JPH04144277A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH04144277A
JPH04144277A JP2267833A JP26783390A JPH04144277A JP H04144277 A JPH04144277 A JP H04144277A JP 2267833 A JP2267833 A JP 2267833A JP 26783390 A JP26783390 A JP 26783390A JP H04144277 A JPH04144277 A JP H04144277A
Authority
JP
Japan
Prior art keywords
film
films
polycrystalline
conductor
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2267833A
Other languages
Japanese (ja)
Other versions
JP2893913B2 (en
Inventor
Masahiko Ito
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2267833A priority Critical patent/JP2893913B2/en
Publication of JPH04144277A publication Critical patent/JPH04144277A/en
Application granted granted Critical
Publication of JP2893913B2 publication Critical patent/JP2893913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make it possible to manufacture a semiconductor memory in a simple process by a method wherein the storage anode of a capacitor element is formed of first and second conductor films and the conductor films are laminated in such way that they are connected to each other at one part of the films and are made to separate from each other at the remnant parts of the films. CONSTITUTION:A storage node of a capacitor element 2 is formed of first and second conductor films (polycrystalline silicon films) 13 and 14 and sidewalls (an SiO2 film) 24 are respectively formed on each inner side of opening parts 23 formed in the film 13. The film 14 is connected to a source and drain region (an n<-> diffused layer) 21 on one side of a transistor 11 via a contact hole 22 surrounded with the sidewalls 24 and the films 13 and 14 are laminated in such a way that they are connected to each other at one part of the films 13 and 14 and are made to separate from each other at the remnant parts of the films 13 and 14. A dielectric film (an ONO film) 16 is formed on the surfaces of the films 13 and 14. Accordingly, the area of the hole 22 can be automatically reduced under the limit of a lithography and a storage of electricity is possible in the surfaces of the films 13 and 14 at the parts separating from each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、DRAM、特に、積層容量型DRAMと称さ
れている半導体メモリに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a DRAM, and particularly to a semiconductor memory called a stacked capacitor DRAM.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な半導体メモリにおいて、第1及び
第2の導体膜で容量素子の記憶ノードを形成し、第1及
び第2の導体膜を互いに一部で接続し且つ残部で離間さ
せる様に積層することによって、所謂セルフシュリンク
型ツートコ・ンタクト構造とフィン構造とが組み合わさ
れて高集積化が可能であるにも拘らず、簡便な工程で製
造することができる様にしたものである。
The present invention provides a semiconductor memory as described above, in which a storage node of a capacitive element is formed using first and second conductive films, and the first and second conductive films are connected to each other at a portion and separated from each other at the remaining portion. By laminating them in a similar manner, a so-called self-shrink type two-to-contact structure and a fin structure are combined, making it possible to achieve a high degree of integration and yet to be manufactured using a simple process. .

〔従来の技術〕[Conventional technology]

積層容量型DRAMのメモリセル面積を縮小して高集積
化を実現する構造として、容量素子の記憶ノードとトラ
ンジスタの一方のソース・ドレイン領域との間のコンタ
クト孔の面積をリソグラフィの限界以下に自動的に縮小
する所謂セルフシュリンク型ノードコンタクト構造が知
られている。
As a structure that reduces the memory cell area of stacked capacitive DRAM and achieves high integration, the area of the contact hole between the storage node of the capacitive element and the source/drain region of one of the transistors is automatically reduced to below the limit of lithography. A so-called self-shrinking node contact structure is known.

一方、メモリセル面積の縮小によって容量素子の容量値
が減少するのを防止する構造として、積層型記憶ノード
を有する所謂フィン構造が知られている。
On the other hand, a so-called fin structure having stacked storage nodes is known as a structure that prevents the capacitance value of a capacitor element from decreasing due to reduction in memory cell area.

第2図は、これらの所謂セルフシュリンク型ノードコン
タクト構造とフィン構造とを組み合わせた積層容量型D
RAMの一従来例を示している。
Figure 2 shows a multilayer capacitive type D that combines these so-called self-shrinking node contact structures and a fin structure.
A conventional example of RAM is shown.

