in which a p-type thin film pattern and an n-type thin film pattern are each converted into a transition metal silicide by heat treatment.
JP03156795A 1991-06-27 1991-06-27 Manufacturing method of thin film thermoelectric element Expired - Fee Related JP3134360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03156795A JP3134360B2 (en) 1991-06-27 1991-06-27 Manufacturing method of thin film thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03156795A JP3134360B2 (en) 1991-06-27 1991-06-27 Manufacturing method of thin film thermoelectric element

Publications (2)

Publication Number Publication Date
JPH057021A JPH057021A (en) 1993-01-14
JP3134360B2 true JP3134360B2 (en) 2001-02-13

Family

ID=15635479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03156795A Expired - Fee Related JP3134360B2 (en) 1991-06-27 1991-06-27 Manufacturing method of thin film thermoelectric element

Country Status (1)

Country Link
JP (1) JP3134360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2130668C1 (en) * 1994-09-30 1999-05-20 Акционерное общество закрытого типа "VL" Field-effect metal-insulator-semiconductor transistor

Also Published As

Publication number Publication date
JPH057021A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US5059543A (en) Method of manufacturing thermopile infrared detector
KR100239494B1 (en) Thermopile sensor and method for fabricating the same
US5100479A (en) Thermopile infrared detector with semiconductor supporting rim
EP0526551B1 (en) Semiconductor film bolometer thermal infrared detector
US6750452B1 (en) Thermal type-infrared detection device and method for manufacturing the same, and array of thermal type-infrared detection device
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JP2001330511A (en) Infrared sensor
JPH03196583A (en) Vertical type silicon thermopile and manufacture thereof
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JP3134359B2 (en) Thin film thermoelectric element
JPH02214175A (en) Thin-film thermoelectric element
US20170317260A1 (en) Integrated thermoelectric structure, method for manufacturing an integrated thermoelectric structure, method for operating same as a detector, thermoelectric generator and thermoelectric peltier element
JP2003344155A (en) Infrared sensor
JPH05126643A (en) Infrared sensor
JP3836229B2 (en) Thermoelectric infrared detector
EP1462782B1 (en) Thermal type-infrared detection device with increased fill-factor, method for manufacturing the same, and array of thermal type-infrared detection devices
JPH04151882A (en) Thin film thermoelectric device
JP3235361B2 (en) Infrared detector
JP2982275B2 (en) Manufacturing method of thin film thermoelectric element
JPH03270084A (en) Manufacture of thermoelectric element
KR970006040B1 (en) Sensor manufacturing method
JPH0311672A (en) Thermoelectric element and its manufacture
JP3435997B2 (en) Infrared detector
JPH02206733A (en) Infrared ray sensor
JPH04150076A (en) Manufacture of thin film termoelectric device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees