JPH02260581A - Thick film thermoelectric device - Google Patents

Thick film thermoelectric device

Info

Publication number
JPH02260581A
JPH02260581A JP1081840A JP8184089A JPH02260581A JP H02260581 A JPH02260581 A JP H02260581A JP 1081840 A JP1081840 A JP 1081840A JP 8184089 A JP8184089 A JP 8184089A JP H02260581 A JPH02260581 A JP H02260581A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
fine line
insulating substrate
thick film
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081840A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1081840A priority Critical patent/JPH02260581A/en
Publication of JPH02260581A publication Critical patent/JPH02260581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a thick film thermoelectric device which can be applied to various purposes as a small size high sensitivity sensor by a method wherein n-type oxide semiconductor thick films are formed into fine line shapes on the surface of an insulating substrate and both the thick films are connected to each other to compose thermocouples. CONSTITUTION:Metal oxide such as ZnO, CuO, Cu2O, TiO2 and NiO is ground into fine powder and glass component, varnish and solvent are added to it to compose oxide semiconductor paste. The oxide semiconductor paste is applied to a heat-resistant insulating substrate such as an alumina substrate and a zirconia substrate so as to form a thermopile shape and baked to provide oxide semiconductor thick films on the heat-resistant insulating substrate. Fine line patterns 2' and fine line patterns 3' are composed of the n-type oxide semiconductor thick films and the p-type oxide semiconductor thick films which are formed on the surface of the insulating substrate respectively. Thermocouples are composed by connecting the fine line patterns 2' and the fine line patterns 3' electrically to each other and a thick film thermoelectric device can be obtained. With this constitution, the small-size high-sensitivity thick-film thermoelectric device which generates a high termoelectromotive force and can be applied to an infrared sensor, a thermosensor, a temperature sensor and so forth can be obtained.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、赤外線センサ、温度センサ、熱センサなど
に用いられる小型で高感度な厚膜熱電素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a compact and highly sensitive thick film thermoelectric element used in infrared sensors, temperature sensors, thermal sensors, and the like.

(b)従来の技術 従来より、赤外線センサ、温度センサ、熱センサなどと
して用いられる、熱電対を多数直列接続させたいわゆる
サーモパイル型熱電素子が開発されている。
(b) Prior Art Conventionally, so-called thermopile type thermoelectric elements, in which a large number of thermocouples are connected in series, have been developed, which are used as infrared sensors, temperature sensors, heat sensors, and the like.

一般に、サーモパイル型熱電素子は、熱電材料が多数直
列接続され、温度差から生じる熱起電力が加算される構
造を有し、大きな熱起電力を得ることができる。これに
より高効率の熱電力変換素子や微少温度差を検知する高
感度な赤外線、温度、熱センサとして利用することがで
きる。特に、センサ用途には小型化、高感度化、応答速
度の高速化のために、主に薄膜型の熱電素子が用いられ
る。
In general, a thermopile type thermoelectric element has a structure in which a large number of thermoelectric materials are connected in series, and thermoelectromotive force generated from a temperature difference is added, and a large thermoelectromotive force can be obtained. As a result, it can be used as a highly efficient thermoelectric conversion element or a highly sensitive infrared, temperature, or thermal sensor that detects minute temperature differences. In particular, thin-film thermoelectric elements are mainly used for sensor applications in order to achieve smaller size, higher sensitivity, and faster response speed.

このような従来の薄膜熱電素子の熱電材料にはコンスタ
ンタン−ニクロム(特公昭57−40154号)、As
−Te(特開昭53−132282号)% Si、 G
e (特開昭57−7172号)、B 1−3b−Te
 (特開昭61−22676号)などの金属合金、ある
いは化合物半導体材料が用いられてきた。
Thermoelectric materials for such conventional thin film thermoelectric elements include constantan-nichrome (Japanese Patent Publication No. 57-40154), As
-Te (JP-A-53-132282)% Si, G
e (Unexamined Japanese Patent Publication No. 57-7172), B 1-3b-Te
(Japanese Unexamined Patent Publication No. 61-22676), metal alloys or compound semiconductor materials have been used.

(C)発明が解決しようとする課題 これら従来の熱電材料は比抵抗が小さく熱電変換効率が
高いという長所があるが、ゼーベック係数が小さ(、ま
た酸化し易いため、高温下で使用できないという欠点を
有している。
(C) Problems to be Solved by the Invention These conventional thermoelectric materials have the advantage of having low resistivity and high thermoelectric conversion efficiency, but have the disadvantage that they cannot be used at high temperatures because they have a small Seebeck coefficient (and are easily oxidized). have.

また、これら薄膜は蒸着、スパッタリングなどにより形
成しなければならず、工程が複雑で製造コストが高くな
るという問題もあった。
In addition, these thin films must be formed by vapor deposition, sputtering, etc., resulting in complicated processes and high manufacturing costs.

本発明はこのような従来の問題点を解消して、高い熱起
電力が得られ、高温度域でも使用可能なセンサ用厚膜熱
電素子を提供することを目的とする。
An object of the present invention is to solve such conventional problems and provide a thick film thermoelectric element for a sensor that can obtain a high thermoelectromotive force and can be used even in a high temperature range.

(d)課題を解決するための手段 前記目的を達成するためには高温度下で使用でき、かつ
ゼーベック係数の高い材料が必要である酸化物半導体セ
ラミックは300〜1000μV/にという高いゼーベ
ック係数を有し、耐熱性が高いにも係わらず、合金や化
合物半導体に比べ比抵抗が2桁以上太き(、熱−電力変
換効率を評価する性能指数が2桁以上小さいことがら熱
電素子としての応用があまりなされていなかった。しか
し赤外線、温度、熱流を検出するセンサの用途としては
、熱−電力変換効率を上げることよりもいかに大きなゼ
ーベック係数を有するかが重要である。
(d) Means for solving the problem In order to achieve the above object, it is necessary to use a material that can be used at high temperatures and has a high Seebeck coefficient. Oxide semiconductor ceramics have a high Seebeck coefficient of 300 to 1000 μV/. Despite its high heat resistance, its resistivity is more than two orders of magnitude higher than that of alloys and compound semiconductors (and its figure of merit, which evaluates heat-to-power conversion efficiency, is more than two orders of magnitude smaller, making it suitable for use as thermoelectric elements. However, for sensor applications that detect infrared rays, temperature, and heat flow, it is more important to have a large Seebeck coefficient than to increase heat-power conversion efficiency.

発明者らは、従来の合金あるいは化合物半導体よりも大
きなゼーベック係数を有し、かつ高温下でも安定な酸化
物半導体材料を厚膜化することで、前記目的が達せられ
ることを見出した。
The inventors have discovered that the above object can be achieved by forming a thick film of an oxide semiconductor material that has a larger Seebeck coefficient than conventional alloys or compound semiconductors and is stable even at high temperatures.

酸化物半導体の厚膜は、絶縁性を有しかつ耐熱性のある
基板、例えばアルミナやジルコニア上に、ZnO,Cu
b、Cu、01TiO,、NiOなどの金属酸化物を微
粉砕し、これにガラス成分、フェスそして溶剤を加えた
酸化物半導体ペーストをサーモパイル状に印刷、焼成す
ることによって、形成することができ薄膜よりも安価で
かつ容易に製造できることが明らかとなった。
A thick film of an oxide semiconductor is made by depositing ZnO, Cu, etc. on an insulating and heat-resistant substrate, such as alumina or zirconia.
A thin film can be formed by finely pulverizing metal oxides such as B, Cu, 01TiO, and NiO, adding a glass component, a face, and a solvent to the oxide semiconductor paste, printing it in the form of a thermopile, and firing it. It has become clear that it is cheaper and easier to manufacture.

そこで、この発明は、絶縁基板の表面にn型とp型の酸
化物半導体厚膜をそれぞれ細線状に形成し、両厚膜を電
気的に接続して熱電対を構成することによって厚膜熱電
素子を得るようにした。
Therefore, the present invention forms a thick film thermocouple by forming thin wire-shaped n-type and p-type oxide semiconductor thick films on the surface of an insulating substrate, and electrically connecting both thick films to form a thermocouple. I tried to get elements.

(e)作用 この発明の厚膜熱電素子においては絶縁基板の表面にそ
れぞれ形成されるn型酸化物半導体厚膜からなる細線パ
ターンとp型数化物半導体厚膜からなる細線パターンと
が電気的に接続されることにより熱電対が構成され、こ
れにより厚膜熱電素子が得られる。
(e) Function In the thick film thermoelectric element of the present invention, the thin line pattern made of the n-type oxide semiconductor thick film and the thin line pattern made of the p-type number oxide semiconductor thick film formed on the surface of the insulating substrate are electrically connected to each other. The connection constitutes a thermocouple, thereby obtaining a thick film thermoelectric element.

前記n型酸化物半導体厚膜およびp型数化物半導体厚膜
はいずれも酸化物半導体ペーストの印刷および焼成によ
って形成することができるため、安価でかつ容易に製造
することができる。
Both the n-type oxide semiconductor thick film and the p-type number oxide semiconductor thick film can be formed by printing and baking an oxide semiconductor paste, and therefore can be manufactured easily and at low cost.

(f)実施例 第1図および(A)〜(D)はこの発明の実施例である
厚膜熱電素子の構造およびその製造工程を示している。
(f) Example FIG. 1 and (A) to (D) show the structure and manufacturing process of a thick film thermoelectric element which is an example of the present invention.

先ず、n型半導体セラミック材料としてTi0z  9
9.8moj%、1/2Nb! os  o。
First, TiOz 9 was used as an n-type semiconductor ceramic material.
9.8moj%, 1/2Nb! os o.

2m o 1%からなる原料をポットに入れ純水で湿式
混合粉砕し、蒸発乾燥した後、匣に充填し、大気中10
00℃で2時間仮焼し、続いてHz/Nz =10vo
f%雰囲気下、1350℃で2時間焼成した。
A raw material consisting of 2m o 1% was placed in a pot, mixed and ground wet with pure water, evaporated to dryness, then filled into a box and heated in the air for 10 minutes.
Calcined at 00℃ for 2 hours, followed by Hz/Nz = 10vo
It was baked at 1350° C. for 2 hours in a f% atmosphere.

次にp型半導体セラミック材料としてNi099.9m
offi%、1/2Liz  COs   0. 1m
oj+%からなる原料をポットに入れ、純水で湿式混合
粉砕し、蒸発乾燥した後、匣に充填し、大気中100<
)℃で2時間仮焼し、続いて大気中1350℃で2時間
焼成した。
Next, Ni099.9m is used as a p-type semiconductor ceramic material.
offi%, 1/2Liz COs 0. 1m
The raw materials consisting of oj+% were placed in a pot, wet mixed and ground with pure water, evaporated and dried, then filled into a box and heated to 100% in the air.
)°C for 2 hours, and then fired in the air at 1350°C for 2 hours.

これらの焼結体はそれぞれAIl、03乳鉢(またはラ
イカイキ)で粉砕し、粉末状にする。
These sintered bodies are each ground in an AIl, 03 mortar (or Laikaiki) to form a powder.

次に、各々の粉末100gに対してフェス30g1溶剤
30g、Bz Ox 10g5Si0□5gを加え混合
し、ペースト状にする。
Next, to 100 g of each powder, 30 g of Fes, 30 g of solvent, and 10 g of Bz Ox, 5 g of Si0□5 were added and mixed to form a paste.

以上のようにして製造したn型、p型の半導体セラミッ
クペーストを用いて以下の手順で酸化物半導体厚膜から
なる熱電対を形成する。
Using the n-type and p-type semiconductor ceramic pastes produced as described above, a thermocouple made of an oxide semiconductor thick film is formed in the following procedure.

先ず、第1図(A)および(B)に示すように、Al1
tOz基板1上に細線状のn型半導体セラミックペース
トパターン2を印刷し、乾燥させる、続いて第1図(C
)に示すように、細線状のp型半導体セラミンクペース
トパターン3を印刷し、乾燥させる。
First, as shown in FIGS. 1(A) and (B), Al1
A thin line-shaped n-type semiconductor ceramic paste pattern 2 is printed on a tOz substrate 1 and dried.
), a thin line-shaped p-type semiconductor ceramic paste pattern 3 is printed and dried.

続いて大気中800℃で焼付を行う。これによリ、両ペ
ーストパターンをそれぞれ酸化物半導体厚膜とする。
Subsequently, baking is performed at 800° C. in the atmosphere. In this way, both paste patterns are made into oxide semiconductor thick films.

焼き付は後、第1図(D)に示すように、オーミック電
極の印刷および焼付により、あるいは蒸着により電極4
を形成することによって、n型酸化物半導体厚膜2′と
p型酸化物半導体厚膜3′を直列接続して熱電対を構成
する。また同時に熱電対の両端にも引き出し用電極5を
形成する。
After baking, as shown in FIG. 1(D), the electrode 4 is formed by printing and baking the ohmic electrode or by vapor deposition.
By forming a thermocouple, the n-type oxide semiconductor thick film 2' and the p-type oxide semiconductor thick film 3' are connected in series. At the same time, extraction electrodes 5 are also formed at both ends of the thermocouple.

以上のようにして絶縁基板の表面にn型とp型の酸化物
半導体薄膜からなる熱電対を有する厚膜熱電素子が得ら
れる。
As described above, a thick film thermoelectric element having thermocouples made of n-type and p-type oxide semiconductor thin films on the surface of the insulating substrate is obtained.

第1図(A)〜(D)に示した例では矩形の絶縁基板に
熱電対を構成した例であったが、例えば第2図(A)〜
(D)に示すように、円板状の絶縁基板の表面に対して
n型とp型の酸化物半導体厚膜をそれぞれ放射状に形成
することによって、円板の中央部を検出部とする熱電素
子を形成することができる。
In the example shown in FIGS. 1(A) to (D), the thermocouple was constructed on a rectangular insulating substrate, but for example, in FIG. 2(A) to
As shown in (D), by forming n-type and p-type oxide semiconductor thick films radially on the surface of a disc-shaped insulating substrate, thermoelectric generators with the central part of the disc as the detection part elements can be formed.

なお、第1図および第2図に示した例では、図面を明瞭
化するためにat線パターンの数を少なく措いているが
、多数の熱電対を直列接続することによって熱起電力を
増大させることができる。第1図(D)または第2図(
D)に示した構造で、Ti*、wsNbe、ogogの
n型酸化物半導体セラミックとNi・、q雫L io、
otoのp型酸化物半導体セラミックからなる50対の
熱電対を形成して熱電素子の両端(第1図(D)のタイ
プでは上下、第2図(D)のタイプでは中央と外周)に
5℃の温度差を与え、ゼーベック係数を測定したところ
70 m V / Kが得られた。また、その熱電素子
を300℃で1000時間大気中に放置したところゼー
ベック係数に変化はなかった。
Note that in the examples shown in Figures 1 and 2, the number of AT line patterns is reduced to make the drawings clearer, but the thermoelectromotive force can be increased by connecting many thermocouples in series. be able to. Figure 1 (D) or Figure 2 (
In the structure shown in D), n-type oxide semiconductor ceramics of Ti*, wsNbe, and ogog and Ni・, qdrop L io,
Fifty pairs of thermocouples made of oto p-type oxide semiconductor ceramic are formed, and five When a temperature difference of ℃ was applied and the Seebeck coefficient was measured, 70 mV/K was obtained. Further, when the thermoelectric element was left in the air at 300° C. for 1000 hours, there was no change in the Seebeck coefficient.

(瞬発明の効果 以上のようにこの発明によれば、酸化物半導体厚膜を用
いることにより、薄膜による場合に比較して安価で容易
に製造することができ、高温度域で使用することができ
、かつ高い熱起電力が得られるため、小型で高感度なセ
ンサ用熱電素子として種々の用途に用いることができる
(Effects of Instant Invention As described above, according to this invention, by using a thick oxide semiconductor film, it can be manufactured easily at a lower cost than when using a thin film, and it can be used in a high temperature range. Since it is possible to obtain high thermoelectromotive force, it can be used for various purposes as a small and highly sensitive thermoelectric element for sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(D)はこの発明の実施例である厚膜熱
電素子の製造工程を示す図、第2図(A)〜(D)はこ
の発明の他の実施例に係る厚膜熱電素子の製造工程を示
す図である。 図面の浄ζ 第  1(2I l−絶縁基板、 2−n型半導体セラミックペーストの細線パターン、 2/  、型酸化物半導体厚膜の細線パターン、3−p
型半導体セラミックペーストの細線パターン、 3′−p型酸化物半導体厚膜の細線パターン、4.5−
電極。 (C) (D)
FIGS. 1(A) to (D) are diagrams showing the manufacturing process of a thick film thermoelectric element according to an embodiment of the present invention, and FIGS. It is a figure showing the manufacturing process of a membrane thermoelectric element. Drawing cleaning
Thin line pattern of type semiconductor ceramic paste, 3'-Thin line pattern of p-type oxide semiconductor thick film, 4.5-
electrode. (C) (D)

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板の表面にn型とp型の酸化物半導体厚膜
をそれぞれ細線状に形成し、両厚膜を電気的に接続して
熱電対を構成したことを特徴とする厚膜熱電素子。
(1) A thick film thermoelectric device characterized in that a thermocouple is constructed by forming n-type and p-type oxide semiconductor thick films in thin wire shapes on the surface of an insulating substrate and electrically connecting both thick films. element.
JP1081840A 1989-03-31 1989-03-31 Thick film thermoelectric device Pending JPH02260581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081840A JPH02260581A (en) 1989-03-31 1989-03-31 Thick film thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081840A JPH02260581A (en) 1989-03-31 1989-03-31 Thick film thermoelectric device

Publications (1)

Publication Number Publication Date
JPH02260581A true JPH02260581A (en) 1990-10-23

Family

ID=13757665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081840A Pending JPH02260581A (en) 1989-03-31 1989-03-31 Thick film thermoelectric device

Country Status (1)

Country Link
JP (1) JPH02260581A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181341A (en) * 1992-12-11 1994-06-28 Tokin Corp Thermoelectric conversion module, thermoelectric cooling device and refrigerator
WO1997016856A1 (en) * 1995-10-31 1997-05-09 Technova Inc. Thick-film thermoelectric element
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2000226215A (en) * 1999-02-02 2000-08-15 Agency Of Ind Science & Technol Oxide member for thermoelectric conversion element
WO2005109535A3 (en) * 2004-05-06 2006-03-16 Koninkl Philips Electronics Nv A method of manufacturing a thermoelectric device
CN102944321A (en) * 2012-12-07 2013-02-27 重庆材料研究院 Preparation method of high-precision thick-film type thermocouple group for measuring micro-distance temperature difference
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
JP2016092015A (en) * 2014-10-29 2016-05-23 リンテック株式会社 Heat radiation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348872A (en) * 1986-08-19 1988-03-01 Dainippon Printing Co Ltd Planar electronic cooling body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348872A (en) * 1986-08-19 1988-03-01 Dainippon Printing Co Ltd Planar electronic cooling body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181341A (en) * 1992-12-11 1994-06-28 Tokin Corp Thermoelectric conversion module, thermoelectric cooling device and refrigerator
WO1997016856A1 (en) * 1995-10-31 1997-05-09 Technova Inc. Thick-film thermoelectric element
US5864087A (en) * 1995-10-31 1999-01-26 Technova Inc. Thermoelectric device
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2000226215A (en) * 1999-02-02 2000-08-15 Agency Of Ind Science & Technol Oxide member for thermoelectric conversion element
WO2005109535A3 (en) * 2004-05-06 2006-03-16 Koninkl Philips Electronics Nv A method of manufacturing a thermoelectric device
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
CN102944321A (en) * 2012-12-07 2013-02-27 重庆材料研究院 Preparation method of high-precision thick-film type thermocouple group for measuring micro-distance temperature difference
JP2016092015A (en) * 2014-10-29 2016-05-23 リンテック株式会社 Heat radiation device

Similar Documents

Publication Publication Date Title
Aleksić et al. Recent advances in NTC thick film thermistor properties and applications
JPH02260581A (en) Thick film thermoelectric device
JPH0510901A (en) Catalyst burning type gas sensor
Sundeen et al. Thermal sensor properties of cermet resistor films on silicon substrates
GB2168530A (en) Mass airflow sensor with backflow detection
JP4277506B2 (en) ZnO-based thin film for thermoelectric material of thermoelectric conversion element, thermoelectric conversion element using the ZnO-based thin film, and infrared sensor
US6836677B2 (en) Bolometer and method for producing bolometer
JPH03196583A (en) Vertical type silicon thermopile and manufacture thereof
JPH02214175A (en) Thin-film thermoelectric element
JPH03270084A (en) Manufacture of thermoelectric element
US20100327166A1 (en) Infrared sensor
JPH0311672A (en) Thermoelectric element and its manufacture
JPH023311B2 (en)
JPH0276270A (en) Thermoelectric element
Abdel-Motaleb et al. Fabrication and characterization of PLD-grown bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices
KR100395246B1 (en) Resistance thermometer device for micro thermal sensors and its fabrication method
JPH057021A (en) Manufacture of thin film thermoelectric element
JP2727541B2 (en) Manufacturing method of thin film thermistor
JPH0618465A (en) Complex sensor
JPS5826641B2 (en) Temperature/humidity detection element
JP2002250655A (en) Infrared detection element and its manufacturing method
JPH04332857A (en) Enzyme sensor
JP3134359B2 (en) Thin film thermoelectric element
JPS63110778A (en) Manufacture of thermoelectric device
JPH04313284A (en) Thin-film thermoelectric element