この−従来例では、トランジスタ11と容量素子12と
でメモリセルが構成されている。容量素子12は、3層
の多結晶Si膜13〜15から成る記憶ノードと、Si
O□膜、SiN膜及びSiO□膜の3層膜であるONO
膜16から成る誘電体膜と、1層の多結晶Si膜17か
ら成るプレート’TI極とで構成されている。
In this conventional example, a memory cell is composed of a transistor 11 and a capacitive element 12. The capacitive element 12 includes a storage node made of three layers of polycrystalline Si films 13 to 15, and a storage node made of three layers of polycrystalline Si films 13 to 15;
ONO is a three-layer film consisting of an O□ film, a SiN film, and a SiO□ film.
It is composed of a dielectric film made of a film 16 and a plate 'TI pole made of a single layer of polycrystalline Si film 17.

トランジスタ11の一方のソース・ドレイン領域である
N−拡散層21と多結晶Si膜14とは、コンタクト孔
22を介して接続されている。
The N- diffusion layer 21, which is one source/drain region of the transistor 11, and the polycrystalline Si film 14 are connected through a contact hole 22.

コンタクト孔22は、多結晶Si膜13の開口部23の
内側にSiO□膜24等から成る側壁を形成しつつ開孔
される。このため、開口部23の面積がリソグラフィの
限界程度であっても、コンタクト孔22の面積はりソグ
ラフイの限界以下に自動的に縮小される。従って、この
−従来例は所謂セルフシュリンク型ノードコンタクト構
造になっている。
The contact hole 22 is opened while forming a side wall made of a SiO□ film 24 or the like inside the opening 23 of the polycrystalline Si film 13. Therefore, even if the area of the opening 23 is about the limit of lithography, the area of the contact hole 22 is automatically reduced to below the limit of lithography. Therefore, this conventional example has a so-called self-shrinking node contact structure.

また、多結晶Si膜14.15同士の間にもONO膜1
6と多結晶St膜17とが介在しており、記憶ノードが
積層型である。従って、この−従来例は所謂フィン構造
にもなっている。
Moreover, the ONO film 1 is also formed between the polycrystalline Si films 14 and 15.
6 and a polycrystalline St film 17 are interposed therebetween, and the storage node is of a stacked type. Therefore, this conventional example also has a so-called fin structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、第2図に示したー従来例では、記憶ノードを
形成するために3層の多結晶Si膜13〜15が必要で
あるので、製造工程が複雑である。
However, in the conventional example shown in FIG. 2, three layers of polycrystalline Si films 13 to 15 are required to form a storage node, so the manufacturing process is complicated.

また、この様に3層の多結晶Si膜13〜15が必要で
あると、多結晶Si膜14.15同士を接続するための
コンタクト孔25を、コンタクト孔22とは別個に開孔
する必要がある。従って、このことによっても、第2図
に示したー従来例では製造工程が複雑である。
In addition, if three layers of polycrystalline Si films 13 to 15 are required in this way, it is necessary to open contact holes 25 for connecting the polycrystalline Si films 14 and 15 separately from the contact holes 22. There is. Therefore, this also complicates the manufacturing process in the conventional example shown in FIG.

〔課題を解決するだめの手段] 本発明による半導体メモリでは、第1及び第2の導体膜
13.14によって容量素子12の記憶ノードが形成さ
れており、前記第1の導体膜13に形成されている開口
部23の内側に側壁24が形成されており、前記側壁2
4に囲まれているコンタクト孔22を介して前記第2の
導体膜14がトランジスタ11の一方のソース・ドレイ
ン領域21に接続されており、前記第1及び第2の導体
膜13.14は互いに一部で接続され且つ残部で離間す
る様に積層されており、前記第1及び第2の導体膜13
.14の表面に誘電体膜16が形成されている。
[Means for Solving the Problems] In the semiconductor memory according to the present invention, the storage node of the capacitive element 12 is formed by the first and second conductor films 13 and 14, and the storage node formed in the first conductor film 13 is A side wall 24 is formed inside the opening 23, and the side wall 2
The second conductor film 14 is connected to one source/drain region 21 of the transistor 11 through a contact hole 22 surrounded by The first and second conductor films 13 are stacked so that they are connected in some parts and separated in the rest.
.. A dielectric film 16 is formed on the surface of 14.

