JPH04150073A - Junction type field effect transistor - Google Patents

Junction type field effect transistor

Info

Publication number
JPH04150073A
JPH04150073A JP27478590A JP27478590A JPH04150073A JP H04150073 A JPH04150073 A JP H04150073A JP 27478590 A JP27478590 A JP 27478590A JP 27478590 A JP27478590 A JP 27478590A JP H04150073 A JPH04150073 A JP H04150073A
Authority
JP
Japan
Prior art keywords
region
type semiconductor
gate
semiconductor substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27478590A
Other languages
Japanese (ja)
Inventor
Hiroyuki Samejima
鮫島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27478590A priority Critical patent/JPH04150073A/en
Publication of JPH04150073A publication Critical patent/JPH04150073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to set a drain current with accuracy by installing a first conducting type semiconductor substrate where a plurality of grooves are formed at a specified span on one main plane, and a second conducting type gate region formed along the grooves. CONSTITUTION:An n type semiconductor region 2 is formed on an n<+> semiconductor substrate 1. An n<+> type semiconductor region 3, which is a source's contact region is formed at a depth of around 1mum. Then, a groove ranging from about 5 to 8mum deep is formed at a place where a gate region is formed along the groove, a p<+> type semiconductor region 5 is formed at a depth of about 1mum. Then, the surface of the substrate 1 is covered with an oxide film 4, thereby forming an aluminum electrode 6 on the gate region 5 and the source' s contact region 3. Moreover, a gate electrode and the source electrode 6 are installed on the front surface while a drain electrode 100 is installed on the rear surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は接合型電界効果トランジスタ(以下、J−FE
Tと呼ふ)に間し、特に、シングルゲート型の接合型電
界効果トランジスタの構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a junction field effect transistor (hereinafter referred to as J-FE).
In particular, the present invention relates to the structure of a single-gate junction field effect transistor.

[従来の技術] 従来のJ−FETは、nチャネルJ−FETを例にとる
と、第3図に示すような構造になっている。すなわち、
p+型半導体基板7の上にエピタキシャル成長で形成し
たn型半導体領域2を有し、このn型半導体領域2の中
にn゛型半導体領域3で、ソースおよびトレインコンタ
クト領域を形成し、p゛型半導体領域5でゲート領域を
形成していた。
[Prior Art] Taking an n-channel J-FET as an example, a conventional J-FET has a structure as shown in FIG. 3. That is,
It has an n-type semiconductor region 2 formed by epitaxial growth on a p+ type semiconductor substrate 7, and in this n-type semiconductor region 2, a source and train contact region is formed with an n-type semiconductor region 3, and a p-type semiconductor region 2 is formed. The semiconductor region 5 formed a gate region.

そして、ソースおよびドレインコンタクト領域3に、表
面から電極6を設け、ゲート領域5はp+型半導体領域
8を介してp+型半導体基板7に電気的に接続されてい
る。p+型半導体基板7は裏面から電極をとる構造にな
っている。
Electrodes 6 are provided in the source and drain contact regions 3 from the surface, and the gate region 5 is electrically connected to the p + -type semiconductor substrate 7 via the p + -type semiconductor region 8 . The p+ type semiconductor substrate 7 has a structure in which electrodes are taken from the back surface.

従って、J−FETの重要特性であるゲートが0バイア
スである時のトレイン電流I DSSは、表面ゲート領
域であるp゛型半導体領域5と裏面ゲート領域であるp
°型半導体基板7の間隔すなわちチャネル厚さd′の厚
さで決定される。
Therefore, the train current IDSS when the gate is at 0 bias, which is an important characteristic of J-FET, is divided between the p' type semiconductor region 5 which is the front gate region and the p' type semiconductor region 5 which is the back gate region.
It is determined by the distance between the °-type semiconductor substrates 7, that is, the channel thickness d'.

[発明が解決しようとする課題] 二の従来のJ−FETては、その構造から上述したよう
にドレイン電流I DSSはチャネル厚さd′によって
決定されるが、このチャネル厚さd′を所望のドレイン
電流I DSSが得られるようにウエノ・面内の各素子
を均一にコントロールするのは非常に難しいという問題
点がある。
[Problems to be Solved by the Invention] In the two conventional J-FETs, as described above, the drain current IDSS is determined by the channel thickness d' due to its structure. There is a problem in that it is very difficult to uniformly control each element within the plane of the wafer so as to obtain a drain current I DSS of .

