JPH03205866A - Memory device - Google Patents

Memory device

Info

Publication number
JPH03205866A
JPH03205866A JP2001201A JP120190A JPH03205866A JP H03205866 A JPH03205866 A JP H03205866A JP 2001201 A JP2001201 A JP 2001201A JP 120190 A JP120190 A JP 120190A JP H03205866 A JPH03205866 A JP H03205866A
Authority
JP
Japan
Prior art keywords
film
conductive film
polycrystalline
transistor
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201A
Other languages
Japanese (ja)
Inventor
Masanori Noda
昌敬 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001201A priority Critical patent/JPH03205866A/en
Publication of JPH03205866A publication Critical patent/JPH03205866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enhance reliability without complicating a manufacturing process by laminating a conductive film of the same layer as a conductive film for forming one and the other electrodes of a capacity element on a contact part of a transistor with a bit line. CONSTITUTION:In a memory device having a memory cell formed of one transistor 12 and one capacity element 25, a first conductive film 17 of the same layer as a conductive film for forming one electrode of the element 25 is laminated on an impurity region 14a in a state in contact with the region 14a of the transistor 12, a second conductive film 23 of the same layer as a conductive film for forming the other electrode of the element 25 is laminated on the film 17 in a state in contact with the film 17, and a bit line 32 is connected to the film 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、DRAM、特に、スタソクトキャパシタ型D
RAMと称されているメモリ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a DRAM, particularly a star-socket capacitor type DRAM.
It relates to a memory device called RAM.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様なメモリ装置において、容量素子の
一方及び他方の電極を構成している導電膜と同一層の導
電膜をトランジスタとビット線とのコンタクト部に積層
させることによって、製造プロセスを複雑化させること
なく信頼性を高めたものである。
In the memory device as described above, the present invention provides a manufacturing process in which a conductive film of the same layer as the conductive films constituting one and the other electrodes of the capacitive element is laminated at the contact portion between the transistor and the bit line. This improves reliability without complicating the process.

〔従来の技術〕[Conventional technology]

スタソクトキャパシタ型DRAMでは、転送用トランジ
スタのゲート電極つまりワード線を第l層目の多結晶S
i膜等で形或し、容量素子の一方の電極つまり記憶ノー
ドを第2層目の多結晶Si膜で形威し、容量素子の他方
の電極つまり対向電極を第3層目の多結晶St膜で形成
し、ビント線をAI!膜で形成するのが一般的である。
In star-socket capacitor type DRAM, the gate electrode of the transfer transistor, that is, the word line, is formed using the first layer of polycrystalline S.
Alternatively, one electrode of the capacitive element, that is, the storage node, is formed with the second layer of polycrystalline Si film, and the other electrode of the capacitive element, that is, the counter electrode, is formed with the third layer of polycrystalline St. Formed with a film and created by AI! It is generally formed from a film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、DRAMの微細化によって表面方向が大幅に
縮小されたにも拘らず、高さ方向の縮小率はそれよりも
小さい。このため、転送用トランジスタに対するビット
線のコンタクト孔のアスペクト比が大きくなり、ビット
線の段差被覆性が劣化して、DRAMの信頼性上で問題
が生じていた。
However, although the surface direction has been significantly reduced due to the miniaturization of DRAMs, the reduction rate in the height direction is smaller than that. For this reason, the aspect ratio of the contact hole of the bit line with respect to the transfer transistor becomes large, and the step coverage of the bit line deteriorates, causing a problem in the reliability of the DRAM.

一方、この問題を解決するために、ビット線を第4層目
の多結晶Si膜等で形成し、AI膜を周辺回路の配線等
に使用することも考えられた。しかし、第4層目の多結
晶Si膜等を設けると、製造プロセスがその分だけ複雑
化する。
On the other hand, in order to solve this problem, it has been considered to form the bit line with a fourth layer of polycrystalline Si film or the like and use the AI film for wiring of peripheral circuits. However, providing a fourth layer of polycrystalline Si film or the like complicates the manufacturing process accordingly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるメモリ装置では、容量素子25の一方の電
極を構成している導電膜17と同一層の第1の導電膜1
7がトランジスタl2の一方の不純物領域14aに接し
た状態でこの不純物領域14a上に積層されており、前
記容量素子25の他方の電極を構成している導電膜23
と同一層の第2の導電膜23が前記第1の導電膜17に
接した状態でこの第1の導電膜17上に積層されており
、ビソト線32が前記第2の導電膜23に接続されてい
る。
In the memory device according to the present invention, the first conductive film 1 is in the same layer as the conductive film 17 constituting one electrode of the capacitive element 25.
A conductive film 23 is stacked on one impurity region 14a of the transistor l2 with 7 in contact with the impurity region 14a, and constitutes the other electrode of the capacitive element 25.
A second conductive film 23 of the same layer is laminated on the first conductive film 17 in contact with the first conductive film 17, and a bisotho wire 32 is connected to the second conductive film 23. has been done.

