JPH0677430A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0677430A
JPH0677430A JP4229824A JP22982492A JPH0677430A JP H0677430 A JPH0677430 A JP H0677430A JP 4229824 A JP4229824 A JP 4229824A JP 22982492 A JP22982492 A JP 22982492A JP H0677430 A JPH0677430 A JP H0677430A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
peripheral portion
forming
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4229824A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mine
利之 峰
Shinpei Iijima
晋平 飯島
Norio Hasegawa
昇雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4229824A priority Critical patent/JPH0677430A/en
Publication of JPH0677430A publication Critical patent/JPH0677430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device having sufficient capacitance by using capacitor electrodes in the shape of a dual elliptical cylinder, which are formed according to the same layout rule and in the same number of process steps of the conventional method. CONSTITUTION:Minute annular grooves are formed by phase shifting of negative photoresist. The grooves are used to form capacitor electrodes 115 of phosphorus-doped polysilicon in the shape of a dual elliptical cylinder. Such capacitor electrodes are capable of providing capacitance equivalent to STC cells. This process for capacitor electrodes, considerably simplified, prevents electrodes from peeling, and thus improving yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に係り、特にスタックト・キャパシタ・セル(S
TCセル)の蓄積電極を有する半導体装置及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a stacked capacitor cell (S
The present invention relates to a semiconductor device having a storage electrode of a TC cell) and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体LSIの集積度は年々増大してお
り、特にMOSLSIのDRAM(ダイナミック・ラン
ダム・アクセス・メモリ)の分野においては、すでに6
4メガビットDRAMが開発の対象となっている。64
メガビット以降のDRAMを実現するには、1セルを約
0.7〜1.5μm2と極めて微細な面積に抑えなが
ら、ある一定量のキャパシタ容量、すなわち、信頼性を
維持するために必要な容量を確保しなければならない。
2. Description of the Related Art The degree of integration of semiconductor LSIs has been increasing year by year, and in particular in the field of MOSLSI DRAMs (dynamic random access memories), there are already 6
A 4-megabit DRAM is the subject of development. 64
In order to realize a DRAM of megabits or later, one cell has a very small area of about 0.7 to 1.5 μm 2 and a certain amount of capacitor capacity, that is, the capacity required to maintain reliability. Must be secured.

【0003】一つの対策として、微細なセル面積でも大
きい蓄積容量が得られる、いわゆる王冠型STCセルが
提案されている(特開平2−226761)。このセル
の特徴は蓄積電極が楕円筒状(断面が王冠型)をなし、
その側壁に接する領域を容量領域としている点である。
この王冠型STCセルの製造方法を図10から図14を
用いて説明する。
As one countermeasure, a so-called crown type STC cell has been proposed which can obtain a large storage capacity even with a fine cell area (Japanese Patent Laid-Open No. 2-226761). The feature of this cell is that the storage electrode has an elliptic cylindrical shape (the cross section is a crown type),
The point is that the region in contact with the side wall is the capacitance region.
A method of manufacturing this crown type STC cell will be described with reference to FIGS. 10 to 14.

【0004】まず、p型のSi単結晶基板201上に素
子分離領域202を形成した後、8nmのゲート絶縁膜
203、200nmのゲート電極204及び拡散層20
5(a)(b)からなるスイッチングMOSトランジス
タを形成する。続いてゲート電極204を絶縁膜206
で覆い電気的に絶縁した後、スイッチングトランジスタ
の拡散層205(a)(b)が露出するような開口部を
設ける。続いて、LP(低圧)−CVD法(化学気相成
長法)で500nmのリンドープ多結晶Si膜207を
堆積した後エッチバックを行ない、拡散層上部の溝部に
多結晶Si膜207を残す(図10)。
First, after forming an element isolation region 202 on a p-type Si single crystal substrate 201, an 8 nm gate insulating film 203, a 200 nm gate electrode 204 and a diffusion layer 20 are formed.
A switching MOS transistor composed of 5 (a) and 5 (b) is formed. Then, the gate electrode 204 is formed on the insulating film 206.
Then, an opening is provided so that the diffusion layers 205 (a) and (b) of the switching transistor are exposed after being electrically insulated. Then, a 500 nm phosphorus-doped polycrystalline Si film 207 is deposited by LP (low pressure) -CVD method (chemical vapor deposition method) and then etched back to leave the polycrystalline Si film 207 in the groove above the diffusion layer (see FIG. 10).

【0005】次にビット線208を形成した後、ビット
線208を覆うSiO2膜209をCVD法で形成し、
電気的に絶縁分離する。続いて、LP−CVD法により
100nm程度のSi34膜210、500nm程度の
Si2O膜211を順次堆積する(図11)。
Next, after forming the bit line 208, a SiO 2 film 209 covering the bit line 208 is formed by the CVD method,
Isolate electrically. Subsequently, a Si 3 N 4 film 210 of about 100 nm and a Si 2 O film 211 of about 500 nm are sequentially deposited by the LP-CVD method (FIG. 11).

【0006】次に、所定の形状にパターンニングしたホ
トレジスト212をマスクとして、上記SiO2膜21
1とSi34膜210をエッチングして、拡散層205
(b)上部のリンドープ多結晶Si膜207を囲むよう
な絶縁膜(SiO2膜211、Si34膜210)の枠
を形成する。この時、同時に拡散層205(b)に接続
されたリンドープ多結晶Si膜207の表面を露出させ
る(図12(c))。ここで、上記レジストパターン
は、図12(a)に示すように、クロムフィルムのパタ
ーンの間の透過部に交互にシフタ膜が設置されたレチク
ルを用い、波長365nmのi線で形成した。ホトレジ
ストはポジ型のレジストを用い、隣接するホールパター
ンの間隔が0.3μmのパターンを形成した(図12
(b))。
Next, using the photoresist 212 patterned into a predetermined shape as a mask, the SiO 2 film 21 is formed.
1 and the Si 3 N 4 film 210 are etched to form a diffusion layer 205.
(B) A frame of an insulating film (SiO 2 film 211, Si 3 N 4 film 210) surrounding the upper phosphorus-doped polycrystalline Si film 207 is formed. At this time, at the same time, the surface of the phosphorus-doped polycrystalline Si film 207 connected to the diffusion layer 205 (b) is exposed (FIG. 12 (c)). Here, as shown in FIG. 12A, the resist pattern was formed with an i-line having a wavelength of 365 nm by using a reticle in which shifter films are alternately placed in the transmissive portions between the patterns of the chrome film. A positive resist was used as the photoresist, and a pattern in which the distance between adjacent hole patterns was 0.3 μm was formed (FIG. 12).
(B)).

