JPH0415007B2 - - Google Patents

Info

Publication number
JPH0415007B2
JPH0415007B2 JP60236246A JP23624685A JPH0415007B2 JP H0415007 B2 JPH0415007 B2 JP H0415007B2 JP 60236246 A JP60236246 A JP 60236246A JP 23624685 A JP23624685 A JP 23624685A JP H0415007 B2 JPH0415007 B2 JP H0415007B2
Authority
JP
Japan
Prior art keywords
flue gas
furnace
hydroxide
gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60236246A
Other languages
Japanese (ja)
Other versions
JPS61287420A (en
Inventor
Hemere Shiipa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tampella Oy AB
Original Assignee
Tampella Oy AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tampella Oy AB filed Critical Tampella Oy AB
Publication of JPS61287420A publication Critical patent/JPS61287420A/en
Publication of JPH0415007B2 publication Critical patent/JPH0415007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、石炭または石油のような含硫黄燃料
を燃焼させる炉の煙道ガスから、気体硫黄化合
物、特に亜硫酸ガスを除去するための方法に関す
る。 (従来の技術および発明が解決しようとする問題
点) 従来より、酸化カルシウム、炭酸カルシウムあ
るいは他のアルカリ性化合物を炉の燃焼室に投入
することによつて、炉の煙道ガスの亜硫酸ガス含
有量を低減することは知られている。循環床を有
する流動層炉では、カルシウムの添加によつて、
化学反応に最適な温度範囲すなわち800〜1000℃
で炉が運転されている時には、煙道ガスの亜硫酸
ガス含有量を90%も減少させることができる。こ
のようにして吸収された亜硫酸ガスは、フライア
ツシユとともに石膏の形で炉から出る。 上記の温度より高い温度を採用する必要があ
り、かつ燃焼の性質上添加物を滞留できる時間が
短い他のタイプの炉では、煙道ガスの亜硫酸ガス
含有量の減少は実質的に小さく、約50%以下であ
る。したがつて、この方法は、工業的規模では、
上記のような炉には適用されていない。 他方、煙道ガスの亜流酸ガス含有量は炉外の
種々の吸収方法によつて減少できることも知られ
ている。この方法の1つは、それ自体公知である
が、いわゆる半乾式法である。この方法では、炉
を出る煙道ガスは、水酸化カルシウムの水性スラ
リーが特定のノズルを通して小滴の形で噴霧され
る別個の反応器に導かれる。反応器は典型的には
かなり大型の容器であり、この中では、煙道ガス
の速度は減少せしめられ、水性スラリーが上方か
らすなわち容器の上部から下方へ向けて噴霧され
る。反応器の温度は、この時には約50〜80℃であ
り、大きすぎる水滴は反応器の底部に液体として
残るので、水酸化カルシウムの水性スラリーの噴
霧制御は非常に重要である。水酸化カルシウムの
水性スラリー濃度は、煙道ガス中の熟成分が反応
器に入つてくる水分を蒸発できる程度に維持され
る。この結果、吸収生成物は乾燥粉末として回収
される。この方法によつて、亜硫酸ガスの90%も
が除去できる。この方法の欠点は、ノズルが閉塞
する傾向があること、水酸化カルシウムの水性ス
ラリーの調製および回分装置に余分な投下資金が
必要なこと、噴霧中の水滴サイズ制御に問題があ
ること等である。 そこで、本発明の目的は、気体硫黄化合物を、
気体から容易に分離できかつ簡単、経済的な方法
で炉の煙道ガスから効率的に除去できる固体硫黄
化合物に転化させることによつて、炉の煙道ガス
から、亜硫酸ガスのような気体硫黄化合物を除去
する方法を提供することである。 また本発明の目的は、炉へ供給する水酸化物を
低温で確実に分解して、炉の温度を低く設定でき
てエネルギーが少なくて済む方法を提供するもの
である。 (問題点を解決するための手段) 本発明の方法においては、気体硫黄化合物特に
亜硫酸ガスと反応する物質と水とが別々に供給さ
れる。本発明では、スラリーの調製、取扱いおよ
び供給に係る問題は、つぎのような方法で回避さ
れる。すなわち、 (a) 粉状アルカリ金属水酸化物および/またはア
ルカリ土類金属水酸化物を、燃料たる含硫黄材
料および酸素含有ガスとともに炉に供給し、前
記水酸化物を炉内で脱水してその酸化物を生成
して、炉から排出される亜硫酸ガス含有煙道ガ
ス中に生成されたばかりの酸化物を含ませるよ
うにし、 (b) 上記生成されたばかりの酸化物を亜硫酸ガス
と反応する水酸化物に現場で転化させるため
に、水および/またはスチームを反応器中およ
び/または煙道ガス中に供給し、最終的に、 (c) 反応生成物として得られるアルカリ金属およ
び/またはアルカリ土類金属の硫酸塩および場
合によつてはその亜硫酸塩を含む固体をガスか
ら分離する。 本発明の基本的思想は、水酸化物を粉末の形で
煙道ガス中に供給し、この水酸化物を水および/
またはスチームによつて煙道ガス中においてのみ
活性化し、それによつて亜硫酸ガスと反応させ、
公知の物理的分離方法により煙道ガスから効果的
に分離することができる固体硫酸塩/亜硫酸塩混
合物を形成するというものである。 粉状水酸化物は、アルカリおよび/またはアル
カリ土類金属の量が少なくとも反応式によるモル
比例において硫黄当量となるよう、好ましくは、
反応に必要な量より多量となるように、燃料中の
硫黄含有量に応じて、炉の燃焼室または炉を出る
煙道ガス中に投入される。水酸化物を別途粉末の
形で燃焼室にあるいは煙道ガスダクトに投入する
ことによつて、簡単な供給装置たとえば気送装置
の使用が可能となる。この結果、ノズル詰まりお
よび水性スラリー用の調製および回分式装置をな
くすことができる。逆に、ノズルからの水および
スチームの供給は単純で容易である。 煙道ガスへの水またはスチームの供給は、通常
50〜800℃の温度、好ましくは90〜200℃の温度範
囲で行なわれる。吸収生成物に実質的に乾燥粉末
として回収したい場合には、煙道ガスの熱エネル
ギーで十分蒸発できるだけの量の水を使用する。 つぎに、本発明を、本発明方法を実施するのに
好適な装置を概略的に示す添付の図面に基いて、
さらに詳細に説明する。 図において、炉一般は符号1で示される。通常
予熱されている熱焼用含硫黄燃料4、酸素含有ガ
ス5、およびカルシウムおよび/またはマグネシ
ウム水酸化物6は、好ましくは、燃焼室での亜硫
酸ガス生成量に比例する量より過剰に、炉1の燃
焼室に供給される。“過剰に”という表現は、こ
こでは、カルシウム、マグネシウム、またはカル
シウムとマグネシウムの化合物の量が、燃焼室に
供給された全硫黄と反応するのに、反応式により
理論上必要とされるより多いことを意味する。 炉に供給された水酸化物は、まず炉中で脱水さ
れて酸化物になる。酸化物は、亜流酸ガスと反応
することができ、まず亜硫酸塩を形成し、その後
酸化により硫酸塩を形成する。炉中の滞留時間が
短いため、反応には十分な温度においても、酸化
物のほんの一部のみが亜硫酸ガスと反応できる。
このため、燃焼残渣やスチームや未吸収亜硫酸ガ
スを含む、酸化カルシウムおよび/または酸化マ
グネシウム含有煙道ガス8が、煙道ガスダクト7
を通つて炉の燃焼室から排出される。 通常、煙道ガス8の温度は非常に低いので、カ
ルシウムおよび/またはマグネシウム酸化物と硫
黄酸化物との反応は比較的弱く、この条件下で、
酸化物は、脱硫については比較的不活性であると
見做される。煙道ガスの温度が下がると、酸化物
は煙道ガス中のスチームと反応し、水酸化物にも
どる。したがつて、粉状水酸化物を直接煙道ガス
ダクト7あるいは煙道ガスダクトの後の反応器2
に供給するのが好ましい。さらに、煙道ガス8を
熱交換器12に使用して、炉1に供給する空気5
を予熱することもできる。 炉1の燃焼室から出る、カルシウムおよび/ま
たはマグネシウム酸化物および場合によつてはカ
ルシウムおよび/またはマグネシウム水酸化物を
含む亜硫酸ガス含有煙道ガス8は、ついで、反応
器に送給される。反応器は符号2で概略的に示さ
れる。酸化物および/または水酸化物を活性化す
るために、水またはスチームをさらに反応器2の
煙道ガス中に散布する。この水またはスチームは
カルシウムおよび/またはマグネシウム酸化物と
反応して、それぞれの水酸化物を形成し、酸化物
を活性化しあるいは煙道ガス中にすでに存在する
水酸化物を活性化する。水酸化物は、煙道ガス8
中の残留亜流酸ガスと反応し、それぞれの亜硫酸
塩を形成する。この亜硫酸塩は、酸素存在下で少
なくとも一部はさらに酸化されて、それぞれの硫
酸塩となる。反応器2に供給される水9の量は、
煙道ガス8の熱によつて反応器2に供給された水
を十分蒸発させることができる程度に調整され
る。この結果、乾燥したフライアツシユ状の反応
生成物を、他のダストと同様の方法で公知のフラ
イアツシユ分離器3において除去することができ
る。煙道ガス11はフライアツシユ分離器3から
さらに煙突13に送給され、分離されたフライア
ツシユと反応生成物はさらに処理に付してもよ
い。 水および水酸化物を添加する順序は一切限定さ
れない。したがつて、たとえば、水またはスチー
ムを炉に供給し、粉状水酸化物を炉の後段におい
てのみ、すなわち煙道ガスダクトあるいは後続の