〔作用〕[Effect]

本発明による半導体メモリでは、記憶ノードを構成して
いる第1の導体膜13の開口部23の内側に側壁24が
形成されており、トランジスタ11に対するコンタクト
孔22はこの側壁24に囲まれている。
In the semiconductor memory according to the present invention, a side wall 24 is formed inside the opening 23 of the first conductor film 13 constituting the storage node, and the contact hole 22 for the transistor 11 is surrounded by the side wall 24. .

従って、コンタクト孔22の面積をリソグラフィの限界
以下に自動的に縮小することができ、所謂セルフシュリ
ンク型ノードコンタクト構造になっている。
Therefore, the area of the contact hole 22 can be automatically reduced to below the limit of lithography, resulting in a so-called self-shrinking node contact structure.

また、第1及び第2の導体膜13.14は互いの接続部
以外で離間する様に積層されており、これら第1及び第
2の導体膜13.14の表面には誘電体膜16が形成さ
れている。
Further, the first and second conductive films 13.14 are laminated so as to be separated from each other except at the connecting portions, and a dielectric film 16 is provided on the surfaces of the first and second conductive films 13.14. It is formed.

従って、互いの離間部における第1及び第2の導体膜1
3.14の表面で蓄電可能であり、所謂フィン構造にな
っている。
Therefore, the first and second conductor films 1 in the spaced apart part from each other
It is possible to store electricity on the surface of 3.14, and has a so-called fin structure.

〔実施例〕〔Example〕

以下、本発明の一実施例を、第1図を参照しながら説明
する。
An embodiment of the present invention will be described below with reference to FIG.

第1図は、本実施例の製造工程を示している。FIG. 1 shows the manufacturing process of this embodiment.

この製造工程では、第1A図に示す様に、Si基板26
の表面にSiO□膜27膜形7してゲート酸化膜にする
In this manufacturing process, as shown in FIG. 1A, the Si substrate 26
A SiO□ film 27 is formed on the surface of the gate oxide film 7 to form a gate oxide film.

そして、5iOzW127上の多結晶Si膜31でゲー
ト電極を形成し、ソース・ドレイン領域であるN拡散層
21.32を形成して、トランジスタ11を完成させる
Then, a gate electrode is formed using the polycrystalline Si film 31 on the 5iOzW layer 127, and N diffusion layers 21 and 32, which are source and drain regions, are formed to complete the transistor 11.

その後、Sin、膜33をCVDで全面に堆積させて眉
間絶縁膜を形成し、この5iOz膜33上にSiN膜3
4を減圧CVDで堆積させる。
Thereafter, a Si film 33 is deposited on the entire surface by CVD to form a glabellar insulating film, and a SiN film 33 is deposited on this 5iOz film 33.
4 is deposited by low pressure CVD.

そして、SiN膜3膜上4上結晶Si膜13をCVDで
堆積させ、N−拡散層21に対応する様に多結晶Si膜
13をバタ−ニングする。このパターニング時に、多結
晶St膜13にはN−拡散層21上に位置する開口部2
3も形成される。
Then, a crystalline Si film 13 is deposited on the SiN film 3 and 4 by CVD, and the polycrystalline Si film 13 is buttered so as to correspond to the N- diffusion layer 21. During this patterning, the polycrystalline St film 13 has an opening 2 located on the N- diffusion layer 21.
3 is also formed.

次に、第1B図に示す様に、Sing膜24をCVDで
全面に堆積させ、この5iOz# 24上にレジスト膜
35を塗布した後、開口部23を囲む開口部36をレジ
スト膜35に形成する。
Next, as shown in FIG. 1B, a Sing film 24 is deposited on the entire surface by CVD, and a resist film 35 is applied on this 5iOz# 24. Then, an opening 36 surrounding the opening 23 is formed in the resist film 35. do.

その後、レジスト膜35をマスクにして、SiO□膜2
4膜上4N膜34及びSiO2膜33を順次にエツチン
グする。すると、SiO□膜24膜上4タクト孔37が
開孔されると共に、開口部23の内側にSiO□膜24
膜上4として残され、この側壁としてのSiO□膜24
膜上4れたコンタクト孔22が開孔される。
After that, using the resist film 35 as a mask, the SiO□ film 2
4N film 34 and SiO2 film 33 are sequentially etched. Then, four tact holes 37 are opened on the SiO□ film 24, and the SiO□ film 24 is opened inside the opening 23.
SiO□ film 24 is left on the film 4 and serves as the side wall
A contact hole 22 is opened on the membrane.