【0007】続いてホトレジスト212を除き、LP−
CVD法により蓄積電極213となるリンドープ多結晶
Si膜を80nm程度形成する。次に絶縁膜(SiO2
膜211とSi34膜210)の枠内の溝部が十分に埋
まる膜厚のSiO2膜214をCVD法で堆積した後、
ドライエッチング法により上記SiO2膜214をエッ
チバックして溝部のみをSiO2膜214で充填させ
る。続いてドライエッチング法で絶縁膜(SiO2膜2
11とSi34膜210)の枠上に露出したリンドープ
多結晶Si膜213を除去する(図13)。
Subsequently, the photoresist 212 is removed, and the LP-
A phosphorus-doped polycrystalline Si film to be the storage electrode 213 is formed to a thickness of about 80 nm by the CVD method. Next, an insulating film (SiO 2
After depositing a SiO 2 film 214 with a film thickness that sufficiently fills the groove portion in the frame of the film 211 and the Si 3 N 4 film 210) by the CVD method,
The SiO 2 film 214 is etched back by dry etching to fill only the groove with the SiO 2 film 214. Then, an insulating film (SiO 2 film 2
11 and the Si 3 N 4 film 210) and the exposed phosphorus-doped polycrystalline Si film 213 are removed (FIG. 13).

【0008】次に、溝内を埋め込んでいたSiO2膜2
14及び絶縁膜の枠を形成していたSi2O膜211を
フッ酸水溶液で除去して楕円筒形状の蓄積電極213を
形成する(図14)。この後、容量絶縁膜、プレート電
極及び所定の配線を形成して王冠型STCセルの製造を
終了する。このように蓄積電極213を楕円筒状にする
ことで大きな蓄積容量を確保することができる。
Next, the SiO 2 film 2 which has buried the inside of the groove
14 and the Si 2 O film 211 forming the frame of the insulating film are removed with an aqueous solution of hydrofluoric acid to form an elliptic cylindrical storage electrode 213 (FIG. 14). After that, the capacitive insulating film, the plate electrode and the predetermined wiring are formed, and the manufacturing of the crown type STC cell is completed. By thus forming the storage electrode 213 in an elliptic cylindrical shape, a large storage capacity can be secured.

【0009】[0009]

【発明が解決しようとする課題】以上記述したように、
現状の技術を用いて64メガビット以降のDRAMを王
冠型STCセルで実現するには、(1)楕円筒状蓄積電
極の高さを0.5μm程度に抑え、Si酸化膜換算で2
〜3nm程度のTa25(5酸化タンタル)膜を容量絶
縁膜として用いるか、(2)楕円筒状蓄積電極の高さを
0.8μm程度まで高くして、Si酸化膜換算で4〜
4.5nm程度のSiO2/Si34積層膜を用いると
いう2つの方法が有望と考えられる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above,
In order to realize a 64-megabit or later DRAM with a crown-type STC cell using the current technology, (1) the height of the elliptic cylindrical storage electrode should be suppressed to about 0.5 μm, and 2 in terms of Si oxide film.
A Ta 2 O 5 (tantalum pentaoxide) film of about 3 nm is used as a capacitive insulating film, or (2) the height of the elliptic cylindrical storage electrode is increased to about 0.8 μm and converted to a Si oxide film of 4 to 4 nm.
Two methods of using a SiO 2 / Si 3 N 4 laminated film having a thickness of about 4.5 nm are considered promising.

【0010】しかし、Ta25膜を用いた場合、薄膜化
は可能であるが形成方法が複雑であること、また、プレ
ート電極材料をメタルにしなければならないという問題
がある。一方、SiO2とSi34の積層膜を用いた場
合、従来から用いてきた多結晶Siプレートを適用出来
るが薄膜化が出来ないため、より高い蓄積電極が必要と
なる。しかし、蓄積電極を高くするとリソグラフィー工
程における解像不良やドライエッチング工程における断
線、短絡等の問題が顕在化する。
However, when the Ta 2 O 5 film is used, there are problems that the film can be made thin, but the forming method is complicated, and that the plate electrode material must be a metal. On the other hand, when a laminated film of SiO 2 and Si 3 N 4 is used, a polycrystalline Si plate that has been used conventionally can be applied, but it cannot be thinned, so a higher storage electrode is required. However, if the storage electrode is raised, problems such as poor resolution in the lithography process and disconnection and short circuit in the dry etching process become apparent.

