JPH0276270A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JPH0276270A
JPH0276270A JP63227846A JP22784688A JPH0276270A JP H0276270 A JPH0276270 A JP H0276270A JP 63227846 A JP63227846 A JP 63227846A JP 22784688 A JP22784688 A JP 22784688A JP H0276270 A JPH0276270 A JP H0276270A
Authority
JP
Japan
Prior art keywords
semiconductors
thermoelectric element
thermoelectric
type
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63227846A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Yukio Yoshino
幸夫 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63227846A priority Critical patent/JPH0276270A/en
Publication of JPH0276270A publication Critical patent/JPH0276270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a thermoelectric element which can be used at high temperature which is thin and has a large Seebeck coefficient by using an oxide semiconductor as a thermoelectric material. CONSTITUTION:A thermocouple pattern mask 2 is placed on an Al2O3 substrate 1 and then three thin-film P-type Cu2O semiconductors 3-5 are formed by the reactive sputtering method between a metal copper target and an oxygen within Ar-O2 environment. Then, the mask 2 of thermocouple pattern is modified and then thin-film three n-type CuO semiconductors 6-8 are formed by the reactive sputtering method between the metal copper target and the oxygen within Ar-O2 environment. These CuO semiconductors 6-8 are connected to the Cu2O semiconductors 3-5 conductively to allow three thermocouples 9-11 to be formed. It causes Seebeck coefficient to become larger, and the thermoelectric element to be used even at high temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外線センサ、温度センサ、熱センサ等に用
いられる熱電素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermoelectric element used in infrared sensors, temperature sensors, thermal sensors, and the like.

(従来の技術) 従来、この種の熱電素子には、薄膜化された熱電材料か
らなる熱電対が多数直列接続されたサーモパイル型のも
のがある。このサーモパイル型の熱電素子は、熱電対を
多数直列接続しているので、温度差から生じる熱起電力
を加算でき、大きな熱起電力を得ることができる。そし
て、この熱起電力を利用して微少温度差を検知できる赤
外線センサ、温度センサ、熱センサとして利用されてい
る。
(Prior Art) Conventionally, this type of thermoelectric element includes a thermopile type in which a large number of thermocouples made of thin film thermoelectric material are connected in series. Since this thermopile-type thermoelectric element has a large number of thermocouples connected in series, thermoelectromotive forces generated from temperature differences can be added together, and a large thermoelectromotive force can be obtained. This thermoelectromotive force is used as an infrared sensor, a temperature sensor, and a heat sensor that can detect minute temperature differences.

また、熱電材料として、コンスタンタン−ニクロムなど
の金属合金あるいはヒ素−テルル、ビスマス−アンチモ
ン−テルル、などの化合物半導体が用いられている。
Further, as thermoelectric materials, metal alloys such as constantan-nichrome or compound semiconductors such as arsenic-tellurium and bismuth-antimony-tellurium are used.

(従来技術の問題点) ところで、熱電素子の熱−電力変換効率を評価する性能
指数をZとすれば、次のような関係式で表すことができ
る。
(Problems with Prior Art) By the way, if the figure of merit for evaluating the heat-power conversion efficiency of a thermoelectric element is Z, it can be expressed by the following relational expression.

Z = α2/にρ ここで、αはゼーベック係数、Kは熱伝導率、ρは比抵
抗である。
Z = α2/ρ where α is the Seebeck coefficient, K is the thermal conductivity, and ρ is the specific resistance.

従来の熱電素子に用いる金属合金あるいは化合物半導体
のような熱電材料は、比抵抗が小さいので、上記関係式
より、熱−電力変換効率を高くすることができ、ベルチ
ェ効果を利用した電子冷却素子あるいは電子加熱素子な
どに適している。しかしながら、赤外線センサ、温度セ
ンサ、熱センサ等に用いる場合には、熱−電力変換効率
よりもゼーベック係数の大きな熱電材料を用いることが
重要である。
Thermoelectric materials such as metal alloys or compound semiconductors used in conventional thermoelectric elements have low resistivity, so from the above relational expression, it is possible to increase the heat-to-power conversion efficiency. Suitable for electronic heating elements, etc. However, when used in infrared sensors, temperature sensors, thermal sensors, etc., it is important to use a thermoelectric material with a larger Seebeck coefficient than the heat-to-power conversion efficiency.