すなわち、チャネル領域となるn型半導体領域2をエピ
タキシャル成長で成長させるが、このn型半導体領域2
の厚さも(以下、エビ厚と呼ぶ)のウェハ面内でのばら
つき、および表面ゲート領域であるp′″半導体領域5
を形成する際の拡散ばらつき(深さ方向のばらつき)の
ため、ウェハ面内の各素子で1055特性のばらつきが
大きく発生するという問題点がある。
That is, an n-type semiconductor region 2 that will become a channel region is grown by epitaxial growth, but this n-type semiconductor region 2
(hereinafter referred to as the thickness) within the wafer surface, and the p′″ semiconductor region 5 which is the surface gate region.
Due to diffusion variations (variations in the depth direction) during the formation of the wafer, there is a problem in that the 1055 characteristics vary greatly among the elements within the wafer surface.

このため、エビ厚tの面内ばらつきを±3%または±5
%に抑制し、拡散ばらつき低減のためゲート領域5の形
成をイオン注入で行ったりするが、チャネル厚さd′が
許容範囲内か否かをチエツクするために、第4図に示す
チエツクバタンを素子内に設け、表面ゲート−裏面ゲー
ト間のバンチスルー電圧(以下VPTと呼ぶ)を管理し
ていた。
Therefore, the in-plane variation in shrimp thickness t can be reduced by ±3% or ±5
% and to reduce diffusion variations, the gate region 5 is formed by ion implantation. However, in order to check whether the channel thickness d' is within the allowable range, the check button shown in FIG. 4 is used. It was provided in the device to manage the bunch-through voltage (hereinafter referred to as VPT) between the front gate and the back gate.

すなわち、パンチスルー電圧VPTとトレイン電流I 
DSSとの間には相関があり、この相関に基づきチャネ
ル厚さd′を制御していた。
That is, punch-through voltage VPT and train current I
There is a correlation with DSS, and the channel thickness d' was controlled based on this correlation.

しかしながら、従来のJ−FETは、不純物領域5の厚
さを精密に制御できないので、その構造上、ドレイン電
流r DSSのウェハ面内のばらつきを大幅に低減させ
ることはできず、ベレットの特性チエツクでトレイン電
流I DSSの不良が多発する。
However, in the conventional J-FET, since the thickness of the impurity region 5 cannot be precisely controlled, due to its structure, it is not possible to significantly reduce the variation in the drain current rDSS within the wafer surface, and it is difficult to check the characteristics of the pellet. Train current IDSS failures occur frequently.

このことはウェハ径が大きくなるほど顕著になる。This becomes more noticeable as the wafer diameter increases.

また、材料であるエピタキシャルウェハはエビ厚のばら
つき規格を±3%〜±5%と厳しく要求しているので単
価が高く、またチャネル厚さd′のコントロールに工数
がかかるため製造単価が非常に高くなるという問題点も
あフた。
In addition, the epitaxial wafer, which is the material, has a strict standard for variation in thickness of ±3% to ±5%, so the unit cost is high, and since controlling the channel thickness d' requires man-hours, the manufacturing cost is very high. The problem of high prices also disappeared.

[課題を解決するための手段] 本発明の要旨は、−主面に開口する複数の溝が所定間隔
て形成された第1導電型の半導体基板と、上記溝に沿っ
て形成された第2導電型のゲート領域と、上記ゲート領
域間一主面に形成された第1導電型のソースコンタクト
領域と、半導体基板の裏面に設けられたドレイン電極と
を含むことである。
[Means for Solving the Problems] The gist of the present invention is to provide: - a semiconductor substrate of a first conductivity type in which a plurality of grooves opening in a main surface are formed at predetermined intervals; It includes a conductive type gate region, a first conductive type source contact region formed on one main surface between the gate regions, and a drain electrode provided on the back surface of the semiconductor substrate.

[発明の作用] 上記構成に係る接合型電界効果トランジスタでは、ゲー
ト領域に印加される電圧により、ゲート領域と基板との
接合がら空乏層が発達し、ソースコンタクト領域とドレ
イン電極間を流れる電流を制御する。ここで、ゲート領
域のバイアスを「0」にしたとき流れるトレイン電流は
溝に沿って形成されたゲート領域の間隔に支配されるが
、この間隔は溝を形成する時の加工精度に支配される。
[Operation of the invention] In the junction field effect transistor having the above structure, a depletion layer develops at the junction between the gate region and the substrate due to the voltage applied to the gate region, and current flowing between the source contact region and the drain electrode is suppressed. Control. Here, the train current that flows when the bias of the gate region is set to "0" is controlled by the interval between the gate regions formed along the groove, but this interval is controlled by the processing accuracy when forming the groove. .

般に溝の加工精度は不純物の拡散距離の精度より高いの
で、ドレイン電流を正確に設定値にすることができる。
Generally, the accuracy of groove processing is higher than the accuracy of the impurity diffusion distance, so the drain current can be accurately set to the set value.