〔作用〕[Effect]

本発明によるメモリ装置では、トランジスタ12の一方
の不純物領域14a上に第1及び第2の導電膜17、2
3が順次に積層されており、ビット線32は第2の導電
膜23に接続されている。
In the memory device according to the present invention, first and second conductive films 17 and 2 are formed on one impurity region 14a of transistor 12.
3 are sequentially stacked, and the bit line 32 is connected to the second conductive film 23.

従って、トランジスタ12とのコンタクト部におけるビ
ット線32の段差が小さく、ビット線32の段差被覆性
が良い。
Therefore, the step difference of the bit line 32 at the contact portion with the transistor 12 is small, and the step coverage of the bit line 32 is good.

しかも、第1及び第2の導電膜17、23は容量素子2
5の夫々一方及び他方の電極を構成している導電膜17
、23と同一層であるので、導電膜の層数は増加してい
ない。
Moreover, the first and second conductive films 17 and 23 are connected to the capacitive element 2.
Conductive films 17 constituting one and the other electrodes of No. 5, respectively.
, 23, the number of conductive film layers is not increased.

?実施例〕 以下、本発明の一実施例の製造工程を、第1図を参照し
ながら説明する。
? Example] Hereinafter, a manufacturing process of an example of the present invention will be described with reference to FIG.

この製造工程では、第IA図に示す様に、Si基体11
上に転送用トランジスタl2のゲート電極を第1層目の
多結晶Si膜13によって形成し、更にN″領域14a
,14bと層間絶縁膜であるSiO■膜15とを形成す
る。
In this manufacturing process, as shown in FIG.
A gate electrode of the transfer transistor l2 is formed on the first layer of polycrystalline Si film 13, and an N'' region 14a is formed on the gate electrode of the transfer transistor l2.
, 14b and an SiO2 film 15, which is an interlayer insulating film, are formed.

次に、第IB図に示す様に、N+領域14a、゛14b
に達するコンタクト孔16a、16bをSiO。膜15
に開口し、この状態で第2層目の多結晶Sill!17
をCVDによって堆積させる。そして、この多結晶Si
膜17のうちのN″領域14a、14b上及びその近傍
の部分を覆う様に、レジストl8をパターニングする。
Next, as shown in FIG. IB, N+ regions 14a, 14b
The contact holes 16a and 16b reaching the contact holes 16a and 16b are made of SiO. membrane 15
In this state, the second layer of polycrystalline Sill! 17
is deposited by CVD. And this polycrystalline Si
A resist 18 is patterned to cover portions of the film 17 on and near the N'' regions 14a and 14b.

次に、第IC図に示す様に、レジスト18をマスクにし
て多結晶Si膜17をパターニングし、レジストl8を
除去した後、SiN膜とSiO■膜との二層膜である絶
縁膜2lを全面に形成する。そして、この絶縁膜21の
うちのN+領域14a上の部分?露出させる様に、レジ
スト22をパターニングする。
Next, as shown in FIG. IC, the polycrystalline Si film 17 is patterned using the resist 18 as a mask, and after removing the resist 18, an insulating film 2l, which is a two-layer film of an SiN film and a SiO2 film, is formed. Form on the entire surface. And the part of this insulating film 21 above the N+ region 14a? The resist 22 is patterned so as to be exposed.

次に、第ID図に示す様に、レジスト22をマスクにし
て絶縁膜21をエソチングし、レジスト22を除去した
後、第3層目の多結晶Si膜23をCVDによって堆積
させる。そして、この多結晶Si膜23のうちでN”e
ff域14a上の多結晶Si膜l7の周縁近傍の部分を
露出させる様に、レジスト24をパターニングする。
Next, as shown in FIG. ID, the insulating film 21 is etched using the resist 22 as a mask, and after removing the resist 22, a third layer of polycrystalline Si film 23 is deposited by CVD. Then, in this polycrystalline Si film 23, N”e
The resist 24 is patterned to expose a portion near the periphery of the polycrystalline Si film 17 on the ff region 14a.

次に、第1E図に示す様に、レジスト24をマスクにし
て多結晶Si膜23をバターニングした後、レジスト2
4を除去する。これによって、多結晶Si膜17、23
を夫々記憶ノード及び対向電極とする容量素子25が形
威される。
Next, as shown in FIG. 1E, the polycrystalline Si film 23 is patterned using the resist 24 as a mask, and then the resist 24 is patterned.
Remove 4. As a result, the polycrystalline Si films 17, 23
A capacitive element 25 is formed, which serves as a storage node and a counter electrode, respectively.