すなわち、従来の熱電材料では、ゼーベック係数が20
0〜300μ■/℃と低いために、赤外線センサ、温度
センサ、熱センサの感度が悪かった。また、従来の熱電
材料は、酸化しやすいために高温下での使用ができなか
った。
In other words, conventional thermoelectric materials have a Seebeck coefficient of 20
Since the temperature was as low as 0 to 300μ/°C, the sensitivity of infrared sensors, temperature sensors, and thermal sensors was poor. Furthermore, conventional thermoelectric materials cannot be used at high temperatures because they are easily oxidized.

そこで本発明は、上述した問題点を解決し得るものであ
り、薄膜でかつゼーベック係数が大きく、高温下でも使
用することができる熱電素子を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a thermoelectric element that can solve the above-mentioned problems, has a thin film, has a large Seebeck coefficient, and can be used even at high temperatures.

この目的を達成するには、ゼーベック係数が大きく、高
温下で使用できる熱電材料が必要である。
To achieve this goal, thermoelectric materials are required that have a large Seebeck coefficient and can be used at high temperatures.

発明者らは、熱電材料として、性能指数が小さいために
、これまで熱電素子としてあまり応用されていなかった
酸化物半導体に着目した。
The inventors focused on oxide semiconductors, which have not been widely applied as thermoelectric elements due to their small figure of merit as thermoelectric materials.

(問題点を解決するための手段) 本発明の熱電素子は、絶縁基板上にvsm化されたP型
およびn型の熱電材料からなる熱電対を多数直列接続し
た熱電素子において、 前記熱電材料として酸化物半導体を用いたことを特徴と
している。
(Means for Solving the Problems) The thermoelectric element of the present invention is a thermoelectric element in which a large number of thermocouples made of P-type and N-type thermoelectric materials made of vsm are connected in series on an insulating substrate, wherein as the thermoelectric material: It is characterized by the use of an oxide semiconductor.

たとえば、前記酸化物半導体として、銅酸化物半導体、
亜鉛酸化物半導体、チタン酸化物半導体。
For example, as the oxide semiconductor, a copper oxide semiconductor,
Zinc oxide semiconductor, titanium oxide semiconductor.

ニッケル酸化物半導体、鉄酸化物半導体、コバルト酸化
物半導体がある。
There are nickel oxide semiconductors, iron oxide semiconductors, and cobalt oxide semiconductors.

(作用および効果) 本発明の熱電素子は、熱電材料として、ゼーベック係数
が300〜1000μV/’Cと大きい酸化物半導体を
用いるので、赤外線センサ、温度センサ、熱センサに使
用した場合、感度を向上することがtきる。
(Functions and Effects) The thermoelectric element of the present invention uses an oxide semiconductor with a large Seebeck coefficient of 300 to 1000 μV/'C as a thermoelectric material, so it improves sensitivity when used in infrared sensors, temperature sensors, and thermal sensors. There are so many things to do.

また、酸化物半導体を薄膜化するので、センサ自体を小
型化することができ、高感度化、高応答速度化すること
ができる。
Furthermore, since the oxide semiconductor is made into a thin film, the sensor itself can be miniaturized, and the sensitivity and response speed can be increased.

さらに、酸化物半導体は、高温下でも安定する熱電材料
なので、高温下で使用することができる。
Furthermore, since oxide semiconductors are thermoelectric materials that are stable even at high temperatures, they can be used at high temperatures.

(実施例) 以下に、本発明の実施例を図面を用いて詳細に説明する
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1実施例は、まず、第1図に示すように、Al2O3
基板1上に熱電対パターンのマスク2を置き、金属銅タ
ーゲットあるいは酸化銅セラミックターゲットとAr−
02雰囲気中の酸素との反応性スパッタリング法によっ
て、第2図に示すような薄膜化された3つのP型のCu
2O半導体3,4゜5を形成した。
In the first embodiment, first, as shown in FIG.
A thermocouple pattern mask 2 is placed on the substrate 1, and a metal copper target or a copper oxide ceramic target and an Ar-
By reactive sputtering with oxygen in the 02 atmosphere, three P-type Cu films were made into thin films as shown in Figure 2.
A 2O semiconductor 3,4°5 was formed.

次に、熱電対パターンのマスク2を変更して、同様に、
金属銅ターゲットあるいは酸化銅セラミックターゲット
とAr0z雰囲気中の酸素との反応性スパッタリング法
によって、第3図に示すような薄膜化された3つのn型
のCuO半導体6,7゜8を形成した。これらCuO半
導体6,7.8はCu2O半導体3,4.5とそれぞれ
導電的に接続され、3つの熱電対9,10,11を形成
する。
Next, change the mask 2 of the thermocouple pattern and similarly,
Three thin films of n-type CuO semiconductors 6 and 7°8 as shown in FIG. 3 were formed by a reactive sputtering method using a metallic copper target or a copper oxide ceramic target and oxygen in an Ar0z atmosphere. These CuO semiconductors 6, 7.8 are electrically conductively connected to the Cu2O semiconductors 3, 4.5, respectively, forming three thermocouples 9, 10, 11.