[実施例コ 次に本発明の実施例について図面を参照して説明する。[Example code] Next, embodiments of the present invention will be described with reference to the drawings.

第1図(c)は本発明のJ−FETの第1実施例を示す
断面図であり、その製造方法を第1図(a)〜(c)に
示している。n+半導体基板1の上にエピタキシャル成
長で10X15μm程度のn型半導体領域2を形成し、
n型半導体領域にソースのコンタクト領域であるn+型
半導体領域3を1μm程度の深さで形成する(第1図(
a)参照)。
FIG. 1(c) is a sectional view showing a first embodiment of the J-FET of the present invention, and the manufacturing method thereof is shown in FIGS. 1(a) to (c). An n-type semiconductor region 2 of about 10×15 μm is formed on an n+ semiconductor substrate 1 by epitaxial growth,
An n + -type semiconductor region 3, which is a source contact region, is formed in the n-type semiconductor region to a depth of about 1 μm (see Fig. 1).
a)).

次にゲート領域を形成する箇所に、δ〜8μm程度の溝
を掘り、この溝に沿ってゲート領域であるp゛型半導体
領域5を1μm程度の深さで形成する。
Next, a trench of about .delta. to 8 .mu.m is dug at the location where the gate region is to be formed, and a p'-type semiconductor region 5, which is the gate region, is formed to a depth of about 1 .mu.m along this trench.

この後、基板1の表面を酸化膜4て被う(第1図(b)
参照)。
After this, the surface of the substrate 1 is covered with an oxide film 4 (Fig. 1(b)).
reference).

最後にゲート領域5およびソースのコンタクト領域3上
にアルミ電極6を形成し、ゲートおよびソース電極6は
表面に、ドレイン電極100は表面に設けるぐ第1図(
C)参照)。なおチャネル厚さdはゲート領域間の距離
で決定される。このようとこチャネル厚さdは溝を形成
するためのりソグラフィ技術の精度に支配され、しかも
ゲート領域5は溝の表面のみなので、従来のようにチャ
ネル厚さd′のばらつきは生じない。
Finally, an aluminum electrode 6 is formed on the gate region 5 and the source contact region 3, and the gate and source electrodes 6 are provided on the surface, and the drain electrode 100 is provided on the surface.
See C). Note that the channel thickness d is determined by the distance between gate regions. In this case, the channel thickness d is controlled by the accuracy of the lithography technique for forming the groove, and since the gate region 5 is only the surface of the groove, there is no variation in the channel thickness d' as in the conventional case.

第2図(c)は本発明のJ−FETの第2実施例を示す
断面図であり、その製造方法を第2図(a)〜(C)に
参照して説明する。
FIG. 2(c) is a sectional view showing a second embodiment of the J-FET of the present invention, and a method for manufacturing the same will be described with reference to FIGS. 2(a) to (C).

第1実施例との相違点はソースのコンタクト領域である
n+型半導体領域3を形成する際、それぞれの領域を分
離せずに1つのパターンを形成し、ゲート領域の溝を形
成することでそれぞれのソース領域を分離する点にある
。この方法だとソースのコンタクト領域をソース領域全
面に形成するため、この後のアルミ電極とのコンタクト
窓を形成する際のフォトレジストの合わせ精度は第1実
施例に比べて余裕があるという利点があり、特にチャネ
ル厚dを薄くする際には有利となる。その他は第1実施
例と同様なので説明は省略する。
The difference from the first embodiment is that when forming the n+ type semiconductor region 3 which is the contact region of the source, one pattern is formed without separating each region, and grooves for the gate region are formed. The point is to separate the source regions. With this method, the source contact region is formed over the entire surface of the source region, so the photoresist alignment accuracy when forming the contact window with the aluminum electrode after this has the advantage of being more flexible than in the first embodiment. This is especially advantageous when reducing the channel thickness d. The rest is the same as the first embodiment, so the explanation will be omitted.

[発明の効果] 以上説明したように本発明は、チャネル厚dが表面から
形成される各ゲート領域の間隔、すなわちリソグラフィ
ーパターンの設計寸法で決定されるため、エビ厚のばら
つきや、拡散ばらつきに影響されない。従って、ウェハ
面内でのドレイン電流I DSSばらつきがほとんど生
じないという効果を有する。またエビ厚ばらつきの特殊
管理や、ゲート領域の深さのコントロールが不要である
ため、比較的安価てウェハを製造できるという効果も有
する。
[Effects of the Invention] As explained above, in the present invention, the channel thickness d is determined by the interval between each gate region formed from the surface, that is, the design dimension of the lithography pattern. Not affected. Therefore, there is an effect that almost no variation in drain current IDSS occurs within the wafer surface. Furthermore, since there is no need for special management of variations in thickness or control of the depth of the gate region, there is also the advantage that wafers can be manufactured at relatively low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明のJ−FETの第1実施
例の製造工程を示す断面図、第2図(a)〜(c)は本
発明のJ−FETの第2実施例の製造工程を示す断面図
、第3図は従来のJ−FETの断面図、第4図は従来の
J−FETのチップ内に挿入して、拡散層の深さをコン
トロールするためのチエツクパターンを示す断面図であ
る。 1・・・・・・・・・n+型半導体基板、2・・・・・
・・・・n型半導体領域、・n゛型半導体領域 (ソースコンタクト領域)、 4 争 ・酸化膜、 ・p゛型半導体領域 (ゲート領域)、 7 ・ ・・・・・・アルミ電極、 ・・・・・・p+型半導体基板、 ・・・・・・p“型半導体領域。
1(a) to (C) are cross-sectional views showing the manufacturing process of the first embodiment of the J-FET of the present invention, and FIGS. 2(a) to (c) are cross-sectional views showing the manufacturing process of the first embodiment of the J-FET of the present invention. 3 is a cross-sectional view of a conventional J-FET, and FIG. 4 is a cross-sectional view showing the manufacturing process of an example. FIG. 3 is a sectional view showing a check pattern. 1......n+ type semiconductor substrate, 2...
・・・N-type semiconductor region, ・N゛-type semiconductor region (source contact region), 4. Oxide film, ・P゛-type semiconductor region (gate region), 7. ...Aluminum electrode, ・...p+ type semiconductor substrate, ...p" type semiconductor region.

Claims (1)

【特許請求の範囲】[Claims] 一主面に開口する複数の溝が所定間隔で形成された第1
導電型の半導体基板と、上記溝に沿って形成された第2
導電型のゲート領域と、上記ゲート領域間一主面に形成
された第1導電型のソースコンタクト領域と、半導体基
板の裏面に設けられたドレイン電極とを含む接合型電界
効果トランジスタ。
A first groove in which a plurality of grooves opening on one principal surface are formed at predetermined intervals.
a conductive type semiconductor substrate, and a second semiconductor substrate formed along the groove.
A junction field effect transistor including a conductive type gate region, a first conductive type source contact region formed on one principal surface between the gate regions, and a drain electrode provided on a back surface of a semiconductor substrate.
JP27478590A 1990-10-12 1990-10-12 Junction type field effect transistor Pending JPH04150073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27478590A JPH04150073A (en) 1990-10-12 1990-10-12 Junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27478590A JPH04150073A (en) 1990-10-12 1990-10-12 Junction type field effect transistor

Publications (1)

Publication Number Publication Date
JPH04150073A true JPH04150073A (en) 1992-05-22

Family

ID=17546530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27478590A Pending JPH04150073A (en) 1990-10-12 1990-10-12 Junction type field effect transistor

Country Status (1)

Country Link
JP (1) JPH04150073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173284B2 (en) 2001-08-29 2007-02-06 Denso Corporation Silicon carbide semiconductor device and manufacturing method
US8035138B2 (en) 2006-08-29 2011-10-11 Rohm Co., Ltd. Junction field effect transistor and production method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173284B2 (en) 2001-08-29 2007-02-06 Denso Corporation Silicon carbide semiconductor device and manufacturing method
US8035138B2 (en) 2006-08-29 2011-10-11 Rohm Co., Ltd. Junction field effect transistor and production method for the same

Similar Documents

Publication Publication Date Title
US5031008A (en) MOSFET transistor
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
US5440165A (en) Semiconductor device with means for suppressing electric fields
JPS59121976A (en) Semiconductor device
JP3489602B2 (en) Semiconductor device and manufacturing method thereof
US7772619B2 (en) Semiconductor device having a fin structure and fabrication method thereof
EP1482560A1 (en) Semiconductor device
JPH04150073A (en) Junction type field effect transistor
JPH0582067B2 (en)
JPH01103878A (en) Manufacture of semiconductor device
JPH0244734A (en) Manufacture of mis transistor
JPS58207677A (en) Semiconductor integrated circuit device
KR100239457B1 (en) Method for manufacturing mos transistor
KR100215858B1 (en) Method for coating mask rom
JPH0652738B2 (en) Insulated gate type field effect transistor
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPS59205762A (en) Manufacture of semiconductor device
JPH08167617A (en) High breakdown voltage semiconductor device
JPS58116749A (en) Semiconductor device
JPH05152431A (en) Semiconductor device
JPH02121369A (en) Mis type field effect transistor
JPS6127684A (en) Junction gate field effect transistor
JPH01189173A (en) Semiconductor device
JPH05218453A (en) Electrostatic induction type semiconductor device
JPS6252472B2 (en)