【0011】一つの対策として、図21に示すような2
重楕円筒状の蓄積電極が提案されている。なお、図21
は、ワード線方向の断面を示している。この2重楕円筒
状蓄積電極を用いれば、電極の高さ0.5μm程度でも
SiO2/Si34積層膜で十分な容量を確保できる。
しかし、従来の方法では蓄積電極の外周部と内周部をそ
れぞれ個々に独立して形成するため、蓄積電極の形成法
が複雑になること、さらに内周部と外周部の接触面積が
非常に小さいため接着強度が弱く、洗浄工程などで剥離
する等の問題があった。また、内周部を作成するための
衝立となるSiO2膜のサイドウォールを形成する際に
は、溝底のエッチングレートが低下するため大幅なオー
バエッチが必要となる。これによりSiO2膜の衝立の
高さが低くなり、蓄積容量が減少するという問題があっ
た。
As one countermeasure, as shown in FIG.
A storage ellipsoidal cylindrical storage electrode has been proposed. Note that FIG.
Shows a cross section in the word line direction. If this double elliptic cylindrical storage electrode is used, a sufficient capacity can be secured by the SiO 2 / Si 3 N 4 laminated film even if the electrode height is about 0.5 μm.
However, in the conventional method, since the outer peripheral portion and the inner peripheral portion of the storage electrode are individually formed, the method of forming the storage electrode is complicated, and the contact area between the inner peripheral portion and the outer peripheral portion is very large. Since it is small, the adhesive strength is weak and there is a problem such as peeling in the washing process. Further, when forming the side wall of the SiO 2 film that serves as a partition for forming the inner peripheral portion, a large overetch is required because the etching rate of the groove bottom decreases. As a result, the height of the partition of the SiO 2 film is lowered and the storage capacitance is reduced.

【0012】本発明の目的は、微細な平面面積で大きな
蓄積容量が得られる半導体装置及びその半導体装置を歩
留まり良く製造できる製造方法を提供することにある。
An object of the present invention is to provide a semiconductor device which can obtain a large storage capacitance in a fine plane area and a manufacturing method capable of manufacturing the semiconductor device with a high yield.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体装置は、2重の筒状の外周部と内周
部とそれらの下部を接続する底部とからなる蓄積電極及
びトランジスタからなる半導体素子の外周部、内周部及
び底部を同一層とするように構成する。
In order to achieve the above object, a semiconductor device according to the present invention comprises a storage electrode comprising a double cylindrical outer peripheral portion, an inner peripheral portion and a bottom portion connecting the lower portions thereof. An outer peripheral portion, an inner peripheral portion, and a bottom portion of a semiconductor element formed of a transistor are formed in the same layer.

【0014】上記筒状とは断面が円形のもの、楕円形の
もの、変形した円形や楕円形のもの等どのような形状で
もよく、その一部分に直線部分があってもよい。また、
蓄積電極の所望の縦断面に現われる一対の上記外周部と
内周部の上端の間隔が実質的に同じ長さであることが好
ましい。また、蓄積電極の外周部と内周部の上端の間隔
が0.1μmから0.3μmの範囲にあることが好まし
い。さらに、蓄積電極の外周部と内周部の上端が実質的
に同じ高さにあることが好ましい。
The cylindrical shape may be any shape such as a circular cross section, an elliptical shape, a modified circular shape or an elliptical shape, and a part thereof may have a straight line portion. Also,
It is preferable that the distance between the upper ends of the pair of the outer peripheral portion and the inner peripheral portion appearing in a desired vertical section of the storage electrode is substantially the same. Further, it is preferable that the distance between the outer peripheral portion and the inner peripheral portion of the storage electrode is in the range of 0.1 μm to 0.3 μm. Further, it is preferable that the upper ends of the outer peripheral portion and the inner peripheral portion of the storage electrode are substantially at the same height.

【0015】また、本発明の半導体装置は、所望の領域
を囲んで形成された外周部の壁状構造、その内側に形成
された内周部の壁状構造及びそれらの下部を接続する底
部からなる蓄積電極並びにトランジスタから構成される
半導体素子の外周部及び内周部の壁状構造並びに底部を
同一層とするように構成する。この場合も、蓄積電極の
所望の縦断面に現われる一対の上記外周部の壁状構造と
内周部の壁状構造の上端の間隔が実質的に同じ長さであ
ること、その間隔が0.1μmから0.3μmの範囲に
あること、蓄積電極の外周部の壁状構造と内周部の壁状
構造の上端が実質的に同じ高さにあることが好ましい。
In the semiconductor device of the present invention, the wall-shaped structure of the outer peripheral portion formed so as to surround a desired region, the wall-shaped structure of the inner peripheral portion formed inside the wall-shaped structure, and the bottom portion connecting the lower portions thereof are provided. The outer wall and the inner wall of the semiconductor element including the storage electrode and the transistor are formed so that the wall-shaped structure and the bottom are in the same layer. In this case as well, the interval between the upper ends of the pair of the outer peripheral wall-shaped structure and the inner peripheral wall-shaped structure appearing in the desired vertical section of the storage electrode is substantially the same, and the interval is 0. It is preferable that the thickness is in the range of 1 μm to 0.3 μm, and the upper ends of the wall-shaped structure on the outer peripheral portion and the wall-shaped structure on the inner peripheral portion of the storage electrode are substantially at the same height.

【0016】このような半導体装置は、基板上に、少な
くとも上部が蓄積電極を構成する材料よりエッチング速
度が大きい材料の膜を形成し、この膜に環状の溝を形成
し、溝の外周部と内周部の壁面と底部に、連続した導電
性物質の膜を形成して、この導電性物質の膜を蓄積電極
とすることにより製造することができる。上記環状の溝
を形成する工程は、所定のパターン部が光の位相を18
0度反転させるシフタ膜のみで形成されたレチクルを用
いたリソグラフィーとドライエッチングにより形成する
ことが好ましい。
In such a semiconductor device, a film of a material having an etching rate higher than that of the material forming the storage electrode is formed on at least the upper portion of the substrate, an annular groove is formed in the film, and an outer peripheral portion of the groove is formed. It can be manufactured by forming a continuous film of a conductive material on the wall surface and the bottom of the inner peripheral portion and using this film of the conductive material as a storage electrode. In the step of forming the annular groove, the predetermined pattern portion changes the phase of light to 18
It is preferably formed by lithography and dry etching using a reticle formed only of a shifter film that is inverted by 0 degrees.