そして、熱電対9,10,11は、直列となるように直
接接続される。なお、Cu2O半導体とCuO半導体の
接続、および熱電対同士の接続は電極を介して行っても
よい。
The thermocouples 9, 10, and 11 are directly connected in series. Note that the connection between the Cu2O semiconductor and the CuO semiconductor and the connection between the thermocouples may be performed through electrodes.

次に、引出電極用パターンのマスクを置き、真空蒸着に
よって、熱電対9のCu2O半導体3の一端および熱電
対11のCuO半導体8の一端のそれぞれからAl2O
3基板の同一端面に引き出された引出電極12.13を
形成し、第4図に示すような熱電素子14を得た。
Next, a mask with a pattern for an extraction electrode is placed, and Al2O is removed from each of one end of the Cu2O semiconductor 3 of the thermocouple 9 and one end of the CuO semiconductor 8 of the thermocouple 11 by vacuum evaporation.
Extracted electrodes 12 and 13 were formed on the same end surface of the three substrates, and a thermoelectric element 14 as shown in FIG. 4 was obtained.

上述した第1実施例では、3組の熱電対を直列接続した
ものを示しだが、所望によって増減してもよい。
In the first embodiment described above, three sets of thermocouples are connected in series, but the number may be increased or decreased as desired.

第1実施例において、たとえば、15組の熱電対を直列
接続した熱電素子の一方の引出電極に25℃、他方の引
出電極に20℃の温度を与えてゼーベック係数を測定し
たところ、20μV/”Cのゼーベック係数を得ること
ができた。そして、との熱電素子を300℃で1000
時間放置した後、ゼーベック係数を測定したが特性の変
化はなかった。
In the first example, for example, when the Seebeck coefficient was measured by applying a temperature of 25°C to one extraction electrode and 20°C to the other extraction electrode of a thermoelectric element in which 15 sets of thermocouples were connected in series, the Seebeck coefficient was 20μV/'' I was able to obtain the Seebeck coefficient of C.Then, I was able to obtain the Seebeck coefficient of
After standing for a period of time, the Seebeck coefficient was measured, but there was no change in characteristics.

第2実施例は、n型の酸化物半導体のターゲットとして
、TlO2をプレス成形し、H2/N2  =1150
の体積比の雰囲気下、1400℃程度で焼成し、直径が
約100mm、厚みが1mmのユニットを作成した。
In the second example, TlO2 is press-molded as an n-type oxide semiconductor target, H2/N2 = 1150
A unit having a diameter of about 100 mm and a thickness of 1 mm was produced by firing at about 1400° C. in an atmosphere with a volume ratio of .

次に、円板上のガラス基板15上に熱電対パターンのマ
スクを置き、TlO2のユニットをAr雰囲気中でスパ
ッタリングすることによって、第5図に示すような薄膜
化されたn型のTlO2半導体16ないし23を形成し
た。このTlO2半導体16ないし23は、それぞれ扇
形をなし、ガラス基板17の任意の1点を円の中心Aと
し、等間隔で円環状に形成されたものである。
Next, a thermocouple pattern mask is placed on the circular glass substrate 15, and TlO2 units are sputtered in an Ar atmosphere to form a thin n-type TlO2 semiconductor 16 as shown in FIG. 23 were formed. The TlO2 semiconductors 16 to 23 each have a fan shape, and are formed in an annular shape at equal intervals, with an arbitrary point on the glass substrate 17 being the center A of the circle.

次に、熱電対パターンのマスクを変更して、P型のN1
0ターゲット@A−r−02雰囲気中でスパッタリング
し、第6図に示すような薄膜化されたP型のNIO半導
体24ないし31を形成した。このNIO半導体24な
いし31は、TlO2半導体16ないし23と同様に、
扇形をなし、点At−中心に等間隔で円環状に形成され
たものである。ここで、TlO2半導体16ないし23
とNiO半導体24ないし31とは、16,24,17
,25゜・・・・・・、22,30,23,31という
ように交互に韮んでいる。
Next, change the mask of the thermocouple pattern to create a P-type N1
Sputtering was performed in an atmosphere of 0 target@A-r-02 to form thin P-type NIO semiconductors 24 to 31 as shown in FIG. The NIO semiconductors 24 to 31, like the TlO2 semiconductors 16 to 23,
It has a fan shape and is formed in a ring shape at equal intervals around the point At-center. Here, TlO2 semiconductors 16 to 23
and the NiO semiconductors 24 to 31 are 16, 24, 17
, 25°..., 22, 30, 23, 31.

次に、電極用パターンのマスクを置き、真空蒸着によっ
て第7図に示すような電極32ないし35を形成し、熱
電素子36を得た。32は第1接続用電極であり、Tl
O2半導体16ないし23をNiO半導体24ないし3
1をそれぞれ導電的に接続し、8組の熱電対37ないし
44を形成するためのものである。この第1接続用電極
32は、扇形をなす各半導体のガラス基板17の点A側
に近い端部を接続するように形成される。33は第2接
続用電極であり、熱電対37ないし44を直列接続する
ためのものである。この第2接続用電極33は、扇形を
なす各半導体のガラス基板17の周面側の端部を接続す
るように形成される。34.85は引出電極であり、T
lO2半導体16の一端およびNiO半導体31の一端
からそれぞれガラス基板17の周面に引き出されるよう
に形成されたものである。
Next, a mask with an electrode pattern was placed, and electrodes 32 to 35 as shown in FIG. 7 were formed by vacuum evaporation to obtain a thermoelectric element 36. 32 is a first connection electrode, Tl
O2 semiconductors 16 to 23 are replaced with NiO semiconductors 24 to 3
1 are electrically conductively connected to each other to form eight thermocouples 37 to 44. The first connection electrode 32 is formed so as to connect the ends of the fan-shaped semiconductor glass substrates 17 near the point A side. Reference numeral 33 denotes a second connection electrode, which is used to connect the thermocouples 37 to 44 in series. This second connection electrode 33 is formed so as to connect the edges of the fan-shaped semiconductor glass substrates 17 on the peripheral surface side. 34.85 is an extraction electrode, T
They are formed so as to be drawn out from one end of the 1O2 semiconductor 16 and one end of the NiO semiconductor 31 to the peripheral surface of the glass substrate 17, respectively.

この熱電素子36は、第8図に示すように電極33に赤
外線が入射できるような開孔46を有する遮蔽板45′
!!:重ね合せ、電極34および35に温度差をもたせ
ることによって赤外線センサとして利用できる。
This thermoelectric element 36 consists of a shielding plate 45' having an opening 46 through which infrared rays can enter the electrode 33, as shown in FIG.
! ! : Can be used as an infrared sensor by overlapping and creating a temperature difference between the electrodes 34 and 35.

上述した第2実施例では、8組の熱電対を直列接続した
熱電素子を示したが、第1実施例と同様に、所望に応じ
て増減できることは言うまでもない。
In the second embodiment described above, a thermoelectric element is shown in which eight sets of thermocouples are connected in series, but it goes without saying that the number can be increased or decreased as desired, as in the first embodiment.

第2実施例において、たとえば、20組の熱電対を直列
接続した熱電素子を第8図に示した赤外線センサに用い
て感度を測定したところ、30V/Wであった。そして
、この赤外線センサを300℃で1000時間放置した
後、同様に感度の測定をしたところ変化はなかった。
In the second example, when a thermoelectric element having, for example, 20 sets of thermocouples connected in series was used in the infrared sensor shown in FIG. 8, the sensitivity was measured to be 30 V/W. After this infrared sensor was left at 300° C. for 1000 hours, the sensitivity was similarly measured, and no change was found.

なお、第2実施例において、P型の酸化物半導体のター
ゲットとしてNIOユニットを用いたが、FeOあるい
はCoOを用いてもよく、所望の感度を有する赤外線セ
ンサを得ることができる。
Note that in the second embodiment, an NIO unit was used as the target for the P-type oxide semiconductor, but FeO or CoO may also be used, and an infrared sensor having desired sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の熱電素子の第1実施例を
説明する平面図、第5図ないし第7図は本発明の熱電素
子の第2実施例を説明する平面図、第8図は本発明の熱
電素子の第2実施例を赤外線センサとして用いたときの
平面図である。 1・・・Al2O3基板、2・・・マスク、3s 4t
 5−Cu2O半導体、 6、L 8−CuO半導体、 9.10,11,37,38,39,40,41゜42
.43,44・・・熱電対、 12.13,34,35・・・引出電極、32・・・第
1接続用電極、33・・・第2接続用電極、14.36
・・・熱電素子、15・・・ガラス基板、16.17,
18,19,20,21,22゜23・・・TlO2半
導体、 24.25,26,27,28,29,30゜81・・
・NIO半導体、45・・・遮蔽板、46・・・開孔。
1 to 4 are plan views for explaining a first embodiment of the thermoelectric element of the present invention, FIGS. 5 to 7 are plan views for explaining a second embodiment of the thermoelectric element of the present invention, and FIG. The figure is a plan view when the second embodiment of the thermoelectric element of the present invention is used as an infrared sensor. 1... Al2O3 substrate, 2... Mask, 3s 4t
5-Cu2O semiconductor, 6, L 8-CuO semiconductor, 9.10,11,37,38,39,40,41゜42
.. 43, 44... Thermocouple, 12. 13, 34, 35... Extraction electrode, 32... First connection electrode, 33... Second connection electrode, 14.36
...Thermoelectric element, 15...Glass substrate, 16.17,
18,19,20,21,22゜23...TlO2 semiconductor, 24.25,26,27,28,29,30゜81...
- NIO semiconductor, 45... Shielding plate, 46... Opening.