次に、第IF図に示す様に、眉間絶縁膜であるSiO■
膜26を形威し、更にBPSG膜27をCVDによって
堆積させる。そして、N+領域14a上の多結晶Si膜
23に達するコンタクト孔3lをBPSG膜27及びS
iO■膜26に開口し、A#ll32をビット線のパタ
ーンにパターニングして多結晶Si膜23に接続させる
。以上によって、本実施例が完戒ずる。
Next, as shown in FIG.
After forming the film 26, a BPSG film 27 is deposited by CVD. Then, a contact hole 3l reaching the polycrystalline Si film 23 on the N+ region 14a is formed with the BPSG film 27 and the S
An opening is opened in the iO2 film 26, and A#ll 32 is patterned into a bit line pattern and connected to the polycrystalline Si film 23. With the above, this embodiment is complete.

この様な本実施例では、N″領域14a上に多結晶Si
膜17、23が順次に積層されており、コンタクト孔3
工は多結晶Si膜23にさえ達すればよいので、N″領
域14aにまで達する場合に比べてコンタクト孔3工が
浅くてよい。従って、コンタクト孔31におけるA1膜
32の段差が小さく、このAA膜32の段差被覆性が良
い。
In this embodiment, polycrystalline Si is formed on the N'' region 14a.
The films 17 and 23 are sequentially stacked, and the contact hole 3
Since the contact hole 3 only needs to reach the polycrystalline Si film 23, the contact hole 3 may be shallower than when the contact hole 31 reaches the N'' region 14a. The film 32 has good step coverage.

しかも、上述の製造工程からも明らかな様に、N″領域
14a上の多結晶Si膜17、23は容量素子25の記
憶ノード及び対向電極を構成している多結晶Si膜17
、23と同一層である。従ってN″領域14a上に多結
晶Si膜17、23を積層させているが、多結晶Si膜
の層数は増加していない。
Furthermore, as is clear from the above manufacturing process, the polycrystalline Si films 17 and 23 on the N'' region 14a are the polycrystalline Si films 17 and 23 that constitute the storage node and counter electrode of the capacitive element 25.
, 23 are in the same layer. Therefore, although the polycrystalline Si films 17 and 23 are stacked on the N'' region 14a, the number of layers of the polycrystalline Si film is not increased.

〔発明の効果〕〔Effect of the invention〕

本発明によるメモリ装置では、導電膜の層数が増加して
いないので製造プロセスが複雑化していないにも拘らず
、ビット線の段差被覆性が良いので信頼性が高い。
In the memory device according to the present invention, the manufacturing process is not complicated because the number of layers of the conductive film is not increased, and the reliability is high because the step coverage of the bit line is good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程を順次に示す側断
面図である。 なお、図面に用いられた符号において、12− ・・一
−−一−−−−−−一−一転送用トランジスタ1 4 
a −−−−−−−−−−−−−−N ”領域17−・
−−−−−−−・−−−−−−−多結晶Si膜2 3 
=一−−−−−−−−−−−−−−一多結晶Si膜2 
5 −−−−−−−−−−−−−−−−−−一容量素子
3 2−−−−−−−−−−−−−〜−−−A /膜で
ある。
FIG. 1 is a side sectional view sequentially showing the manufacturing process of an embodiment of the present invention. In addition, in the symbols used in the drawings, 12-...1--1--1-1 transfer transistor 1 4
a −−−−−−−−−−−−−N” area 17−・
----------・-----Polycrystalline Si film 2 3
=1−−−−−−−−−−−−−−1 polycrystalline Si film 2
5 ---------------------One capacitive element 3 2-----------------A/film.

Claims (1)

【特許請求の範囲】 1個のトランジスタと1個の容量素子とでメモリセルが
構成されているメモリ装置において、前記容量素子の一
方の電極を構成している導電膜と同一層の第1の導電膜
が前記トランジスタの一方の不純物領域に接した状態で
この不純物領域上に積層されており、 前記容量素子の他方の電極を構成している導電膜と同一
層の第2の導電膜が前記第1の導電膜に接した状態でこ
の第1の導電膜上に積層されており、 ビット線が前記第2の導電膜に接続されていることを特
徴とするメモリ装置。
[Claims] In a memory device in which a memory cell is composed of one transistor and one capacitive element, a first conductive film of the same layer as a conductive film constituting one electrode of the capacitive element is provided. A conductive film is stacked on one impurity region of the transistor in contact with the impurity region, and a second conductive film of the same layer as the conductive film constituting the other electrode of the capacitive element is in contact with the impurity region of the transistor. A memory device, characterized in that the memory device is stacked on the first conductive film in contact with the first conductive film, and a bit line is connected to the second conductive film.
JP2001201A 1990-01-08 1990-01-08 Memory device Pending JPH03205866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201A JPH03205866A (en) 1990-01-08 1990-01-08 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201A JPH03205866A (en) 1990-01-08 1990-01-08 Memory device