つまり、側壁としてのSiO□膜24膜上4て、コンタ
クト孔22の面積は開口部23の面積よりも自動的に縮
小される。従って、開口部23の面積がリソグラフィの
限界程度であれば、コンタクト孔22の面積はりソグラ
フィの限界以下になる。
In other words, the area of the contact hole 22 is automatically smaller than the area of the opening 23 on the SiO□ film 24 serving as the sidewall. Therefore, if the area of the opening 23 is about the limit of lithography, the area of the contact hole 22 is less than the limit of lithography.

次に、第1C図に示す様に、レジスト膜35を除去した
後、多結晶Si膜14をCVDで堆積させ、多結晶Si
膜13に対応する様に多結晶Si膜14をパターニング
する。
Next, as shown in FIG. 1C, after removing the resist film 35, a polycrystalline Si film 14 is deposited by CVD.
Polycrystalline Si film 14 is patterned to correspond to film 13.

するとこの多結晶Si膜14は、コンタクト孔37の内
側で多結晶Si膜13に接続されると共にSiO□膜2
4上24上結晶Si膜13から離間し、更にコンタクト
孔22を介してN−拡散層21に接続される。以上の様
にして形成した多結晶Si膜13.14によって、容量
素子12の記憶ノードが完成する。
Then, this polycrystalline Si film 14 is connected to the polycrystalline Si film 13 inside the contact hole 37, and the SiO□ film 2
4 and 24 are spaced apart from the upper crystalline Si film 13 and further connected to the N − diffusion layer 21 via a contact hole 22 . The storage node of the capacitive element 12 is completed by the polycrystalline Si films 13 and 14 formed as described above.

次に、第1D図に示す様に、Sin、膜24をエツチン
グで除去して、多結晶Si膜13.14同士が離間して
いる部分に空洞を形成する。但し、開口部23の内側の
側壁としてのSiO□膜24膜上4結晶Si膜13.1
4に完全に覆われているのでエツチングされない。
Next, as shown in FIG. 1D, the Si film 24 is removed by etching to form a cavity in a portion where the polycrystalline Si films 13 and 14 are separated from each other. However, the four-crystal Si film 13.1 on the SiO□ film 24 as the inner side wall of the opening 23
4, so it will not be etched.

その後、多結晶SiI!!13.14等の表面にONO
M16を形成し、多結晶Si膜17を堆積させ、この多
結晶Si膜17をプレート電極のパターンにバターニン
グすることによって、容量素子12を完成させる。
After that, polycrystalline SiI! ! ONO on the surface of 13.14 mag.
The capacitor element 12 is completed by forming M16, depositing a polycrystalline Si film 17, and patterning the polycrystalline Si film 17 into a plate electrode pattern.

この容量素子12では、多結晶Si膜13.14同士の
離間部の表面にもONO膜16が形成されており、且つ
この離間部にも多結晶Si膜17が入り込んでいるので
、この離間部の表面でも蓄電可能である。
In this capacitive element 12, the ONO film 16 is also formed on the surface of the spaced part between the polycrystalline Si films 13 and 14, and the polycrystalline Si film 17 has also entered this spaced part. It is possible to store electricity even on the surface of