【0017】[0017]

【作用】周知のように、光の位相を180°反転させる
位相シフト法を用いれば、光の波長以下の微細なパター
ンを形成することができる。その一例を図19に示す。
図19(a)(b)はレチクル基板上に光の位相を18
0°反転させるシフタパターンを設けたマスクの平面図
とそのAA’線断面図、図19(c)(d)はそれを用
いて得たホトレジストパターンの平面図とそのBB’線
断面図である。
As is well known, if the phase shift method of inverting the phase of light by 180 ° is used, it is possible to form a fine pattern with a wavelength of light or less. An example thereof is shown in FIG.
19 (a) and 19 (b) show the phase of light on the reticle substrate.
A plan view of a mask provided with a shifter pattern for inversion by 0 ° and its sectional view taken along line AA ', and FIGS. 19C and 19D are a plan view of a photoresist pattern obtained by using it and a sectional view taken along line BB' thereof. .

【0018】ネガ型のホトレジストを用いた場合、図に
示したように、シフタパターンのエッジ部の光強度はゼ
ロとなるため、光強度ゼロの部分のホトレジストは除去
されるのでシフタエッジ周状に微細な環状の溝のホール
パターンが形成され、溝の内側には島パターンが形成さ
れる(図19(c)(d))。この環状の溝幅は、光の
波長(λ)とレンズの開口数(NA)及び露光量を選択
することで、0.1〜0.3μm程度に制御できる。ま
た、島パターンの幅はシフタパターンの幅と溝幅で調整
することができる。
When a negative type photoresist is used, the light intensity at the edge portion of the shifter pattern becomes zero as shown in the figure, and therefore the photoresist at the portion where the light intensity is zero is removed. An annular groove hole pattern is formed, and an island pattern is formed inside the groove (FIGS. 19C and 19D). The annular groove width can be controlled to about 0.1 to 0.3 μm by selecting the wavelength (λ) of light, the numerical aperture (NA) of the lens and the exposure amount. The width of the island pattern can be adjusted by the width of the shifter pattern and the groove width.

【0019】また、図20に2種のシフタのパターンの
平面図と断面図を示した。レチクル基板上には遮光性の
クロム膜を形成する必要はない。このようなシフタパタ
ーンは、全面にシフタ膜を形成した後、(1)所定のパ
ターンサイズにシフタ膜を残すか、または、(2)パタ
ーンサイズのシフタ膜のみを除去することにより得るこ
とができる。この何れでも同じ形状のホトレジストパタ
ーンが得られる。
Further, FIG. 20 shows a plan view and a sectional view of the patterns of two kinds of shifters. It is not necessary to form a light-shielding chromium film on the reticle substrate. Such a shifter pattern can be obtained by forming a shifter film on the entire surface and then (1) leaving the shifter film in a predetermined pattern size, or (2) removing only the shifter film having a pattern size. . In either case, a photoresist pattern having the same shape can be obtained.

【0020】このようなシフタパターンによる光強度分
布の一例を図22〜図24に示す。図22(b)、図2
3(b)、図24(b)はレチクル上に設置したシフタ
のレイアウトを示し、図22(a)(c)、図23
(a)(c)、図24(a)(c)は光の波長及びレン
ズの開口数をパラメータとした時の光強度分布のシミュ
レーション結果を示す。図の横軸はレイアウトの図中の
AA’線の断面位置を、縦軸は光強度を示す。また、図
中の破線は、ホトレジストが解像する光強度のしきい値
を示している。シフタ幅及びシフタ間隔が0.4μmの
場合、波長λ=365nmのi線と開口数NA=0.5
のレンズでは解像できないが、NA0.55以上のレン
ズを用いれば解像可能であることが分かる(図22、図
23)。また、シフタ幅及びシフタ間隔を0.3μmに
しても、波長λ=248nmのKrFエキシマレーザを
用いれば、解像可能であることが分かる。このように、
位相シフト法を用いることで微細な環状の溝を形成する
ことができる。
22 to 24 show an example of the light intensity distribution by such a shifter pattern. 22 (b) and FIG.
3 (b) and FIG. 24 (b) show the layout of the shifter installed on the reticle, and FIG. 22 (a) (c) and FIG.
24A and 24C show simulation results of the light intensity distribution when the wavelength of light and the numerical aperture of the lens are used as parameters. The horizontal axis of the figure shows the cross-sectional position of the line AA 'in the layout figure, and the vertical axis shows the light intensity. Also, the broken line in the figure indicates the threshold value of the light intensity at which the photoresist is resolved. When the shifter width and the shifter interval are 0.4 μm, the i-line with the wavelength λ = 365 nm and the numerical aperture NA = 0.5
It is not possible to resolve with the lens No. 2, but it is possible to resolve with a lens with an NA of 0.55 or more (FIGS. 22 and 23). It is also understood that even if the shifter width and the shifter interval are 0.3 μm, resolution can be resolved by using a KrF excimer laser with a wavelength λ = 248 nm. in this way,
A fine annular groove can be formed by using the phase shift method.

【0021】また、本発明によれば2重の筒状の外周部
と内周部を同一層で形成できるので、形成プロセスが簡
単で、かつ蓄積電極の機械的強度も強く剥離等の問題は
ない。さらに、内周部の蓄積電極の衝立となるSiO2
膜のサイドウォール形成が無いので、内周部の蓄積電極
の高さが低下する等の問題はない。
Further, according to the present invention, since the double cylindrical outer peripheral portion and the inner peripheral portion can be formed in the same layer, the forming process is simple, and the mechanical strength of the storage electrode is strong, so that there is no problem such as peeling. Absent. Further, SiO 2 which becomes a partition of the storage electrode in the inner peripheral portion
Since the side wall of the film is not formed, there is no problem that the height of the storage electrode in the inner peripheral portion is lowered.

【0022】[0022]

【実施例】以下、図面を用いて本発明の詳細を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings.

【0023】〈実施例1〉図2〜図9に、本発明の第1
の実施例の半導体装置の製造工程を示した。まず、P型
のSi単結晶基板101上に、LOCOS法(シリコン
の選択酸化法)により素子分離領域102を形成した
後、850℃のウエット酸化法でゲート絶縁膜103と
なる8nmのSiO2膜103を形成する。続いて、L
P−CVD法でゲート電極104となる200nmのリ
ンドープ多結晶Si膜及びSiO2膜105を順次形成
する。本実施例においては、上記リンドープ多結晶Si
膜の形成にSiH4ガスとPH3ガスを用い580℃の温
度で形成した。次に、リソグラフィー及びドライエッチ
ング技術により上記SiO2膜105、リンドープ多結
晶Si膜を所定の形状に加工した後、スイッチングトラ
ンジスタの拡散層106(a)(b)となる部分に砒素
をイオン注入し、850℃、15分のN2アニールを行
う。次にCVD法でゲート電極104の側壁部にSiO
2膜107を形成し、電気的に絶縁した後、上記トラン
ジスタの拡散層106(a)(b)表面を露出させる。
続いて、LP−CVD法でリンドープ多結晶Si膜10
8を500nm堆積した後、ドライエッチング法により
上記多結晶Si膜108を250nmエッチバックして
平坦化を行う(図2)。
<Embodiment 1> FIGS. 2 to 9 show the first embodiment of the present invention.
The manufacturing process of the semiconductor device of the embodiment is shown. First, an element isolation region 102 is formed on a P-type Si single crystal substrate 101 by a LOCOS method (a selective oxidation method of silicon), and then an 8 nm SiO 2 film to be a gate insulating film 103 is formed by a wet oxidation method at 850 ° C. Form 103. Then L
A 200 nm phosphorus-doped polycrystalline Si film and a SiO 2 film 105 to be the gate electrode 104 are sequentially formed by the P-CVD method. In the present embodiment, the phosphorus-doped polycrystalline Si described above is used.
The film was formed at a temperature of 580 ° C. using SiH 4 gas and PH 3 gas. Next, after the SiO 2 film 105 and the phosphorus-doped polycrystalline Si film are processed into a predetermined shape by lithography and dry etching techniques, arsenic is ion-implanted into the diffusion layer 106 (a) (b) of the switching transistor. , 850 ° C., and N 2 annealing for 15 minutes. Next, SiO 2 is formed on the side wall of the gate electrode 104 by the CVD method.
2 After the film 107 is formed and electrically insulated, the surfaces of the diffusion layers 106 (a) and (b) of the transistor are exposed.
Then, the phosphorus-doped polycrystalline Si film 10 is formed by the LP-CVD method.
8 is deposited to a thickness of 500 nm, and the polycrystalline Si film 108 is etched back by a thickness of 250 nm by a dry etching method so as to be flattened (FIG. 2).

【0024】次に、LP−CVD法により150nmの
リンドープ多結晶Si膜及び200nmのSiO2膜1
10を順次堆積した後、所定の形状に加工してビット線
109を形成する。この後、CVD法により、ビット線
109側壁部にSiO2膜111を形成し、電気的に絶
縁する。次に、LP−CVD法によりSi34膜112
を100nm、SiO2膜113を500nm順次堆積
する(図3)。
Next, a phosphorus-doped polycrystalline Si film of 150 nm and a SiO 2 film 1 of 200 nm are formed by the LP-CVD method.
After 10 are sequentially deposited, they are processed into a predetermined shape to form the bit line 109. After that, the SiO 2 film 111 is formed on the side wall of the bit line 109 by the CVD method and electrically insulated. Next, the Si 3 N 4 film 112 is formed by the LP-CVD method.
Of 100 nm and a SiO 2 film 113 of 500 nm are sequentially deposited (FIG. 3).

【0025】次に、位相シフト法により微細なリング状
のスペースを有するホトレジストパターン114を形成
する(図4(c))。本実施例に用いたレチクルの平面
図を図8(a)に、断面図を図8(b)に示す。レチク
ル上に形成するシフタの長辺は1.1μm、短辺は0.
4μm、シフタ間の間隔は0.4μmとした。また、露
光には波長(λ)365nmのi線と、開口数(NA)
0.55のレンズを用いた。上記方法で形成したホトレ
ジストパターンの平面図を図8(c)に、断面図を図8
(d)に示した。図に示したように、リング状のスペー
スのエッジはシフタのエッジから約0.125μm両側
にシフトし、約0.25μmのスペースが得られた(図
8(c))。この時、リング状のスペースに囲まれた島
パターンの短辺の長さは、シフタの短辺の長さと0.4
μmからのスペース長を引いた0.15μm程度になる
(図8(c)(d))。
Next, a photoresist pattern 114 having a fine ring-shaped space is formed by the phase shift method (FIG. 4C). A plan view of the reticle used in this embodiment is shown in FIG. 8 (a), and a sectional view thereof is shown in FIG. 8 (b). The shifter formed on the reticle has a long side of 1.1 μm and a short side of 0.
The distance between the shifters was 4 μm, and the distance between the shifters was 0.4 μm. For exposure, i-line with wavelength (λ) of 365 nm and numerical aperture (NA)
A 0.55 lens was used. FIG. 8C is a plan view of the photoresist pattern formed by the above method, and FIG.
It is shown in (d). As shown in the figure, the edge of the ring-shaped space was shifted to both sides by about 0.125 μm from the edge of the shifter, and a space of about 0.25 μm was obtained (FIG. 8 (c)). At this time, the length of the short side of the island pattern surrounded by the ring-shaped space is 0.4 times the length of the short side of the shifter.
It becomes about 0.15 μm, which is obtained by subtracting the space length from μm (FIGS. 8C and 8D).

【0026】本実施例においては、リング状のスペース
長を0.25μmとしたが、露光量を調整することによ
り、0.2μm〜0.3μmの範囲で制御可能であっ
た。また、本実施例ではシフタ間の間隔及びシフタの短
辺長を0.4μmとしたが(図8(a)(b))、波長
(λ)248nmのKrFエキシマレーザと開口数(N
A)0.5のレンズを併用すれば、0.3μmでもパタ
ーン形成が可能であった。
In the present embodiment, the ring-shaped space length was set to 0.25 μm, but it was possible to control in the range of 0.2 μm to 0.3 μm by adjusting the exposure amount. Further, in the present embodiment, the distance between the shifters and the short side length of the shifters are set to 0.4 μm (FIGS. 8A and 8B), but a KrF excimer laser with a wavelength (λ) of 248 nm and a numerical aperture (N) are used.
A) If a lens of 0.5 was used together, pattern formation was possible even with 0.3 μm.

【0027】再び図4に戻って説明する。上記リング状
のレジストをマスクとしてSiO2膜113、Si34
膜112を順次ドライエッチング法でエッチングし、ス
イッチングトランジスタの拡散層106(b)に接続さ
れたリンドープ多結晶Si膜108の表面を露出させ
る。リンドープ多結晶Si膜108の露出部は、図4
(a)の接続孔の位置にあり、図4(b)には図示され
ていない。
Returning to FIG. 4, the description will be continued. Using the ring-shaped resist as a mask, the SiO 2 film 113, Si 3 N 4
The film 112 is sequentially etched by the dry etching method to expose the surface of the phosphorus-doped polycrystalline Si film 108 connected to the diffusion layer 106 (b) of the switching transistor. The exposed portion of the phosphorus-doped polycrystalline Si film 108 is shown in FIG.
It is at the position of the connection hole in (a) and is not shown in FIG. 4 (b).

【0028】続いて、ホトレジストパターン114を除
去した後、希フッ酸水溶液で上記リンドープ多結晶Si
108表面の自然酸化膜を除去し、蓄積電極115とな
るリンドープ多結晶Si膜を80nm堆積する。本実施
例においては、このリンドープ多結晶Si膜の形成も、
SiH4ガスとPH3ガスを用い580℃の温度で堆積し
た。次に、LP−CVD法でSiO2膜116を300
nm堆積して、上記リンドープ多結晶Si膜間の溝を埋
め込む。この後、異方性ドライエッチング法で、SiO
2膜116をエッチングして、リング状の枠を形成して
いる絶縁膜(SiO2膜113とSi34膜112)上
部のリンドープ多結晶Si膜表面を露出させる。続い
て、表面が露出した上記リンドープ多結晶Si膜を異方
性ドライエッチング法でエッチングして、リング状の枠
の一部を形成しているSiO2膜113の表面を露出さ
せる(図5)。
Subsequently, after removing the photoresist pattern 114, the phosphorus-doped polycrystalline Si is diluted with a dilute aqueous solution of hydrofluoric acid.
The natural oxide film on the surface of 108 is removed, and a phosphorus-doped polycrystalline Si film to be the storage electrode 115 is deposited to a thickness of 80 nm. In this embodiment, the phosphorus-doped polycrystalline Si film is also formed
It was deposited at a temperature of 580 ° C. using SiH 4 gas and PH 3 gas. Next, the SiO 2 film 116 is formed to 300 by the LP-CVD method.
nm is deposited to fill the groove between the phosphorus-doped polycrystalline Si films. After that, by anisotropic dry etching, SiO
2 The film 116 is etched to expose the surface of the phosphorus-doped polycrystalline Si film on the insulating film (SiO 2 film 113 and Si 3 N 4 film 112) forming the ring-shaped frame. Subsequently, the phosphorus-doped polycrystalline Si film having the exposed surface is etched by an anisotropic dry etching method to expose the surface of the SiO 2 film 113 forming a part of the ring-shaped frame (FIG. 5). .

【0029】この後、希フッ酸水溶液でリング状の枠の
一部を形成しているSiO2膜113及び溝内を埋め込
んでいるSiO2膜116を除去する。SiO2膜113
下地のSi34膜112とリンドープ多結晶Si膜は希
フッ酸水溶液でほとんどエッチングされないので、図に
示したようなリンドープ多結晶Si膜の2重楕円筒状の
蓄積電極115が形成される(図6)。
After that, the SiO 2 film 113 forming a part of the ring-shaped frame and the SiO 2 film 116 filling the inside of the groove are removed with a dilute hydrofluoric acid solution. SiO 2 film 113
Since the underlying Si 3 N 4 film 112 and the phosphorus-doped polycrystalline Si film are hardly etched with a dilute hydrofluoric acid aqueous solution, the double elliptic cylindrical storage electrode 115 of the phosphorus-doped polycrystalline Si film as shown in the figure is formed. (Fig. 6).

【0030】本方法によれば、蓄積電極115の外周部
と内周部に挟まれている領域の底部は同一層のリンドー
プ多結晶Si膜が存在するが、内周部内の底部はリンド
ープ多結晶Si膜が存在しないでSi34膜112があ
る。従って、スイッチングトランジスタの拡散層106
(b)に接続されたリンドープ多結晶Si膜108との
接続孔は、図9に示したように外周部と内周部に挟まれ
た領域に設定した。
According to this method, the phosphorus-doped polycrystalline Si film of the same layer exists at the bottom of the region sandwiched between the outer peripheral portion and the inner peripheral portion of the storage electrode 115, but the bottom portion inside the inner peripheral portion is phosphorus-doped polycrystalline. There is a Si 3 N 4 film 112 without the Si film. Therefore, the diffusion layer 106 of the switching transistor
The connection hole with the phosphorus-doped polycrystalline Si film 108 connected to (b) was set in a region sandwiched between the outer peripheral portion and the inner peripheral portion as shown in FIG.

【0031】次に、希フッ酸水溶液でリンドープ多結晶
Si膜からなる蓄積電極115表面に存在する自然酸化
膜を除去した後、ロードロック機構を具備したLP−C
VD装置により、5nmのSi34膜を堆積する。本実
施例においては、Si34膜の堆積にSiH2Cl2ガス
とNH3ガスを用い、600℃の温度で形成を行なっ
た。続いて、850℃のウエット酸化法により上記Si
34膜を1nm酸化して、Si酸化膜換算膜厚5nmの
SiO2/Si34積層膜を形成し、容量絶縁膜117
とした。次に、LP−CVD法によりリンドープ多結晶
Si膜を150nm堆積した後、リソグラフィー及びド
ライエッチング法により所定の形状に加工してプレート
電極118とした。この後、層間絶縁膜119で表面の
平坦化を行ない周辺回路とメモリセルを接続する所定の
配線120を形成し、2重楕円筒状の蓄積電極115を
有するSTCセルの作成を完了した(図7)。
Next, after removing the natural oxide film existing on the surface of the storage electrode 115 made of a phosphorus-doped polycrystalline Si film with a dilute hydrofluoric acid aqueous solution, the LP-C equipped with a load lock mechanism.
A 5 nm Si 3 N 4 film is deposited by a VD apparatus. In this example, SiH 2 Cl 2 gas and NH 3 gas were used for depositing the Si 3 N 4 film, and the film was formed at a temperature of 600 ° C. Subsequently, the above Si was formed by a wet oxidation method at 850 ° C.
The 3 N 4 film is oxidized by 1 nm to form an SiO 2 / Si 3 N 4 laminated film having a Si oxide film equivalent film thickness of 5 nm, and the capacitive insulating film 117 is formed.
And Next, a phosphorus-doped polycrystalline Si film was deposited to a thickness of 150 nm by the LP-CVD method, and then processed into a predetermined shape by the lithography and dry etching methods to form the plate electrode 118. Thereafter, the surface of the interlayer insulating film 119 is flattened to form a predetermined wiring 120 connecting the peripheral circuit and the memory cell, and the preparation of the STC cell having the double elliptic cylindrical storage electrode 115 is completed (FIG. 7).

【0032】図1は、図6の状態の斜視図である。ただ
し、断面はワード線と並行である。図のように蓄積電極
115は2重楕円筒状になる。
FIG. 1 is a perspective view of the state shown in FIG. However, the cross section is parallel to the word line. As shown, the storage electrode 115 has a double elliptic cylindrical shape.

【0033】本実施例において作成したSTCセルは、
従来の方法で作成した2重楕円筒状の蓄積電極を有する
STCセルと同等の蓄積容量が得られた。また、蓄積電
極の形成プロセスが大幅に簡略化され、かつ蓄積電極の
剥離等の不良がなくなったので製造歩留まりが飛躍的に
向上した。
The STC cell created in this embodiment is
The same storage capacity as that of the STC cell having the double elliptic cylindrical storage electrode produced by the conventional method was obtained. In addition, since the process of forming the storage electrode is greatly simplified and defects such as peeling of the storage electrode are eliminated, the manufacturing yield is dramatically improved.

【0034】〈実施例2〉図15〜図18を用いて、本
発明の第2の実施例を説明する。実施例1と同様の手順
で、P型のSi単結晶基板301上に素子分離領域30
2及びゲート絶縁膜303、ゲート電極304、拡散層
306(a)(b)から成るスイチングトランジスタ及
びゲート電極304を絶縁するSiO2膜305、30
7を形成する。続いて、LP−CVD法によりリンドー
プ多結晶Si膜308を500nm堆積した後、ドライ
エッチング法で上記リンドープ多結晶Si膜308を2
50nmエッチバックして、拡散層上306(a)
(b)にリンドープ多結晶Si308のプラグを形成す
る(図15)。
<Second Embodiment> A second embodiment of the present invention will be described with reference to FIGS. The element isolation region 30 is formed on the P-type Si single crystal substrate 301 by the same procedure as in the first embodiment.
2 and the gate insulating film 303, the gate electrode 304, and the switching transistor composed of the diffusion layers 306 (a) and (b) and the SiO 2 films 305 and 30 for insulating the gate electrode 304.
Form 7. Then, a phosphorus-doped polycrystalline Si film 308 having a thickness of 500 nm is deposited by the LP-CVD method, and then the phosphorus-doped polycrystalline Si film 308 is deposited by a dry etching method.
Etched back to 50 nm and on the diffusion layer 306 (a)
A phosphorus-doped polycrystalline Si 308 plug is formed in (b) (FIG. 15).