Publications (1)

Publication Number Publication Date
JPH03205866A true JPH03205866A (en) 1991-09-09

Family

ID=11494851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201A Pending JPH03205866A (en) 1990-01-08 1990-01-08 Memory device

Country Status (1)

Country Link
JP (1) JPH03205866A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196481A (en) * 1990-11-28 1992-07-16 Nec Corp Semiconductor storage device
FR2766293A1 (en) * 1997-07-19 1999-01-22 United Microelectronics Corp METHOD FOR MANUFACTURING AN INTEGRATED CIRCUIT COMPRISING BOTH LOGIC CIRCUITS AND AN INCORPORATED DYNAMIC RAM
NL1007804C2 (en) * 1997-12-16 1999-06-17 United Microelectronics Corp IC production with embedded DRAM circuits and logic circuits on single chip
FR2775122A1 (en) * 1998-02-13 1999-08-20 United Integrated Circuits Corp METHOD FOR MANUFACTURING A DYNAMIC RAM MEMORY WITH AN UNDERGROUND STRUCTURE
NL1009204C2 (en) * 1998-05-19 1999-11-22 United Integrated Circuits Cor Embedded DRAM produced by simplified, reduced cost process
US5998251A (en) * 1997-07-19 1999-12-07 United Microelectronics Corp. Process and structure for embedded DRAM
US6048762A (en) * 1998-02-13 2000-04-11 United Integrated Circuits Corp. Method of fabricating embedded dynamic random access memory

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196481A (en) * 1990-11-28 1992-07-16 Nec Corp Semiconductor storage device
FR2766293A1 (en) * 1997-07-19 1999-01-22 United Microelectronics Corp METHOD FOR MANUFACTURING AN INTEGRATED CIRCUIT COMPRISING BOTH LOGIC CIRCUITS AND AN INCORPORATED DYNAMIC RAM
US5998251A (en) * 1997-07-19 1999-12-07 United Microelectronics Corp. Process and structure for embedded DRAM
NL1007804C2 (en) * 1997-12-16 1999-06-17 United Microelectronics Corp IC production with embedded DRAM circuits and logic circuits on single chip
FR2775122A1 (en) * 1998-02-13 1999-08-20 United Integrated Circuits Corp METHOD FOR MANUFACTURING A DYNAMIC RAM MEMORY WITH AN UNDERGROUND STRUCTURE
US6048762A (en) * 1998-02-13 2000-04-11 United Integrated Circuits Corp. Method of fabricating embedded dynamic random access memory
NL1009204C2 (en) * 1998-05-19 1999-11-22 United Integrated Circuits Cor Embedded DRAM produced by simplified, reduced cost process

Similar Documents

Publication Publication Date Title
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
US5135883A (en) Process for producing a stacked capacitor of a dram cell
JP2501501B2 (en) Method for manufacturing semiconductor memory-memory of device-capacitor used in cell and structure thereof
KR930015010A (en) Method for manufacturing charge storage electrode of semiconductor memory device
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JPH05198768A (en) Semiconductor memory and manufacture thereof
JPH03205866A (en) Memory device
JPH02135777A (en) Semiconductor memory
JP3200974B2 (en) Method for manufacturing semiconductor memory device
JPH10209394A (en) Semiconductor storage device and its manufacture
JPH0321062A (en) Semiconductor storage device
JPH02263467A (en) Storage device
JPH08204148A (en) Semiconductor device and manufacturing method thereof
JP2503661B2 (en) Semiconductor memory device and manufacturing method thereof
JP2893913B2 (en) Semiconductor memory
JPH08236721A (en) Semiconductor device and method of its fabrication
JPH01270343A (en) Manufacture of semiconductor device
JPH09116123A (en) Ferroelectric nonvolatile semiconductor storage device
JPH05175452A (en) Semiconductor storage device and its manufacture
JPS63197368A (en) Semiconductor device and its manufacture
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
JPH04302467A (en) Semiconductor memory
JP3137401B2 (en) Semiconductor storage device and method of manufacturing the same
JP3092178B2 (en) Semiconductor memory device and method of manufacturing the same
JP2969789B2 (en) Method for manufacturing semiconductor memory device