以上の様な本実施例では、容量素子12の記憶ノードが
2層の多結晶Si膜13.14のみによって構成されて
おり、しかもコンタクト孔37.22が一時に開孔され
るので、製造工程が簡便である。
In this embodiment as described above, the storage node of the capacitive element 12 is composed of only the two-layer polycrystalline Si film 13.14, and the contact holes 37.22 are opened at one time, so that the manufacturing process is simple.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体メモリでは、所謂セルフシュリンク
型ノードコンタクト構造とフィン構造とが組み合わされ
て高集積化が可能であるにも拘らず、容量素子の記憶ノ
ードが第1及び第2の導体膜のみによって形成されてい
るので、簡便な工程で製造することができる。
In the semiconductor memory according to the present invention, although the so-called self-shrinking node contact structure and the fin structure are combined to enable high integration, the storage node of the capacitive element is formed only by the first and second conductor films. Since it is formed, it can be manufactured through a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程を順次に示す側断
面図、第2図は本発明の一従来例の側断面図である。 なお図面に用いた符号において、 11・−・−−−−一・・−・−・・・−トランジスタ
12’−−−−−−−−−−−−−一・・−容量素子1
3、14−−−−−−−−一多結晶Si膜21−−−・ 22−−一・ 23−−−・ 24− ・−・ である。 ONO膜 N−拡散層 コンタクト孔 開口部 SiO□膜 代 理 人 土 第1B図 第1C内
FIG. 1 is a side sectional view sequentially showing the manufacturing process of an embodiment of the present invention, and FIG. 2 is a side sectional view of a conventional example of the present invention. In addition, in the symbols used in the drawings, 11.
3, 14----------------------------------------------------------------''23-----] 24---'' ONO film N-diffusion layer contact hole opening SiO □ film agent soil Figure 1B Inside 1C

Claims (1)

【特許請求の範囲】 トランジスタと容量素子とでメモリセルが構成されてい
る半導体メモリにおいて、 第1及び第2の導体膜によって前記容量素子の記憶ノー
ドが形成されており、 前記第1の導体膜に形成されている開口部の内側に側壁
が形成されており、 前記側壁に囲まれているコンタクト孔を介して前記第2
の導体膜が前記トランジスタの一方のソース・ドレイン
領域に接続されており、 前記第1及び第2の導体膜は互いに一部で接続され且つ
残部で離間する様に積層されており、前記第1及び第2
の導体膜の表面に誘電体膜が形成されている半導体メモ
リ。
[Scope of Claims] In a semiconductor memory in which a memory cell is constituted by a transistor and a capacitive element, a storage node of the capacitive element is formed by a first and a second conductive film, and the first conductive film A side wall is formed inside the opening formed in the opening, and the second
a conductor film is connected to one source/drain region of the transistor, the first and second conductor films are stacked so that they are connected to each other in some parts and separated in the rest, and and second
A semiconductor memory in which a dielectric film is formed on the surface of a conductor film.
JP2267833A 1990-10-05 1990-10-05 Semiconductor memory Expired - Fee Related JP2893913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267833A JP2893913B2 (en) 1990-10-05 1990-10-05 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267833A JP2893913B2 (en) 1990-10-05 1990-10-05 Semiconductor memory

Publications (2)

Publication Number Publication Date
JPH04144277A true JPH04144277A (en) 1992-05-18
JP2893913B2 JP2893913B2 (en) 1999-05-24

Family

ID=17450255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267833A Expired - Fee Related JP2893913B2 (en) 1990-10-05 1990-10-05 Semiconductor memory

Country Status (1)

Country Link
JP (1) JP2893913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329666A (en) * 1991-04-30 1992-11-18 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329666A (en) * 1991-04-30 1992-11-18 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JP2893913B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
US5508222A (en) Fabrication process for semiconductor device
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JPH0296362A (en) Semiconductor device and manufacture thereof
JPH0823033A (en) Semiconductor device and manufacture thereof
JPH04350965A (en) Manufacture of capacitor used for memory cell of semiconductor memory device and structure thereof
JPH05198768A (en) Semiconductor memory and manufacture thereof
JP2682509B2 (en) Method for manufacturing semiconductor device
JPH0645552A (en) Semiconductor device and its manufacture
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH0677430A (en) Semiconductor device and manufacture thereof
JP3200974B2 (en) Method for manufacturing semiconductor memory device
JPH03205866A (en) Memory device
JPH0321062A (en) Semiconductor storage device
JPH04144277A (en) Semiconductor memory
JPH0240949A (en) Storage device
JPH02260454A (en) Manufacture of memory device
JPH10209393A (en) Semiconductor device and its manufacture
JPS63197368A (en) Semiconductor device and its manufacture
KR950005467B1 (en) Method of fabricating stacked capacitor with multi vertical storage mode
JP2973495B2 (en) Method for manufacturing semiconductor memory
JP3137401B2 (en) Semiconductor storage device and method of manufacturing the same
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
KR960003859B1 (en) Method of making a capacitor for a semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees