JPH04150076A - Manufacture of thin film termoelectric device - Google Patents

Manufacture of thin film termoelectric device

Info

Publication number
JPH04150076A
JPH04150076A JP2274714A JP27471490A JPH04150076A JP H04150076 A JPH04150076 A JP H04150076A JP 2274714 A JP2274714 A JP 2274714A JP 27471490 A JP27471490 A JP 27471490A JP H04150076 A JPH04150076 A JP H04150076A
Authority
JP
Japan
Prior art keywords
film
thin film
thermocouple
oxide semiconductor
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274714A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2274714A priority Critical patent/JPH04150076A/en
Publication of JPH04150076A publication Critical patent/JPH04150076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a thermocouple device which is small-sized and excellent in high sensibility and heat resistant properties by forming an oxidation preventive film on an electrode pattern which connects a hot section with a cold section out of a thermocouple pattern and then forming into an oxide semiconductor an exposed section of metal thin film through a heat treatment. CONSTITUTION:An Ni metal-made film 2 is formed on an SiO2 substrate 1 based on an RF sputtering process, using a mask. Then, An SiO2 film, which serves as an oxidation preventative film, is formed on a portion equivalent to an electrode section based on the RF sputtering process. When the substrate is heat-treated at a temperature ranging from about 1,000 to 1,200 deg.C in the atmosphere, the SiO2-coated portion is not oxidized but it functions as an electrode section while the Ni film whose portion is not SiO2-coated is oxidized and turned into a p-type oxide semiconductor NiO4, thereby forming a thermocouple with an electrode pattern 3.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は、赤外線セン゛す、温度センサ、熱センサな
どに用いられる薄膜熱電素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Al Industrial Field of Application) This invention relates to a method for manufacturing thin film thermoelectric elements used in infrared sensors, temperature sensors, thermal sensors, etc.

(bl従来の技術 従来より、赤外線センサ、温度センサ、熱センサなどと
して用いられる、熱電対を多数直列接続したいわゆるサ
ーモバイル型熱電素子が開発されている。
(bl) Prior Art Conventionally, so-called thermoelectric elements of the so-called thermomobile type, in which a large number of thermocouples are connected in series, have been developed to be used as infrared sensors, temperature sensors, thermal sensors, etc.

一般に、サーモバイル型熱電素子は、熱電材料が多数直
列接続され、温度差から生じる熱起電力が加算される構
造を有し、大きな熱起電力を得ることができる。これに
より高効率の熱電力変換素子や微少温度差を検知する高
感度な赤外線、温度、熱センサとして利用することがで
きる。特に、センサ用途には小型化、高感度化、応答速
度の高速化のために、主に薄膜型の熱電素子が用いられ
る。
In general, a thermoelectric element of a thermomobile type has a structure in which a large number of thermoelectric materials are connected in series, and thermoelectromotive force generated from a temperature difference is added, and a large thermoelectromotive force can be obtained. As a result, it can be used as a highly efficient thermoelectric conversion element or a highly sensitive infrared, temperature, or thermal sensor that detects minute temperature differences. In particular, thin-film thermoelectric elements are mainly used for sensor applications in order to achieve smaller size, higher sensitivity, and faster response speed.

従来の薄膜熱電素子の熱電材料にはコンスタンクン−ニ
クロム(特公昭57−40154号)、As−Te(特
開昭53−132282号)、Si、Ge (特開昭5
77172号)、B1−5b−Te(特開昭61−22
676号)なとの金属合金、あるいは化合物半導体材料
が用いられてきた。
Thermoelectric materials for conventional thin film thermoelectric elements include Constance-Nichrome (Japanese Patent Publication No. 57-40154), As-Te (Japanese Patent Publication No. 53-132282), Si, and Ge (Japanese Patent Publication No. 53-132282).
No. 77172), B1-5b-Te (Japanese Unexamined Patent Publication No. 61-22
No. 676) and other metal alloys or compound semiconductor materials have been used.

(C)発明が解決しようとする課題 これら従来の熱電材料は比抵抗が小さく熱電変換効率が
高いという長所があるが、ゼーベツク係数が小さく、ま
た酸化し易いため、高温下で使用できないという欠点を
有している。
(C) Problems to be Solved by the Invention These conventional thermoelectric materials have the advantage of low resistivity and high thermoelectric conversion efficiency, but have the disadvantage that they cannot be used at high temperatures because they have a small Seebeck coefficient and are easily oxidized. have.

本発明はこのような従来の問題点を解消して、薄膜でか
つ高い熱起電力が得られ、高温度域でも使用可能な薄膜
熱電素子の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional problems and provide a method for manufacturing a thin film thermoelectric element that is thin, has a high thermoelectromotive force, and can be used even in a high temperature range.

(d1課題を解決するための手段 前記目的を達成するためには高温度下で使用でき、かっ
ゼーヘ・7り係数の高い材料が必要である酸化物半導体
セラミ・ツクは300〜1000μV/にという高いゼ
ーベフク係数を有し、耐熱性が高いにも係わらず、合金
や化合物半導体に比べ比抵抗が2桁以上大きく、熱−電
力変換効率を評価する性能指数が2桁以上小さいことが
ら熱電素子としての応用があまりなされていなかった。
(Means for solving the d1 problem) In order to achieve the above objective, it is necessary to use a material that can be used at high temperatures and has a high Kazehehe coefficient. Although it has a high Seebehuku coefficient and high heat resistance, its resistivity is more than two orders of magnitude higher than that of alloys and compound semiconductors, and its figure of merit, which evaluates heat-to-power conversion efficiency, is more than two orders of magnitude lower, making it suitable for use as a thermoelectric element. has not been applied much.

しかし赤外線、温度、熱流を検出するセンサの用途とし
ては、熱−電力変換効率を上げることよりもいかに大き
なゼー・・ツク係数を有するかが重要である。
However, for applications of sensors that detect infrared rays, temperature, and heat flow, it is more important to have a large See-Tsk coefficient than to increase heat-to-power conversion efficiency.

発明者らは、従来の合金あるいは化合物半導体よりも大
きなゼーベツク係数を有し、かつ高温下でも安定な酸化
物半導体材料を薄膜化することで、前記目的が達せられ
ることを見出した。
The inventors have discovered that the above object can be achieved by forming a thin film of an oxide semiconductor material that has a larger Seebeck coefficient than conventional alloys or compound semiconductors and is stable even at high temperatures.

この発明の請求項(1)に係る薄膜熱電素子の製造方法
は、絶縁基板上に、金属薄膜による熱電対パターンを形
成し、上記熱電対パターンのうち温冷接部間を接続する
電極パターンの上に酸化防止膜を形成した後、熱処理に
よって上記金属薄膜の露出部を酸化物半導体化すること
を特徴とする。
A method for manufacturing a thin film thermoelectric element according to claim (1) of the present invention includes forming a thermocouple pattern of a metal thin film on an insulating substrate, and forming an electrode pattern connecting hot and cold junctions of the thermocouple pattern. The method is characterized in that after an oxidation-preventing film is formed thereon, the exposed portion of the metal thin film is converted into an oxide semiconductor by heat treatment.

また、この発明の請求項(2)に係る薄膜熱電素子の製
造方法は、絶縁基板上に不純物層と金属薄膜層の積層体
を含む熱電対パターンを形成し、上記熱電対パターンの
うち温冷接部間を接続する電極パターン上に酸化防止膜
を形成した後、熱処理によって上記酸化防止膜非形成部
を不純物拡散および酸化物半導体化することを特徴とす
る。
Further, the method for manufacturing a thin film thermoelectric element according to claim (2) of the present invention includes forming a thermocouple pattern including a laminate of an impurity layer and a metal thin film layer on an insulating substrate, and The present invention is characterized in that after an oxidation prevention film is formed on the electrode pattern connecting the contact portions, the oxidation prevention film-free portion is subjected to a heat treatment to diffuse impurities and convert it into an oxide semiconductor.

(e)作用 請求項(1)に係る薄膜熱電素子の製造方法では、絶縁
基板上に金属薄膜層による熱電対パターンが形成され、
この熱電対パターンのうち温冷接部間を接続する電極パ
ターン上に酸化防止膜が形成され、その後熱処理を行う
ことによって、上記金属薄膜の露出部が酸化して酸化物
半導体化する。従って酸化物半導体膜によるパターンと
その温冷接部間を接続する電極パターンとによって薄膜
熱電素子が得られる。
(e) Effect In the method for manufacturing a thin film thermoelectric element according to claim (1), a thermocouple pattern is formed by a metal thin film layer on an insulating substrate,
An oxidation prevention film is formed on the electrode pattern connecting the hot and cold junctions of the thermocouple pattern, and then heat treatment is performed to oxidize the exposed portion of the metal thin film and convert it into an oxide semiconductor. Therefore, a thin film thermoelectric element can be obtained by a pattern made of an oxide semiconductor film and an electrode pattern connecting the hot and cold junctions thereof.

また、この発明の請求項(2)に係る薄膜熱電素子の製
造方法では、絶縁基板上に不純物層と金属薄膜層の積層
体を含む熱電対パターンが形成され、この熱電対パター
ンのうち温冷接部間を接続する電極パターン上に酸化防
止膜が形成され、その後熱処理によって上記金属薄膜層
に不純物層の不純物が拡散するとともに酸化して酸化物
半導体化する。これにより酸化物半導体膜によるパター
ンとその温冷接部間を接続する電極パターンとによって
薄膜熱電素子が得られる。この請求項(2)に係る薄膜
熱電素子の製造方法によれば、酸化処理だけでは不安定
あるいは半導体化が不十分である金属材料であっても容
易に半導体化させることができる。
Further, in the method for manufacturing a thin film thermoelectric element according to claim (2) of the present invention, a thermocouple pattern including a laminate of an impurity layer and a metal thin film layer is formed on an insulating substrate, and among this thermocouple pattern, hot and cold An oxidation prevention film is formed on the electrode pattern connecting the contact parts, and then, by heat treatment, impurities in the impurity layer are diffused into the metal thin film layer and oxidized to become an oxide semiconductor. As a result, a thin film thermoelectric element is obtained by the pattern made of the oxide semiconductor film and the electrode pattern connecting the hot and cold junctions thereof. According to the method for manufacturing a thin film thermoelectric element according to claim (2), even metal materials that are unstable or cannot be sufficiently converted into a semiconductor by oxidation treatment alone can be easily converted into a semiconductor.

(fl実施例 この発明の第1の実施例を第1図〜第4図に示す図に基
づいて製造工程順に説明する。
(fl Example) A first example of the present invention will be explained in the order of manufacturing steps based on the diagrams shown in FIGS. 1 to 4.

先ず、第1図のようにSiO□基板1上にマスクを用い
てNiメタル2をRFスパッタ法により製膜する。この
ときのスパンタリング条件は次の通りである。
First, as shown in FIG. 1, a Ni metal film 2 is formed on a SiO□ substrate 1 by RF sputtering using a mask. The sputtering conditions at this time are as follows.

基板温度:150℃ 高周波出力=500W 〜1.5KW レート:1〜10.ljm/hr 次に電極部に相当する部分6に酸化防止膜としてSiO
2をRFスパッタ法により製膜する。このときのスパッ
タリング条件は次の通りである。
Substrate temperature: 150℃ High frequency output = 500W ~ 1.5KW Rate: 1 ~ 10. ljm/hr Next, SiO is applied as an anti-oxidation film to the part 6 corresponding to the electrode part.
2 is formed into a film by RF sputtering. The sputtering conditions at this time are as follows.

基板温度=150℃ 高周波比カニ500W〜1.5KW し − ト :  0.  5 〜2+Um  /hr
続いて、基板を大気中1000〜1200℃て熱処理を
行う。このことにより、第3図に示すように5IOzを
コートしている部分が酸化されず、そのまま電極部とし
て機能し、5iOzをコートしていない部分のNi膜は
酸化し、p型酸化物半導体Ni04となる。これにより
電極パターン3とともに熱電対が形成される。
Substrate temperature = 150℃ High frequency ratio: 500W to 1.5KW: 0. 5 ~2+Um/hr
Subsequently, the substrate is heat-treated at 1000 to 1200° C. in the atmosphere. As a result, as shown in FIG. 3, the part coated with 5IOz is not oxidized and functions as an electrode part, and the part of the Ni film not coated with 5iOz is oxidized, forming the p-type oxide semiconductor Ni04. becomes. As a result, a thermocouple is formed together with the electrode pattern 3.

その後、第4図に示すようにリード取付部の5iQ2を
研磨により除去してリード取付用端子5を形成する。
Thereafter, as shown in FIG. 4, the lead attachment portion 5iQ2 is removed by polishing to form the lead attachment terminal 5.

以上に示した実施例では図面を明瞭化するため対数を少
なく描いているが、多数の熱電対を直列接続することに
よって熱起電力を増大させることができる。第4図に示
した構造において100ラインのNi膜を形成した熱電
素子の両端に5℃の温度差を与え、ゼー・\ツク係数を
測定したところ70 m V / Kが得られた。
In the embodiments shown above, the number of logarithms is reduced to make the drawings clearer, but the thermoelectromotive force can be increased by connecting a large number of thermocouples in series. In the structure shown in FIG. 4, a temperature difference of 5° C. was applied between both ends of the thermoelectric element in which 100 lines of Ni film were formed, and the See-\tsk coefficient was measured, and a value of 70 mV/K was obtained.

次二二、第2の実施例を第3図〜第9区に示す図に基づ
いて製造工程順に説明する。
Next, the second embodiment will be explained in the order of manufacturing steps based on the diagrams shown in FIGS. 3 to 9.

先ず、不純物ペーストとしてNbzo、1.33gにフ
ェス50gを加えペースト状にしたものを用意する。
First, a paste made by adding 50 g of Fes to 1.33 g of Nbzo was prepared as an impurity paste.

第5図においてlはA l z03基板であり、その上
に上記NbzOsペースト7を印刷する。
In FIG. 5, l is an Al z03 substrate, on which the NbzOs paste 7 is printed.

次に、第6図のようにマスクを用いてTiメタル8をR
Fスバンタ法て製膜する。このときのスパッタリング条
件は次の通りである。
Next, as shown in FIG. 6, using a mask, the Ti metal 8 is
A film is formed using the F Svantha method. The sputtering conditions at this time are as follows.

基板温度:150℃ 高周波比カニ 500W”1. 5 KWシレート :
  1 〜1 0  μ m/h  r次に電極部に相
当する部分6に酸化防止膜としてSiO□をRFスパッ
タ法により製膜する。このときのスパッタリング条件は
次の通りである。
Substrate temperature: 150℃ High frequency ratio crab 500W”1.5 KW sylate:
1 to 10 μm/hr Next, a film of SiO□ is formed as an oxidation prevention film on the portion 6 corresponding to the electrode portion by RF sputtering. The sputtering conditions at this time are as follows.

基板温度;150℃ 高周波比カニ500W〜1,5KW レー ト :  0.  5 〜2  μm  /h 
 r続いて基板を大気中800〜1000°Cて熱処理
を行う。このことにより第8図に示すようにSiO2を
コートしている部分が酸化されず電極3としてそのまま
残り、SiO□をコートしていない部分のTl膜につい
て酸化及び不純物拡散がおこり、n型酸化物半導体であ
るTie2膜9となる。これにより電極3とともに熱電
対が形成される。
Substrate temperature: 150℃ High frequency ratio: 500W to 1.5KW Rate: 0. 5 to 2 μm/h
rSubsequently, the substrate is heat-treated at 800 to 1000°C in the atmosphere. As a result, as shown in FIG. 8, the part coated with SiO2 is not oxidized and remains as the electrode 3, and the part of the Tl film not coated with SiO2 undergoes oxidation and impurity diffusion, resulting in an n-type oxide. This becomes a Tie2 film 9 which is a semiconductor. This forms a thermocouple together with the electrode 3.

その後第9図に示すようにリード取付部の3jO□膜を
研磨により除去してリード取付用端子10を形成する。
Thereafter, as shown in FIG. 9, the 3jO□ film at the lead attachment portion is removed by polishing to form a lead attachment terminal 10.

第9図に示した構造において100ラインのTi0z(
不純物としてNbを含む)を有する熱電素子の両端に5
℃の温度差を与えゼーベツク係数を測定したところ80
mV/Kが得られた。
In the structure shown in Fig. 9, 100 lines of Ti0z (
5 at both ends of the thermoelectric element (containing Nb as an impurity)
When the Seebeck coefficient was measured by applying a temperature difference of ℃, it was 80.
mV/K was obtained.

(g)発明の効果 この発明によれば、酸化物半導体薄膜を用いることによ
り、小型で高怒度且つ耐熱性に優れた熱電素子を得るこ
とができる。また、例えばセラミックターリーソトを用
いたスパッタリングによる薄膜形成法に比較して堆積レ
ートを著しく高くすることができ製造コストか低減する
(g) Effects of the Invention According to the present invention, by using an oxide semiconductor thin film, it is possible to obtain a thermoelectric element that is small, has a high degree of anger, and has excellent heat resistance. In addition, the deposition rate can be significantly increased compared to, for example, a thin film forming method by sputtering using a ceramic tertiary material, thereby reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明の第1の実施例に係る薄膜熱
電素子の製造方法を表す各工程における基板表面の状態
を示す図である。また第5図〜第9図は第2の実施例に
係る薄膜熱電素子の製造方法を表す各工程における基板
表面の状態を示す図である。 1−絶縁基板、    2・ 8−金属膜・3−電極パ
ターン、 4.9−酸化物半導体膜、5 10−リード
取付用端子、 6−酸化防止膜(SiO□膜)、 7−不純物膜パターン。 出願人  株式会社 村田製作所
1 to 4 are diagrams showing the state of the substrate surface in each step of the method for manufacturing a thin film thermoelectric element according to the first embodiment of the present invention. Moreover, FIGS. 5 to 9 are diagrams showing the state of the substrate surface in each step of the method for manufacturing a thin film thermoelectric element according to the second embodiment. 1-Insulating substrate, 2. 8-Metal film/3-Electrode pattern, 4.9-Oxide semiconductor film, 5-10-Lead attachment terminal, 6-Anti-oxidation film (SiO□ film), 7-Impurity film pattern . Applicant Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上に、金属薄膜による熱電対パターンを
形成し、上記熱電対パターンのうち温冷接部間を接続す
る電極パターンの上に酸化防止膜を形成した後、熱処理
によって上記金属薄膜の露出部を酸化物半導体化するこ
とを特徴とする薄膜熱電素子の製造方法。
(1) A thermocouple pattern made of a metal thin film is formed on an insulating substrate, and an oxidation prevention film is formed on the electrode pattern connecting the hot and cold junctions of the thermocouple pattern, and then the metal thin film is formed by heat treatment. 1. A method for manufacturing a thin film thermoelectric element, characterized in that an exposed portion of the element is made into an oxide semiconductor.
(2)絶縁基板上に不純物層と金属薄膜層の積層体を含
む熱電対パターンを形成し、上記熱電対パターンのうち
温冷接部間を接続する電極パターン上に酸化防止膜を形
成した後、熱処理によって上記酸化防止膜非形成部を不
純物拡散および酸化物半導体化することを特徴とする薄
膜熱電素子の製造方法。
(2) After forming a thermocouple pattern including a laminate of an impurity layer and a metal thin film layer on an insulating substrate, and forming an oxidation prevention film on an electrode pattern connecting hot and cold junctions of the thermocouple pattern. . A method for manufacturing a thin film thermoelectric element, comprising diffusing impurities and converting the portion where the anti-oxidation film is not formed into an oxide semiconductor by heat treatment.
JP2274714A 1990-10-12 1990-10-12 Manufacture of thin film termoelectric device Pending JPH04150076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274714A JPH04150076A (en) 1990-10-12 1990-10-12 Manufacture of thin film termoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274714A JPH04150076A (en) 1990-10-12 1990-10-12 Manufacture of thin film termoelectric device

Publications (1)

Publication Number Publication Date
JPH04150076A true JPH04150076A (en) 1992-05-22

Family

ID=17545549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274714A Pending JPH04150076A (en) 1990-10-12 1990-10-12 Manufacture of thin film termoelectric device

Country Status (1)

Country Link
JP (1) JPH04150076A (en)

Similar Documents

Publication Publication Date Title
WO2016138840A1 (en) Copper thermal resistance thin film temperature sensor chip, and preparation method therefor
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPS6136616B2 (en)
JPS6258157B2 (en)
JPH02214175A (en) Thin-film thermoelectric element
JP4277506B2 (en) ZnO-based thin film for thermoelectric material of thermoelectric conversion element, thermoelectric conversion element using the ZnO-based thin film, and infrared sensor
JP4304272B2 (en) Thermoelectric conversion material thin film, sensor element and manufacturing method thereof
JPH04150076A (en) Manufacture of thin film termoelectric device
JPH02260581A (en) Thick film thermoelectric device
JPH03270084A (en) Manufacture of thermoelectric element
JPH0311672A (en) Thermoelectric element and its manufacture
JP3134359B2 (en) Thin film thermoelectric element
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JP3030337B2 (en) Cryogenic thermometer
JP2645552B2 (en) Silicon / germanium / gold mixed crystal thin film conductor
JP4962088B2 (en) Thin film thermistor and thin film thermistor manufacturing method
JPS59103375A (en) Manufacture for semiconductor device with shottky junction
JP4962087B2 (en) Thin film thermistor and thin film thermistor manufacturing method
JP2727541B2 (en) Manufacturing method of thin film thermistor
JP2001203399A (en) Infrared ray sensor
JPH0587641A (en) Thermosensitive device
KR970006040B1 (en) Sensor manufacturing method
JPH03287023A (en) Infrared detecting element, infrared detector and production thereof
JPH04313284A (en) Thin-film thermoelectric element
JPH0276270A (en) Thermoelectric element