JPH04147613A - Crystal growing substrate - Google Patents

Crystal growing substrate

Info

Publication number
JPH04147613A
JPH04147613A JP27177790A JP27177790A JPH04147613A JP H04147613 A JPH04147613 A JP H04147613A JP 27177790 A JP27177790 A JP 27177790A JP 27177790 A JP27177790 A JP 27177790A JP H04147613 A JPH04147613 A JP H04147613A
Authority
JP
Japan
Prior art keywords
crystal growth
crystal
crystal growing
growth substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27177790A
Other languages
Japanese (ja)
Inventor
Eiji Yamaichi
英治 山市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP27177790A priority Critical patent/JPH04147613A/en
Publication of JPH04147613A publication Critical patent/JPH04147613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a crystal growing substrate excellent in growing low dislocation density crystal by forming a groove in the opposite side surface to the crystal growing surface. CONSTITUTION:A crystal growing substrate 11 is adapted to include grooves 12 for making flexible an opposite side surface to a crystal growing surface 11a formed on the surface thereof, i.e., the back surface 11b thereof. The grooves 12 each having V-shaped cross section and having a depth not cracked upon treating the crystal growing substrate 11 are coaxially formed in an equal interval substantially over the whole surface. The grooves 12 formed as such reduce the rigidity of the crystal growing substrate 11 and ensure flexibility to the crystal growing substrate 11. Further, in the case where a crystal is grown on the crystal growing surface 11a, stress applied to the back surface 11b side of the crystal growing substrate 11 is lower substantially over the whole surface of the crystal growing substrate 11 than that to the grown crystal.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリコン等の結晶成長基板上に化合物半導体
等の結晶を成長させる結晶成長基板に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a crystal growth substrate for growing a crystal of compound semiconductor or the like on a crystal growth substrate of silicon or the like.

〈従来の技術〉 結晶成長基板としてシリコン基板を用い、このシリコン
基板上に結晶として化合物半導体のガリウムヒ素(Ga
As)をエピタキシャル成長させて膜形成する場合には
、GaAs膜を形成した後の冷却過程で、GaAs膜は
シリコン基板より引張応力を受ける。
<Prior art> A silicon substrate is used as a crystal growth substrate, and a compound semiconductor gallium arsenide (Ga) is grown as a crystal on this silicon substrate.
When a film is formed by epitaxial growth of As), the GaAs film is subjected to tensile stress from the silicon substrate during the cooling process after the GaAs film is formed.

つまり、GaAs膜の熱膨張係数とシリコン基板の熱膨
張係数との相違によって、冷却過程におけるGaAs膜
の収縮率がシリコン基板の収縮率よりも大きくなる。そ
のために、GaAs膜はシリコン基板をその中心方向に
引っ張ろうとする。
In other words, due to the difference between the coefficient of thermal expansion of the GaAs film and the coefficient of thermal expansion of the silicon substrate, the contraction rate of the GaAs film during the cooling process becomes larger than that of the silicon substrate. Therefore, the GaAs film tries to pull the silicon substrate toward its center.

しかしながらGaAs膜よりもシリコン基板の方が十分
な剛性を有するために、逆にGaAs膜はシリコン基板
によって外側方向に引っ張られるので、GaAs膜に引
張応力が生じる。
However, since the silicon substrate has sufficient rigidity than the GaAs film, the GaAs film is pulled outward by the silicon substrate, so that tensile stress is generated in the GaAs film.

この時、GaAs膜に生じた引張応力を緩和しようとし
て、GaAs膜中では転移が発生したり転位が移動した
りする。ことに、転位は結晶成長温度(およそ700°
C)よりおよそ350 ’Cまで冷却する過程で多く発
生する。このため、結晶成長温度で転位の発生が少なく
ても、結晶成長基板の冷却過程で多くの転位が発生する
At this time, in an attempt to relieve the tensile stress generated in the GaAs film, dislocations occur or move within the GaAs film. In particular, dislocations occur at crystal growth temperatures (approximately 700°
C) occurs more frequently during the cooling process to approximately 350'C. Therefore, even if few dislocations occur at the crystal growth temperature, many dislocations occur during the cooling process of the crystal growth substrate.

そこで従来では、GaAs1ll中に発生した転位を低
減するために、エピタキシャル成長後に、およそ900
℃の温度でアニールを繰り返し行って、GaAs膜中の
転位密度を低減させていた。または、シリコン基板上に
I n G a A s / G a A s等の歪超
格子を形成し、その上にGaAs1lljをエピタキシ
ャル成長させて、成長させたGaAs膜に生じる引張応
力を歪超格子によって緩和していた。
Conventionally, in order to reduce the dislocations generated in GaAs 1ll, approximately 900
The dislocation density in the GaAs film was reduced by repeatedly performing annealing at a temperature of .degree. Alternatively, a strained superlattice such as InGaAs/GaAs is formed on a silicon substrate, GaAs1llj is epitaxially grown on it, and the tensile stress generated in the grown GaAs film is relaxed by the strained superlattice. Was.

さらには、これらの方法を組み合わせて、GaAs膜を
形成していた。
Furthermore, GaAs films have been formed by combining these methods.

〈発明が解決しようとする課題〉 しかしながら、上記のいずれの場合でも、GaAs膜と
シリコン基板との熱膨張差によって発生するGaAs膜
の引張応力の低減は難しく、GaAs1l中の転位密度
を106個/cm”以下に低減することは非常に困難で
ある。
<Problems to be Solved by the Invention> However, in any of the above cases, it is difficult to reduce the tensile stress in the GaAs film caused by the difference in thermal expansion between the GaAs film and the silicon substrate, and the dislocation density in 1L of GaAs is reduced to 106/1. It is very difficult to reduce the thickness to less than 1 cm.

この結果、転位密度が10−個/ c m ”以上を有
するGaAs1llで、例えば半導体レーザ装置等の半
導体装置を形成した場合には、キャリアがCaAs膜中
の転位に集中し易いために、半導体装置の寿命が短くな
る。
As a result, when a semiconductor device such as a semiconductor laser device is formed using GaAs having a dislocation density of 10-cm'' or higher, carriers tend to concentrate on the dislocations in the CaAs film, and the semiconductor device lifespan becomes shorter.

本発明は、上記課題を解決するためになされた方法であ
って、低転位密度の結晶を成長させるのに優れた結晶成
長基板を提供することを目的とする。
The present invention is a method made to solve the above problems, and an object of the present invention is to provide a crystal growth substrate that is excellent for growing crystals with a low dislocation density.

〈課題を解決するための手段〉 本発明は、上記目的を達成するために成されたものであ
る。
<Means for Solving the Problems> The present invention has been accomplished in order to achieve the above objects.

すなわち、化合物半導体等の結晶を成長させるだめの結
晶成長面を表面に形成した結晶成長基板であって、この
結晶成長面と反対側の面に溝を形成して、結晶成長基板
に可撓性を持たせたものである。
In other words, it is a crystal growth substrate on which a crystal growth surface for growing crystals such as compound semiconductors is formed, and grooves are formed on the surface opposite to this crystal growth surface to make the crystal growth substrate flexible. It has the following.

〈作用〉 上記した結晶成長基板は結晶成長面とは反対側の面に溝
を形成したことにより、結晶成長基板に可撓性を持たせ
て、成長させた結晶に生じる引張応力を緩和する。
<Function> The crystal growth substrate described above has grooves formed on the surface opposite to the crystal growth surface, thereby imparting flexibility to the crystal growth substrate and relieving tensile stress generated in the grown crystal.

すなわち、この結晶成長基板の表面に形成した結晶成長
面上に結晶を成長させ、その後結晶成長基板を冷却する
過程において、結晶成長基板よりも成長させた結晶の方
が熱膨張係数が大きいために、成長させた結晶は結晶成
長基板よりも収縮量が大きくなる。
In other words, in the process of growing a crystal on the crystal growth surface formed on the surface of this crystal growth substrate and then cooling the crystal growth substrate, the thermal expansion coefficient of the grown crystal is larger than that of the crystal growth substrate. , the grown crystal shrinks more than the crystal growth substrate.

そのために、結晶成長基板の結晶成長面側には圧縮応力
が作用し、裏面側には引張応力が作用する。この引張応
力は結晶成長基板に形成した溝によって緩和されるので
、結晶成長基板は圧縮応力によって結晶成長面側に反る
。また溝によって結晶成長基板の剛性は小さくなり、結
晶成長基板は可撓性を持つ、このため、結晶成長基板に
作用する圧縮応力によって、結晶成長基板は反った状態
になる。
Therefore, compressive stress acts on the crystal growth side of the crystal growth substrate, and tensile stress acts on the back side. Since this tensile stress is relieved by the grooves formed in the crystal growth substrate, the crystal growth substrate is warped toward the crystal growth surface due to the compressive stress. Further, the rigidity of the crystal growth substrate is reduced by the grooves, and the crystal growth substrate has flexibility. Therefore, the crystal growth substrate is warped by the compressive stress acting on the crystal growth substrate.

したがって、成長させた結晶にはほとんど引張応力が加
わらなくなるために、結晶成長基板は成長させた結晶中
の転位の発生を低減する。
Therefore, since almost no tensile stress is applied to the grown crystal, the crystal growth substrate reduces the occurrence of dislocations in the grown crystal.

〈実施例〉 本発明の実施例を第1図に示す背面図および第2図のA
−A拡大断面図により説明する。
<Example> An example of the present invention is shown in the rear view in FIG. 1 and A in FIG.
-A will be explained using an enlarged sectional view.

図に示す如く、結晶成長基板11は、その表面に形成し
た結晶成長面11aと反対側の面、すなわち裏面11b
に可撓性を持たせる溝12(第1図では斜線部で示す)
を形成したものである。
As shown in the figure, the crystal growth substrate 11 has a surface opposite to a crystal growth surface 11a formed on its surface, that is, a back surface 11b.
Groove 12 (shown as a shaded area in Figure 1) to provide flexibility to the
was formed.

この溝12は、断面形状がU字形を有し、結晶成長基板
11を取り扱う上で割れない深さで、前記裏面11bの
ほぼ全面に亙って等間隔で同心円状に形成する。
The grooves 12 have a U-shaped cross section, and are formed concentrically at equal intervals over almost the entire surface of the back surface 11b, with a depth that will not break the crystal growth substrate 11 when handled.

このように形成した溝12は、結晶成長基板11の剛性
を低減して、結晶成長基板1】に可撓性を持たせる。ま
た、結晶成長面11a上に結晶を成長させた場合には、
成長させた結晶より結晶成長基板11の裏面11b側が
受ける応力を結晶成長基板11のほぼ全面に亙って緩和
する。
The grooves 12 formed in this manner reduce the rigidity of the crystal growth substrate 11 and give the crystal growth substrate 1 flexibility. Furthermore, when a crystal is grown on the crystal growth surface 11a,
The stress that is applied to the back surface 11b of the crystal growth substrate 11 from the grown crystal is relieved over almost the entire surface of the crystal growth substrate 11.

すなわち、成長させた結晶よって結晶成長基板11が受
ける応力の方向は、結晶成長基板11の半径方向が主に
なるので、この応力を緩和するためには、応力が作用す
る方向に対して直角方向に溝12を形成することが応力
を緩和することに対して効果的になる。
In other words, the direction of stress applied to the crystal growth substrate 11 by the grown crystal is mainly in the radial direction of the crystal growth substrate 11, so in order to relieve this stress, it is necessary to apply stress in the direction perpendicular to the direction in which the stress acts. Forming the groove 12 in the groove 12 is effective in relieving stress.

したがって、前記溝12を同心円状に形成したことによ
り、結晶成長基板11の裏面11b側に生じる応力は緩
和される。この結果、結晶成長面la側に作用する応力
によって、可撓性を有する結晶成長基板IIは反る。
Therefore, by forming the grooves 12 concentrically, the stress generated on the back surface 11b side of the crystal growth substrate 11 is alleviated. As a result, the flexible crystal growth substrate II warps due to the stress acting on the crystal growth surface la side.

また、溝12は、同心円状の溝に限定されることはない
。例えば第3図に示すように、結晶成長基板11の裏面
11bに形成する溝12(第3図中の斜線部)を格子状
に形成してもよい。
Furthermore, the grooves 12 are not limited to concentric grooves. For example, as shown in FIG. 3, the grooves 12 (hatched portions in FIG. 3) formed on the back surface 11b of the crystal growth substrate 11 may be formed in a lattice shape.

この場合には、結晶成長面11a側に作用する半径方向
の応力とともに円周方向の応力も緩和することができる
。このため、結晶成長基板11はより反り易くなる。
In this case, the stress in the circumferential direction as well as the stress in the radial direction acting on the crystal growth surface 11a side can be relaxed. Therefore, the crystal growth substrate 11 becomes more likely to warp.

さらに、溝12は、螺旋状の溝で形成してもよく、また
は同心円状の溝と放射状の溝とを組み合わせた溝等で形
成することもできる。
Further, the grooves 12 may be formed as spiral grooves, or may be formed as a combination of concentric grooves and radial grooves.

一方、溝の断面形状も前記したU字形断面に限定される
ことはなく、例えば、■字形断面または角形断面等で形
成することもできる。これらの断面形状の場合には、結
晶成長基板11が反った際に溝の隅部に応力が集中する
のを防くために、溝の隅部を丸く形成する。
On the other hand, the cross-sectional shape of the groove is not limited to the above-mentioned U-shaped cross-section, and may also be formed, for example, in a ■-shaped cross-section or a square cross-section. In the case of these cross-sectional shapes, the corners of the grooves are formed rounded in order to prevent stress from being concentrated at the corners of the grooves when the crystal growth substrate 11 is warped.

次に、結晶成長法としてエピタキシャル成長法により、
上記の結晶結晶基板11に結晶として化合物半導体のC
yaAsを膜形成した場合の結晶成長基板11の動作を
第4図と第5図とにより説明する。
Next, by epitaxial growth method as a crystal growth method,
C of a compound semiconductor as a crystal on the above-mentioned crystalline substrate 11
The operation of the crystal growth substrate 11 when a yaAs film is formed will be explained with reference to FIGS. 4 and 5.

第4図に示す如く、エピタキシャル成長法ヲ行うために
分子線エピタキシャル装置を用いて、結晶成長基板11
の結晶成長面11aに結晶としてGaAsを成長させる
。そして、結晶成長基板11上にGaAs膜13膜形3
してから、結晶成長基板11をGaAs膜13膜形3成
長温度(およそ700°C)より室温まで冷却する。
As shown in FIG. 4, a crystal growth substrate 11 is grown using a molecular beam epitaxial apparatus to perform the epitaxial growth method.
GaAs is grown as a crystal on the crystal growth surface 11a. Then, a GaAs film 13 film type 3 is deposited on the crystal growth substrate 11.
Thereafter, the crystal growth substrate 11 is cooled from the GaAs film 13 film type 3 growth temperature (approximately 700° C.) to room temperature.

この冷却過程では、第5図に示すように、GaAs膜1
3膜形3の熱膨張係数が結晶成長基板11の熱膨張係数
よりも大きいために、結晶成長基板11をその中心方向
に引っ張る。
In this cooling process, as shown in FIG.
Since the thermal expansion coefficient of the three-film type 3 is larger than that of the crystal growth substrate 11, the crystal growth substrate 11 is pulled toward its center.

したがって、結晶成長基板11はGaAs膜13膜形3
力によって、結晶成長面11a側に圧縮応力が作用する
。ことに、結晶成長基板11の裏面11bにはほぼ全面
に亙って同心円上の溝12が形成されているので、この
溝12によって裏面11b側に作用する引張応力は、裏
面11b側のほぼ全面に亙って緩和される。よって、可
撓性を有する結晶成長基板11は、結晶成長面11a側
に作用する圧縮応力によってほぼ均一に反る。
Therefore, the crystal growth substrate 11 has a GaAs film 13 film type 3.
Due to the force, compressive stress acts on the crystal growth surface 11a side. In particular, since concentric grooves 12 are formed over almost the entire surface of the back surface 11b of the crystal growth substrate 11, the tensile stress acting on the back surface 11b due to the grooves 12 is applied to almost the entire surface of the back surface 11b. will be relaxed over the following period. Therefore, the flexible crystal growth substrate 11 warps almost uniformly due to the compressive stress acting on the crystal growth surface 11a side.

この時、結晶成長基板11の持つ剛性によって元に戻ろ
うとする復元力は小さくなるので、この復元力でG a
 A s Ill 3を引っ張ることによって生じるG
aAs膜13中の引張応力は、はぼ全面に亙って小さく
なる。この結果、GaAs膜13中の転位の発生は抑え
られ、転位密度は106個/cm”以下になる。
At this time, the restoring force that tries to return to the original state becomes small due to the rigidity of the crystal growth substrate 11, so this restoring force causes Ga
G produced by pulling A s Ill 3
The tensile stress in the aAs film 13 becomes small over almost the entire surface. As a result, the generation of dislocations in the GaAs film 13 is suppressed, and the dislocation density becomes less than 106 pieces/cm''.

このように、GaAs膜13膜形3全面に亙って低転位
密度になることにより、このGaAs膜13膜形3した
結晶成長基板11で、例えば半導体レーザ装置を製造し
た場合には、結晶成長基板11のほぼ全面に亙って品質
に優れた半導体レーザ装置が製造でき、したがって歩留
りも向上する。
As described above, since the dislocation density is low over the entire surface of the GaAs film 13 film type 3, when a semiconductor laser device is manufactured using the crystal growth substrate 11 made of the GaAs film 13 film type 3, for example, the crystal growth A semiconductor laser device with excellent quality can be manufactured over almost the entire surface of the substrate 11, and therefore the yield can be improved.

〈発明の効果〉 以上、説明したように本発明によれば、結晶成長基板の
表面に形成した結晶成長面と反対側の面に溝を形成した
ので、結晶成長基板が可撓性を持って反り易くなり、結
晶成長温度より室温に冷却する過程で成長させた結晶に
生じる引張応力は小さくなる。この結果、結晶中に発生
する転位は減少する。
<Effects of the Invention> As described above, according to the present invention, grooves are formed on the surface of the crystal growth substrate opposite to the crystal growth surface, so that the crystal growth substrate has flexibility. It becomes easier to warp, and the tensile stress generated in the grown crystal during cooling from the crystal growth temperature to room temperature becomes smaller. As a result, the number of dislocations generated in the crystal is reduced.

よって、本案の結晶成長基板で成長させた結晶で半導体
装置を形成した場合には、転位欠陥の少ない高品質の製
品ができる。
Therefore, when a semiconductor device is formed using a crystal grown using the crystal growth substrate of the present invention, a high-quality product with few dislocation defects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例の背面図、 第2図は、第1図中のA−A拡大断面図、第3図は、別
の実施例の背面図、 第4図および第5図は、実施例の動作の説明図である。 11・・・結晶成長基板。 11a・・・結晶成長面、11”b・・・裏面。 12・・・溝、  13・・・GaAs膜。 特許出願人     沖電気工業株式会社代理人   
     弁理士 船 橋 國 則実死グJの背り日 第1図 L7FAfA−Mf、人UraS 第2図 第3図 第4図 第5図
FIG. 1 is a rear view of the embodiment, FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1, FIG. 3 is a rear view of another embodiment, and FIGS. 4 and 5 are It is an explanatory diagram of operation of an example. 11...Crystal growth substrate. 11a...Crystal growth surface, 11"b...Back surface. 12...Groove, 13...GaAs film. Patent applicant Oki Electric Industry Co., Ltd. agent
Patent Attorney Norizane Funahashi Death Day of Death Figure 1 L7FAfA-Mf, Person UraS Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】  結晶成長法により結晶を成長させる結晶成長面を表面
に形成した結晶成長基板において、 前記結晶成長面と反対側の面に溝を形成したことを特徴
とする結晶成長基板。
[Scope of Claims] A crystal growth substrate having a crystal growth surface formed on its surface for growing crystals by a crystal growth method, characterized in that a groove is formed on a surface opposite to the crystal growth surface.
JP27177790A 1990-10-09 1990-10-09 Crystal growing substrate Pending JPH04147613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27177790A JPH04147613A (en) 1990-10-09 1990-10-09 Crystal growing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27177790A JPH04147613A (en) 1990-10-09 1990-10-09 Crystal growing substrate

Publications (1)

Publication Number Publication Date
JPH04147613A true JPH04147613A (en) 1992-05-21

Family

ID=17504708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27177790A Pending JPH04147613A (en) 1990-10-09 1990-10-09 Crystal growing substrate

Country Status (1)

Country Link
JP (1) JPH04147613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002847A (en) * 2001-06-29 2003-01-09 주식회사 하이닉스반도체 Method for fabricating semiconductor device
WO2009104759A1 (en) * 2008-02-21 2009-08-27 財団法人神奈川科学技術アカデミー Semiconductor substrate, semiconductor element, light emitting element and electronic element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002847A (en) * 2001-06-29 2003-01-09 주식회사 하이닉스반도체 Method for fabricating semiconductor device
WO2009104759A1 (en) * 2008-02-21 2009-08-27 財団法人神奈川科学技術アカデミー Semiconductor substrate, semiconductor element, light emitting element and electronic element
JP2009200207A (en) * 2008-02-21 2009-09-03 Kanagawa Acad Of Sci & Technol Semiconductor substrate, semiconductor element, light-emitting element, and electronic element
US8212335B2 (en) 2008-02-21 2012-07-03 The University Of Tokyo Semiconductor substrate having a flexible, heat resistant, graphite substrate

Similar Documents

Publication Publication Date Title
US5208182A (en) Dislocation density reduction in gallium arsenide on silicon heterostructures
US5356510A (en) Method for the growing of heteroepitaxial layers
JPH04303920A (en) Insulating film/iii-v compound semiconductor stacked structure on group iv substrate
JPH04147613A (en) Crystal growing substrate
JPS63182811A (en) Epitaxial growth method for compound semiconductor
JP3169057B2 (en) Method for growing compound semiconductor layer
JPH03136319A (en) Heteroepitaxial substrate and semiconductor device
JP2797425B2 (en) Semiconductor crystal growth method
JP2742855B2 (en) Semiconductor thin film manufacturing method
JP2742854B2 (en) Semiconductor thin film manufacturing method
JP2001126985A (en) Compound semiconductor substrate
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JPS62281415A (en) Method for growing different kinds of crystal films in substrate
JPH01227424A (en) Compound semiconductor substrate
US20210111087A1 (en) Dislocation glide suppression for misfit dislocation free heteroepitaxy
JPH0677129A (en) Manufacture of semiconductor thin film
JPH0263115A (en) Selective growth of thin film
JP2719868B2 (en) Semiconductor substrate and method of manufacturing the same
Marschner et al. Improvements in the heteroepitaxial growth of GaAs on Si by MOVPE
JPH05291156A (en) Insulating film/compound semiconductor laminated layer structure on element semiconductor substrate
Takano et al. Threading dislocations in InGaAs CaP layers with InGaAs graded layers grown on Si substrates
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JPH08236453A (en) Method for growing crystal of compound semiconductor
JP2712505B2 (en) Vapor phase epitaxy
JPH06232045A (en) Manufacture of crystalline substrate