反応器のいずれかに供給してもよい。 本発明方法のさらに他の利点としては、いかな
るタイプのバーナを取り付けた炉にも適用できる
ということがある。炉の大きさは限定要素ではな
く、燃焼室でカルシウムおよび/またはマグネシ
ウム水酸化物を循環させる必要もない。この結
果、高価な循環床あるいは複雑な再循環装置、同
時に、動作原理による過剰なダスト、さらにはダ
ストの分離を回避することができる。従来の公知
吹付け方法と比較すると、反応器2へ水またはス
チームを吹付ける方が、ノズル詰まりを生じかつ
混合するのが困難なスラリーを使用する場合よ
り、複雑さがなく実施が容易である。 (実施例) つぎに、本発明を実施例によりさらに詳細に説
明する。 実施例 1 1.4%の硫黄含有量を有する石炭を70t/hの割
合で、600MWの熱出力を有する粉石炭炉に供給
する。炉は最大出力で操業する。過剰の燃焼空気
を供給し、その結果、煙道ガス中の酸素含有量は
4%となる。 90%の水酸化カルシウム含有量を有する水酸化
カルシウムを、炉に入る燃料中の硫黄量に比例さ
せて炉中に投入する。理論当量は約2.5t/h水酸
化カルシウムである。 水酸化カルシウムと水および/またはスチーム
を、煙道ガスダクトあるいは煙道ガスダクトにつ
づく別個の反応器内で煙道ガスに吹付ける。 エネルギー経済の点では、全熱回収面をすぎた
点にある別個の反応器内で、煙道ガス中に水を吹
付けることによつて煙道ガス中の含水量を上げる
のが最も経済的である。 煙道ガスの含水量を上げることによつて、炉中
で、水酸化カルシウムを大いに反応性の高いもの
とすることができ、水酸化カルシウムは煙道ガス
中の硫黄酸化物と急速に反応する。炉を出た煙道
ガスの含水量が高くなればなるほど、煙道ガスか
ら亜硫酸ガスが効果的に除去される。しかしなが
ら、エネルギー経済の点からは、化学反応で放熱
される熱で十分添加水を蒸発できるように運転す
ることが有利である。煙道ガスの最終温度を高め
る必要のある場合には、外部の熱を使用するかあ
るいは温かい煙道ガス流によつて達成することが
できる。 結果は下記の第1表に示される。第1表では、
種々の量の水酸化カルシウムを本発明に従つて炉
に投入した時に、煙道ガスからどれだけの亜硫酸
ガスが除去されたかをパーセントで示している。
水酸化カルシウムの量は、炉中に供給された燃料
の硫黄含有量に対する粉状水酸化カルシウムのカ
ルシウム含有量のモル比として示されている。煙
道ガスの温度は水またはスチームの供給点の直前
で計測した。ただし、80℃の場合は、水またはス
チームを直接炉中に供給している。
FIELD OF THE INVENTION The present invention relates to a method for removing gaseous sulfur compounds, in particular sulfur dioxide gas, from the flue gas of a furnace burning sulfur-containing fuels such as coal or petroleum. PRIOR ART AND PROBLEMS SOLVED BY THE INVENTION Traditionally, calcium oxide, calcium carbonate or other alkaline compounds have been introduced into the furnace combustion chamber to reduce the sulfur dioxide content of the furnace flue gas. It is known to reduce In fluidized bed furnaces with circulating beds, the addition of calcium
Optimal temperature range for chemical reactions i.e. 800-1000℃
The sulfur dioxide content of flue gas can be reduced by as much as 90% when the furnace is operated in The sulfur dioxide gas thus absorbed leaves the furnace in the form of gypsum along with the flyash. In other types of furnaces, where higher temperatures than those mentioned above have to be employed, and where the nature of the combustion allows for a short residence time for the additives, the reduction in the sulfur dioxide content of the flue gas is substantially smaller, approx. Less than 50%. Therefore, on an industrial scale, this method
This does not apply to furnaces such as those mentioned above. On the other hand, it is also known that the sour gas content of the flue gas can be reduced by various absorption methods outside the furnace. One of these methods, which is known per se, is the so-called semi-dry method. In this method, the flue gas leaving the furnace is directed into a separate reactor where an aqueous slurry of calcium hydroxide is sprayed in the form of droplets through specific nozzles. The reactor is typically a fairly large vessel in which the flue gas velocity is reduced and the aqueous slurry is sprayed from above, ie from the top of the vessel downward. The temperature of the reactor is about 50-80°C at this time, and the atomization control of the aqueous slurry of calcium hydroxide is very important because water droplets that are too large will remain as liquid at the bottom of the reactor. The aqueous slurry concentration of calcium hydroxide is maintained such that the mature fraction in the flue gas can evaporate the moisture entering the reactor. As a result, the absorption product is recovered as a dry powder. With this method, as much as 90% of sulfur dioxide gas can be removed. Disadvantages of this method include a tendency to block the nozzle, the need for extra investment in preparation and batching equipment for the aqueous slurry of calcium hydroxide, and problems with droplet size control during spraying. . Therefore, the object of the present invention is to convert gaseous sulfur compounds into
Gaseous sulfur, such as sulfur dioxide gas, is removed from the furnace flue gas by converting it into solid sulfur compounds that can be easily separated from the gas and efficiently removed from the furnace flue gas in a simple, economical manner. An object of the present invention is to provide a method for removing compounds. Another object of the present invention is to provide a method that reliably decomposes hydroxide supplied to a furnace at a low temperature, allowing the temperature of the furnace to be set low and requiring less energy. (Means for Solving the Problems) In the method of the present invention, a substance that reacts with gaseous sulfur compounds, particularly sulfur dioxide gas, and water are supplied separately. In the present invention, problems with slurry preparation, handling and feeding are avoided in the following way. That is, (a) a powdered alkali metal hydroxide and/or alkaline earth metal hydroxide is supplied to a furnace together with a sulfur-containing material as a fuel and an oxygen-containing gas, and the hydroxide is dehydrated in the furnace. producing the oxide so that the freshly produced oxide is included in the sulfur dioxide-containing flue gas discharged from the furnace; Water and/or steam is fed into the reactor and/or into the flue gas for in-situ conversion to oxides, and finally (c) the alkali metals and/or alkaline earths obtained as reaction products. Solids containing metal sulfates and optionally their sulfites are separated from the gas. The basic idea of the invention is to feed the hydroxide in powder form into the flue gas and to mix this hydroxide with water and/or
or activated only in the flue gas by steam, thereby reacting with sulfur dioxide gas,
The idea is to form a solid sulfate/sulfite mixture that can be effectively separated from the flue gas by known physical separation methods. The powdered hydroxide is preferably such that the amount of alkali and/or alkaline earth metal is at least equivalent to sulfur in molar proportion according to the reaction equation.
Depending on the sulfur content in the fuel, an amount greater than that required for the reaction is introduced into the combustion chamber of the furnace or into the flue gas leaving the furnace. By introducing the hydroxide separately in powder form into the combustion chamber or into the flue gas duct, it is possible to use simple feed devices, such as pneumatic feed devices. This eliminates nozzle clogging and preparation and batch equipment for aqueous slurries. Conversely, the supply of water and steam from the nozzle is simple and easy. The supply of water or steam to the flue gas is usually
It is carried out at a temperature of 50 to 800°C, preferably 90 to 200°C. If the absorption product is desired to be recovered as a substantially dry powder, only enough water is used to be evaporated by the thermal energy of the flue gases. The invention will now be described with reference to the accompanying drawings, which schematically show suitable apparatus for carrying out the method of the invention.
This will be explained in more detail. In the figure, the furnace in general is designated by the numeral 1. The normally preheated sulfur-containing fuel 4, oxygen-containing gas 5, and calcium and/or magnesium hydroxide 6 are preferably added to the furnace in excess of an amount proportional to the amount of sulfur dioxide gas produced in the combustion chamber. 1 combustion chamber. The expression "in excess" here means that the amount of calcium, magnesium, or calcium and magnesium compound is greater than theoretically required by the reaction equation to react with all the sulfur fed to the combustion chamber. It means that. The hydroxide supplied to the furnace is first dehydrated in the furnace to become an oxide. The oxide can react with sulfite gas, first forming sulfite and then oxidation to form sulfate. Due to the short residence time in the furnace, only a small portion of the oxide can react with the sulfur dioxide gas, even at temperatures sufficient for the reaction.
For this reason, the flue gas 8 containing calcium oxide and/or magnesium oxide, including combustion residues, steam and unabsorbed sulfur dioxide gas, flows into the flue gas duct 7.
is discharged from the furnace combustion chamber through the Typically, the temperature of the flue gas 8 is very low, so that the reaction between calcium and/or magnesium oxides and sulfur oxides is relatively weak; under these conditions,
Oxides are considered relatively inert with respect to desulfurization. As the temperature of the flue gas decreases, the oxides react with the steam in the flue gas and revert to hydroxides. Therefore, the powdered hydroxide can be directly transferred to the flue gas duct 7 or to the reactor 2 after the flue gas duct.
It is preferable to supply the Further, the flue gas 8 is used in a heat exchanger 12 to supply air 5 to the furnace 1.
You can also preheat it. The sulfurous acid gas-containing flue gas 8, which leaves the combustion chamber of the furnace 1 and contains calcium and/or magnesium oxides and optionally calcium and/or magnesium hydroxides, is then fed to the reactor. The reactor is indicated schematically at 2. Water or steam is additionally sparged into the flue gas of reactor 2 in order to activate the oxides and/or hydroxides. This water or steam reacts with the calcium and/or magnesium oxides to form the respective hydroxides, activating the oxides or activating hydroxides already present in the flue gas. Hydroxide is flue gas 8
reacts with residual sulfurous acid gas in it to form the respective sulfites. This sulfite is at least partially further oxidized to the respective sulfate in the presence of oxygen. The amount of water 9 supplied to the reactor 2 is
The heat of the flue gas 8 is adjusted to such an extent that the water supplied to the reactor 2 can be sufficiently evaporated. As a result, the dried fly ash-like reaction product can be removed in the known fly ash separator 3 in the same manner as other dusts. The flue gas 11 is further fed from the flyash separator 3 to the chimney 13, and the separated flyash and reaction products may be subjected to further processing. The order of adding water and hydroxide is not limited in any way. Thus, for example, water or steam may be fed into the furnace and powdered hydroxide may be fed only downstream of the furnace, ie either into the flue gas duct or into a subsequent reactor. A further advantage of the method of the invention is that it can be applied to furnaces equipped with any type of burner. The size of the furnace is not a limiting factor, and there is no need to circulate calcium and/or magnesium hydroxide in the combustion chamber. As a result, expensive circulating beds or complex recirculation devices, and at the same time excessive dust due to the operating principle, as well as separation of the dust, can be avoided. Compared to conventional known spraying methods, spraying water or steam into the reactor 2 is less complex and easier to implement than using slurries that clog the nozzles and are difficult to mix. . (Example) Next, the present invention will be explained in more detail with reference to Examples. Example 1 Coal with a sulfur content of 1.4% is fed at a rate of 70 t/h to a pulverized coal furnace with a heat output of 600 MW. The furnace operates at maximum power. Excess combustion air is supplied, resulting in an oxygen content of 4% in the flue gas. Calcium hydroxide with a calcium hydroxide content of 90% is charged into the furnace in proportion to the amount of sulfur in the fuel entering the furnace. The theoretical equivalent is approximately 2.5 t/h calcium hydroxide. Calcium hydroxide and water and/or steam are injected into the flue gas in the flue gas duct or in a separate reactor following the flue gas duct. In terms of energy economy, it is most economical to increase the water content in the flue gas by blowing water into the flue gas in a separate reactor past the total heat recovery surface. It is. By increasing the moisture content of the flue gas, the calcium hydroxide can be made much more reactive in the furnace, and the calcium hydroxide reacts rapidly with the sulfur oxides in the flue gas. . The higher the moisture content of the flue gas leaving the furnace, the more effectively sulfur dioxide gas is removed from the flue gas. However, from the point of view of energy economy, it is advantageous to operate in such a way that the heat released by the chemical reaction is sufficient to evaporate the added water. If it is necessary to increase the final temperature of the flue gas, this can be achieved using external heat or by a warm flue gas stream. The results are shown in Table 1 below. In Table 1,
Figure 2 shows how much sulfur dioxide gas is removed from the flue gas in percentage when various amounts of calcium hydroxide are introduced into the furnace according to the invention.
The amount of calcium hydroxide is expressed as the molar ratio of the calcium content of the powdered calcium hydroxide to the sulfur content of the fuel fed into the furnace. Flue gas temperature was measured just before the water or steam feed point. However, when the temperature is 80℃, water or steam is supplied directly into the furnace.

【表】【table】

【表】 に供給した。
B) 水の供給点の直前位置
実施例 2 45%の水酸化カルシウム、45%の水酸化マグネ
シウムおよび10%の不純物を含むカルシウム−マ
グネシウム水酸化物を、実施例1に従つて同様の
操業値を用いて粉石炭炉に装入する。カルシウム
−マグネシウム水酸化物および水および/または
スチームを、炉内あるいは煙道ガスダクト後段の
別個の反応器内で煙道ガス中に吹付ける。 含水量が増大することにより、特に水酸化カル
シウムの反応性が高まり、水酸化物は煙道ガス中
の硫黄酸化物と速やかに反応する。硫黄に対する
水酸化カルシウム中のカルシウムモル比が少なく
とも1である場合には、主として水酸化カルシウ
ムと硫黄酸化物との間で反応が起こり、反応の遅
い水酸化マグネシウムは、ほとんど未反応のまま
反応器を通過する。 もしカルシウム−マグネシウム水酸化物が熱い
煙道ガス中に供給されるならば、結果は、水酸化
マグネシウムが酸化マグネシウムと水とに分解す
るか、カルシウム−マグネシウム水酸化物全体が
酸化カルシウムと酸化マグネシウムおよび水とに
分解することになる。この場合、各酸化物は硫黄
酸化物と反応することができ、煙道ガスを冷却し
含水量が増加すると、再び水酸化物を形成する。
この水酸化物はさらに硫黄酸化物と反応する。硫
黄に対するカルシウムのモル比が少なくとも1で
あると、カルシウム化合物がより早く反応するこ
とができるために、反応結果および条件は、第1
表に示す対応数値と現実的に一致する。 (発明の効果) 上記したように、本発明によれば、流動層炉等
の高価な設備を設けなくとも効率的に亜硫酸ガス
を除去できるスプレー法を採用しながら、従来の
スプレー法の欠点であつた、スラリーによるノズ
ルの詰まり、水滴サイズの制御、調整および回分
装置使用等の問題を回避することができる。この
ように、本発明は、簡便かつ経済的に、しかも高
効率で、煙道ガス中の亜流酸ガスを固体の硫黄化
合物の形で回収、除去できる方法を提供すること
ができる。 また、本発明方法は、従来の炭酸カルシウムを
炉に添加する方法に比べて、たとえば水酸化カル
シウムは、炭酸カルシウム(898℃)よりも低温
(100℃で水を放ち、580℃で完全に分解)で完全
に酸化カルシウムに分解されるので、炉の温度を
低く設定でき、エネルギーが少なくて済むという
利点を有する。
[Table]
B) Immediately before the water supply point Example 2 Calcium-magnesium hydroxide containing 45% calcium hydroxide, 45% magnesium hydroxide and 10% impurities was prepared according to Example 1 with similar operating values. The powder is charged into a powdered coal furnace. Calcium-magnesium hydroxide and water and/or steam are injected into the flue gas in the furnace or in a separate reactor downstream of the flue gas duct. The increased water content increases the reactivity of especially calcium hydroxide, which reacts rapidly with sulfur oxides in the flue gas. When the molar ratio of calcium in calcium hydroxide to sulfur is at least 1, the reaction mainly occurs between calcium hydroxide and sulfur oxide, and the slow-reacting magnesium hydroxide remains mostly unreacted in the reactor. pass through. If calcium-magnesium hydroxide is fed into the hot flue gas, the result is that either the magnesium hydroxide decomposes into magnesium oxide and water, or the entire calcium-magnesium hydroxide is converted into calcium oxide and magnesium oxide. and water. In this case, each oxide can react with sulfur oxides, forming hydroxides again when the flue gas is cooled and the water content increases.
This hydroxide further reacts with sulfur oxides. When the molar ratio of calcium to sulfur is at least 1, the calcium compounds can react faster, so the reaction results and conditions are better than the first one.
This corresponds realistically to the corresponding figures shown in the table. (Effects of the Invention) As described above, according to the present invention, a spray method that can efficiently remove sulfur dioxide gas without the need for expensive equipment such as a fluidized bed furnace is adopted, while eliminating the drawbacks of the conventional spray method. Problems such as nozzle clogging due to hot slurry, droplet size control, adjustment and batch equipment use can be avoided. As described above, the present invention can provide a method for recovering and removing sulfite gas in flue gas in the form of solid sulfur compounds in a simple, economical, and highly efficient manner. In addition, compared to the conventional method of adding calcium carbonate to the furnace, the method of the present invention has the advantage that, for example, calcium hydroxide releases water at a lower temperature (100°C) than calcium carbonate (898°C) and completely decomposes at 580°C. ), it is completely decomposed into calcium oxide, so it has the advantage that the furnace temperature can be set low and requires less energy.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明方法の実施に好適な装置を概略
的に示すものである。 1……炉、2……反応器、3……フライアツシ
ユ分離器、4……含硫黄燃料、5……酸素含有ガ
ス、6……水酸化カルシウム/マグネシウム、7
……煙道ガスダクト、8,11……煙道ガス。
The drawing schematically shows an apparatus suitable for carrying out the method of the invention. 1...Furnace, 2...Reactor, 3...Fly ash separator, 4...Sulfur-containing fuel, 5...Oxygen-containing gas, 6...Calcium hydroxide/magnesium, 7
... Flue gas duct, 8,11 ... Flue gas.

Claims (1)

【特許請求の範囲】 1 炉の煙道ガスから気体硫黄化合物を除去する
方法であつて、 (a) 粉状アルカリ金属水酸化物および/またはア
ルカリ土類金属水酸化物を、燃料たる含硫黄材
料および酸素含有ガスとともに炉に供給し、前
記水酸化物を炉内で脱水してその酸化物を生成
して、炉から排出される亜硫酸ガス含有煙道ガ
ス中に生成されたばかりの酸化物を含ませるよ
うにし、 (b) 上記生成されたばかりの酸化物を亜硫酸ガス
と反応する水酸化物に現場で転化させるため
に、水および/またはスチームを反応器中およ
び/または煙道ガス中に供給し、最終的に、 (c) 反応生成物として得られるアルカリ金属およ
び/またはアルカリ土類金属の硫酸塩および場
合によつてはその亜硫酸塩を含む固体をガスか
ら分離することを特徴とする炉の煙道ガスから
気体硫黄化合物を除去する方法。 2 上記粉状水酸化物を、煙道ガス中の硫黄量に
比例する量より過剰に供給する前記特許請求の範
囲第1項に記載の方法。 3 水および/またはスチームを、煙道ガス温度
50〜800℃の時に噴霧する前記特許請求の範囲第
1項または第2項に記載の方法。 4 水を、最大限、煙道ガスおよび反応によつて
生じる熱エネルギーによつて蒸発される量だけ煙
道ガス中に噴霧する前記特許請求の範囲第1項〜
第3項のいずれかに記載の方法。 5 供給される水酸化物が水酸化カルシウム、水
酸化カルシウム−マグネシウム混合物である前記
特許請求の範囲第1項〜第4項のいずれかに記載
の方法。
[Scope of Claims] 1. A method for removing gaseous sulfur compounds from a flue gas of a furnace, comprising: The hydroxide is fed into a furnace together with the material and an oxygen-containing gas, and the hydroxide is dehydrated in the furnace to form its oxide, and the hydroxide is then transferred to the sulfur dioxide-containing flue gas discharged from the furnace. (b) supplying water and/or steam into the reactor and/or into the flue gas for the in-situ conversion of said freshly produced oxides to hydroxides which react with the sulfur dioxide gas; and, finally, (c) a furnace characterized in that the solids containing the alkali metal and/or alkaline earth metal sulfates and optionally their sulfites obtained as reaction products are separated from the gas. A method for removing gaseous sulfur compounds from flue gases. 2. A method according to claim 1, wherein the powdered hydroxide is supplied in excess of an amount proportional to the amount of sulfur in the flue gas. 3 Add water and/or steam to flue gas temperature
The method according to claim 1 or 2, wherein the spraying is carried out at a temperature of 50 to 800°C. 4. Spraying water into the flue gas to the maximum extent that is evaporated by the flue gas and the thermal energy generated by the reaction.
The method according to any of paragraph 3. 5. The method according to any one of claims 1 to 4, wherein the hydroxide supplied is calcium hydroxide or a calcium hydroxide-magnesium mixture.
JP60236246A 1985-04-24 1985-10-22 Removal of gaseous sulfur compound from flue gas of furnace Granted JPS61287420A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI851623 1985-04-24
FI851623A FI78846B (en) 1985-04-24 1985-04-24 FOERFARANDE FOER AVLAEGSNANDE AV GASFORMIGA SVAVELFOERENINGAR OCH SVAVELDIOXID UR ROEKGASER I EN PANNA.

Publications (2)

Publication Number Publication Date
JPS61287420A JPS61287420A (en) 1986-12-17
JPH0415007B2 true JPH0415007B2 (en) 1992-03-16

Family

ID=8520718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236246A Granted JPS61287420A (en) 1985-04-24 1985-10-22 Removal of gaseous sulfur compound from flue gas of furnace

Country Status (24)

Country Link
JP (1) JPS61287420A (en)
CN (1) CN1005312B (en)
AU (1) AU579902B2 (en)
BE (1) BE903598A (en)
BG (1) BG60231B1 (en)
CA (1) CA1289336C (en)
CH (1) CH672265A5 (en)
CS (1) CS274270B2 (en)
DD (1) DD240839A5 (en)
DE (1) DE3539348A1 (en)
DK (1) DK515485A (en)
ES (1) ES8700307A1 (en)
FI (1) FI78846B (en)
FR (1) FR2580950B1 (en)
GB (1) GB2174082B (en)
HU (1) HU202422B (en)
IT (1) IT1185833B (en)
NL (1) NL8503081A (en)
NZ (1) NZ213859A (en)
PL (1) PL148176B1 (en)
RO (1) RO93449A (en)
SE (1) SE461958B (en)
YU (1) YU44580B (en)
ZA (1) ZA858476B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1310807C (en) * 1986-05-29 1992-12-01 Roderick Beittel Method for reduction of sulfur products from flue gases by injection of powdered alkali sorbent at intermediate temperatures
US5084256A (en) * 1986-05-29 1992-01-28 Electric Power Research Institute, Inc. Method for reduction of sulfur products for gases by injection of powdered alkali sorbent at intermediate temperatures
DE3716566A1 (en) * 1987-05-18 1988-12-01 Fichtel Roland Process for the production of reactive calcium hydroxides for exhaust gas purification
DE8717874U1 (en) * 1987-05-18 1990-11-22 FTU GmbH, 8130 Starnberg Calcium hydroxide for exhaust gas purification
JPS6414517A (en) * 1987-07-03 1989-01-18 Gadelius Kk Recovery of waste heat of exhaust gas
DE3817356A1 (en) * 1988-01-18 1989-07-27 Krupp Polysius Ag Process and apparatus for the heat treatment of fine-grained material
JPH03154615A (en) * 1989-11-09 1991-07-02 Hitachi Zosen Corp Semidry sulfurization
EP0454885A1 (en) * 1990-05-02 1991-11-06 Ftu Gmbh Process for purification of gases and exhaust gases from pollutants
DK170891A (en) * 1991-02-19 1992-08-20 Intevep Sa PROCEDURE FOR REMOVAL OF EFFLUENTS FROM EMISSIONS GASED BY COMBUSTION OF A FUEL
FR2698287B1 (en) * 1992-11-24 1995-01-20 Stein Industrie Method for reducing pollutant emissions in combustion installations with circulating fluidized bed.
JP3581517B2 (en) 1997-03-18 2004-10-27 北海道電力株式会社 Dust removal device and its operation method
FI111608B (en) * 2001-07-05 2003-08-29 Fortum Oyj Flue gas cleaning process
CN100449208C (en) * 2004-11-23 2009-01-07 河南大学 Boiler desulfurizer and smoke activating dust-proof desulfurizer
AT507830B1 (en) * 2009-02-12 2010-10-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR TREATING EXHAUST GASES FROM SINTERING OR PELLETING PLANTS
JP6199698B2 (en) * 2013-11-01 2017-09-20 栗田工業株式会社 Acid exhaust gas treatment method and exhaust gas treatment agent
CN108579356B (en) * 2018-04-02 2021-06-01 安徽蓝天盈丰环保科技有限公司 Boiler flue gas desulfurization and dust removal device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499471A (en) * 1972-05-24 1974-01-28
JPS50150675A (en) * 1974-05-25 1975-12-03
JPS5644023A (en) * 1979-09-13 1981-04-23 Mitsubishi Heavy Ind Ltd Exhaust gas purifying method
JPS5851924A (en) * 1981-09-24 1983-03-26 Sumitomo Cement Co Ltd Method for desulfurizing and cooling exhaust gas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU419407B2 (en) * 1970-09-10 1971-11-30 The Golden Cycle Corporation Process for the entrapment of sulfur dioxide gas
US3687613A (en) * 1970-10-27 1972-08-29 Combustion Eng Method and apparatus for preparing an additive for introduction to a gas scrubber
AU455051B2 (en) * 1971-05-31 1974-10-29 Chemical Construction Corporation Process forthe recovery of sulfur dioxide
JPS5079477A (en) * 1973-11-08 1975-06-27
SE418152B (en) * 1974-06-12 1981-05-11 Ceskoslovenska Akademie Ved SET FOR EXHAUSTABILITY OF GASES, IN PARTICULAR NITROGEN AND SULFUR OXIDES, WITH THE HELP OF CARBONATES
GB1429427A (en) * 1974-07-25 1976-03-24 Asahi Fibreglass Co Method of cleaning waste gases containing a fluorine component
GB1504688A (en) * 1975-04-11 1978-03-22 Exxon Research Engineering Co Mitigating or preventing environmental pollution by sulphur oxides in the treatment of sulphur-containing substance
GB1551357A (en) * 1975-05-06 1979-08-30 Hoelter H Purification of gas
US3976747A (en) * 1975-06-06 1976-08-24 The United States Of America As Represented By The United States Energy Research And Development Administration Modified dry limestone process for control of sulfur dioxide emissions
DE2539500B2 (en) * 1975-09-05 1980-06-19 Heinz Ing.(Grad.) 4390 Gladbeck Hoelter Process for separating dust and gaseous pollutants from hot exhaust gases and device for carrying out the process
BR8103078A (en) * 1980-05-24 1982-02-09 Hoelter H PROCESS AND DEVICE FOR THE DISPOSAL OF Sulfurous Anhydride AND OTHER HARMFUL SUBSTANCES OF SMOKE GAS
CA1152294A (en) * 1980-10-08 1983-08-23 Xuan T. Nguyen Fluidized bed sulfur dioxide removal
DE3106580A1 (en) * 1981-02-21 1982-09-02 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD FOR MINIMIZING EMISSIONS FROM POLLUTION PLANTS
DE3136914A1 (en) * 1981-09-17 1983-03-31 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck "Process for the cleaning of flue gas downstream of power stations, producing gypsum at the same time in a dry process"
AT372876B (en) * 1981-11-19 1983-11-25 Oesterr Draukraftwerke METHOD AND DEVICE FOR THE DESCULATION OF FLUE GAS DESULFURING COAL BURNERS AFTER THE DRY ADDITIVE METHOD
DE3232080C2 (en) * 1982-08-28 1986-10-16 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Process for the dry removal of sulfur dioxide and other pollutants from flue gases
DE3235341A1 (en) * 1982-09-24 1984-03-29 Deutsche Babcock Anlagen Ag, 4200 Oberhausen METHOD FOR PURIFYING EXHAUST GASES
US4469663A (en) * 1982-10-15 1984-09-04 The Dow Chemical Company Scale control in flue gas desulfurization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499471A (en) * 1972-05-24 1974-01-28
JPS50150675A (en) * 1974-05-25 1975-12-03
JPS5644023A (en) * 1979-09-13 1981-04-23 Mitsubishi Heavy Ind Ltd Exhaust gas purifying method
JPS5851924A (en) * 1981-09-24 1983-03-26 Sumitomo Cement Co Ltd Method for desulfurizing and cooling exhaust gas

Also Published As

Publication number Publication date
JPS61287420A (en) 1986-12-17
SE8505270D0 (en) 1985-11-07
AU579902B2 (en) 1988-12-15
CN85108066A (en) 1986-10-22
BG60231B1 (en) 1994-01-24
CN1005312B (en) 1989-10-04
IT1185833B (en) 1987-11-18
HUT48126A (en) 1989-05-29
YU44580B (en) 1990-10-31
FR2580950B1 (en) 1990-05-25
SE8505270L (en) 1986-10-25
ES548285A0 (en) 1986-10-01
GB2174082B (en) 1988-11-23
GB8527455D0 (en) 1985-12-11
DD240839A5 (en) 1986-11-19
ZA858476B (en) 1986-07-30
GB2174082A (en) 1986-10-29
BE903598A (en) 1986-03-03
AU4907785A (en) 1986-10-30
NZ213859A (en) 1989-08-29
DK515485D0 (en) 1985-11-08
DK515485A (en) 1986-10-25
HU202422B (en) 1991-03-28
SE461958B (en) 1990-04-23
FI78846B (en) 1989-06-30
CS808085A2 (en) 1990-09-12
FI851623A0 (en) 1985-04-24
CS274270B2 (en) 1991-04-11
ES8700307A1 (en) 1986-10-01
PL148176B1 (en) 1989-09-30
IT8567943A0 (en) 1985-11-08
CH672265A5 (en) 1989-11-15
FI851623L (en) 1986-10-25
NL8503081A (en) 1986-11-17
CA1289336C (en) 1991-09-24
PL256163A1 (en) 1986-11-04
FR2580950A1 (en) 1986-10-31
DE3539348A1 (en) 1986-10-30
YU173285A (en) 1988-04-30
RO93449A (en) 1987-12-31
BG60231B2 (en) 1994-01-18

Similar Documents

Publication Publication Date Title
US3932587A (en) Absorption of sulfur oxides from flue gas
JPH0415007B2 (en)
US4544542A (en) Method for oxidation of flue gas desulfurization absorbent and the product produced thereby
JPS61287421A (en) Method and apparatus for forming separable solid compound from flue gas by reacting of gasrous sulfur compound of fluegas
CA2629987C (en) Flue gas desulfurization process utilizing hydrogen peroxide
US4595576A (en) Process for flue gas desulfurization
US5002743A (en) Process for the removal of sulfur dioxide from hot flue gases
FI111227B (en) Method for reducing pollutant emissions from circulating fluidized bed incineration plants
EP0128698B1 (en) Process and reactor for desulfurization of hot waste gas
JPS61287419A (en) Removal of gaseous sulfur compound from flue gas of furnace
JPH09183618A (en) Production of gypsum
JPH0541680B2 (en)
CA1289337C (en) Process for removing gaseous sulfur compounds, such as sulfur dioxide, from the flue gases of a furnace
US4891194A (en) Method for scrubbing flue gases from a firing unit
JPS6163504A (en) Method of treating gypsum
JPH07237920A (en) Production of gypsum hemihydrate from elemental sulfur
JPS61219705A (en) Production of gas containing so2 from waste liquid containing sulfur and sulfur compound
JPS5870820A (en) Desulfurization of flue gas
JPS597672B2 (en) Method for producing soluble potassium silicate fertilizer using potassium sulfate as a potassium source