Claims (1)

【特許請求の範囲】 絶縁基板上に薄膜化されたP型およびn型の熱電材料か
らなる熱電対を多数直列接続した熱電素子において、 前記熱電材料として酸化物半導体を用いたことを特徴と
する熱電素子。
[Claims] A thermoelectric element comprising a large number of thermocouples made of thin P-type and N-type thermoelectric materials connected in series on an insulating substrate, characterized in that an oxide semiconductor is used as the thermoelectric material. thermoelectric element.
JP63227846A 1988-09-12 1988-09-12 Thermoelectric element Pending JPH0276270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227846A JPH0276270A (en) 1988-09-12 1988-09-12 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227846A JPH0276270A (en) 1988-09-12 1988-09-12 Thermoelectric element

Publications (1)

Publication Number Publication Date
JPH0276270A true JPH0276270A (en) 1990-03-15

Family

ID=16867290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227846A Pending JPH0276270A (en) 1988-09-12 1988-09-12 Thermoelectric element

Country Status (1)

Country Link
JP (1) JPH0276270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246993A (en) * 2006-03-16 2007-09-27 Saitama Univ Method for depositing copper oxide thin film
ITMO20090101A1 (en) * 2009-04-28 2010-10-29 Kaptor Light Srl GROUP OF CONVERSION OF SOLAR AND / OR THERMAL ENERGY IN ELECTRICITY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587888A (en) * 1981-07-06 1983-01-17 Citizen Watch Co Ltd Thermoelectromotive battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587888A (en) * 1981-07-06 1983-01-17 Citizen Watch Co Ltd Thermoelectromotive battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246993A (en) * 2006-03-16 2007-09-27 Saitama Univ Method for depositing copper oxide thin film
ITMO20090101A1 (en) * 2009-04-28 2010-10-29 Kaptor Light Srl GROUP OF CONVERSION OF SOLAR AND / OR THERMAL ENERGY IN ELECTRICITY
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power

Similar Documents

Publication Publication Date Title
US20050081906A1 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element
Sundeen et al. Thermal sensor properties of cermet resistor films on silicon substrates
US2981775A (en) Oxide thermocouple device
US6368734B1 (en) NTC thermistors and NTC thermistor chips
JPH0276270A (en) Thermoelectric element
JPH02260581A (en) Thick film thermoelectric device
US6836677B2 (en) Bolometer and method for producing bolometer
KR100993217B1 (en) Fabrication Methods of Antimony-Telluride Thermoelectric Thin Film Devices
JPH02214175A (en) Thin-film thermoelectric element
JP6348000B2 (en) Thermoelectric conversion element
JPH0311672A (en) Thermoelectric element and its manufacture
JP2727541B2 (en) Manufacturing method of thin film thermistor
JP2587426B2 (en) Manufacturing method of thin film thermistor
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
KR100395246B1 (en) Resistance thermometer device for micro thermal sensors and its fabrication method
JPH0193467A (en) Oxide ceramic
JPH04313284A (en) Thin-film thermoelectric element
Salam et al. Fabrication of iron disilicide (FeSi2) thermoelectric generator by the tape casting method
JP3134359B2 (en) Thin film thermoelectric element
Amani et al. Thermoelectric materials discovery using combinatorial chemistry
JPS59228139A (en) Thin-film temperature-measuring element
Tsai et al. Investigation of Micro Pyroelectric Infrared Sensor Performance under Different Electrode Materials
JPH03131001A (en) Resistance temperature sensor
JPH02159756A (en) Thin film resistance element of tantalum
JPS6315484A (en) Thin-film electric conductor of mixed silicon/germanium/ gold crystal