【0035】続いて、リンドープ多結晶Si膜からなる
ビット線309及びそれを絶縁するSiO2膜310、
311を形成する。この時、拡散層306(b)に接続
された上記リンドープ多結晶Si膜308の表面を露出
させる(露出部は図示せず)。続いて、有機高分子膜3
12を1μm回転塗布した後、600℃の減圧雰囲気中
で、有機高分子膜312をベークして膜中のガス抜きを
行なう。次に、多層レジストプロセスにより有機高分子
膜312のパターンニングを行なう。すなわち、有機高
分子膜312の上にシリカガラス膜を塗布し、さらにこ
のシリカガラス膜の上にホトレジストの塗膜を形成し、
シフタ膜のみで形成されたレチクルを用いてホトレジス
トの塗膜をパターンとし、これをマスクに、ドライエッ
チングによりシリカガラス膜、有機高分子膜312をパ
ターンニングした。このパターンは実施例1と同様の
0.25μmのリング状スペースを有するパターンであ
る。本実施例においては、上記有機高分子膜312とし
てポリイミド312を用いたが通常のホトレジストを用
いても同様の結果が得られる(図16)。
Then, a bit line 309 made of a phosphorus-doped polycrystalline Si film and a SiO 2 film 310 for insulating the bit line 309,
311 is formed. At this time, the surface of the phosphorus-doped polycrystalline Si film 308 connected to the diffusion layer 306 (b) is exposed (the exposed portion is not shown). Then, the organic polymer film 3
After spin-coating 12 of 1 μm, the organic polymer film 312 is baked in a reduced pressure atmosphere at 600 ° C. to degas the film. Next, the organic polymer film 312 is patterned by a multi-layer resist process. That is, a silica glass film is applied on the organic polymer film 312, and a photoresist coating film is formed on the silica glass film.
A photoresist coating film was patterned using a reticle formed of only a shifter film, and using this as a mask, the silica glass film and the organic polymer film 312 were patterned by dry etching. This pattern is a pattern having a ring-shaped space of 0.25 μm similar to that of the first embodiment. In this embodiment, the polyimide 312 is used as the organic polymer film 312, but the same result can be obtained by using a normal photoresist (FIG. 16).

【0036】次に、フッ酸緩衝液で露出したリンドープ
多結晶Si膜308表面を洗浄した後、LP−CVD法
により蓄積電極313となる厚さ80nmのリンドープ
多結晶Si膜を堆積する。本実施例においては、上記リ
ンドープ多結晶Si膜の堆積にSi26ガスとPH3
スを用い、500℃の温度で堆積した。続いて、ホトレ
ジスト314を1μm回転塗布して、上記蓄積電極31
3間の溝部を埋め込む。次に、酸素プラズマアッシャに
より上記ホトレジスト314をエッチバックして溝部に
のみホトレジスト314を残し、有機高分子膜312上
のリンドープ多結晶Si膜表面を露出させる。続いて、
上記露出した有機高分子膜312のパターン上のリンド
ープ多結晶Si膜をドライエッチング法でエッチングし
て有機高分子膜312表面を露出させる(図17)。
Next, after cleaning the exposed surface of the phosphorus-doped polycrystalline Si film 308 with a hydrofluoric acid buffer solution, an 80-nm-thick phosphorus-doped polycrystalline Si film to be the storage electrode 313 is deposited by the LP-CVD method. In the present example, Si 2 H 6 gas and PH 3 gas were used for the deposition of the phosphorus-doped polycrystalline Si film at a temperature of 500 ° C. Subsequently, a photoresist 314 is spin-coated on the surface of the storage electrode 31 by 1 μm.
The groove part between 3 is embedded. Next, the photoresist 314 is etched back by an oxygen plasma asher to leave the photoresist 314 only in the groove, and the phosphorus-doped polycrystalline Si film surface on the organic polymer film 312 is exposed. continue,
The phosphorus-doped polycrystalline Si film on the exposed pattern of the organic polymer film 312 is etched by a dry etching method to expose the surface of the organic polymer film 312 (FIG. 17).

【0037】この後、酸素プラズマアッシャにより有機
高分子膜312及び溝内に残っているホトレジスト31
4を除去して、2重楕円筒状の蓄積電極313を形成す
る(図18)。
After that, the photoresist 31 remaining in the organic polymer film 312 and the groove 31 is removed by oxygen plasma asher.
4 is removed to form a storage electrode 313 having a double elliptic cylindrical shape (FIG. 18).

【0038】この後、実施例1と同様に、容量絶縁膜、
プレート電極及び所定の配線を形成し、2重楕円筒状の
蓄積電極313を具備するSTCセルの形成を終了す
る。
After that, as in the first embodiment, the capacitor insulating film,
The plate electrode and the predetermined wiring are formed, and the formation of the STC cell including the storage electrode 313 having a double elliptic cylindrical shape is completed.

【0039】本実施例では、蓄積電極313の衝立とな
る材料に有機高分子膜312を用いているので、形成や
除去が非常に容易で蓄積電極313を形成するプロセス
が大幅に簡略化される。また、実施例1に示したよう
に、衝立母材を除去するとき下地にストッパ(Si34
膜)を用いる必要がないので、2重楕円筒状の蓄積電極
313全面を有効に利用でき、蓄積電極面積がさらに増
大する。
In this embodiment, since the organic polymer film 312 is used as the material for the storage electrode 313, the formation and removal are very easy and the process of forming the storage electrode 313 is greatly simplified. . Further, as shown in Example 1, when removing the partition base material, a stopper (Si 3 N 4
Since it is not necessary to use a film), the entire surface of the storage electrode 313 having a double elliptic cylindrical shape can be effectively used, and the storage electrode area further increases.

【0040】[0040]

【発明の効果】本発明によれば、従来の楕円筒状蓄積電
極形成と同じ工程数及び同じレイアウトルールで2重の
楕円筒状蓄積電極を形成することができる。これによ
り、蓄積電極の高さを低くしても十分な蓄積容量が得ら
れるので、特にリソグラフィー及びドライエッチング工
程における歩留まりが飛躍的に向上する。
According to the present invention, a double elliptic cylindrical storage electrode can be formed with the same number of steps and the same layout rule as the conventional elliptic cylindrical storage electrode formation. As a result, a sufficient storage capacitance can be obtained even if the height of the storage electrode is lowered, so that the yield is significantly improved especially in the lithography and dry etching processes.

【0041】また、従来の2重楕円筒状蓄積電極に比
べ、形成方法が非常に簡単で、かつ蓄積電極の機械的強
度も強いので製造歩留まりが著しく向上する。
Further, as compared with the conventional double elliptic cylindrical storage electrode, the forming method is very simple and the storage electrode has high mechanical strength, so that the manufacturing yield is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置のワード線
と平行方向の断面の斜視図。
FIG. 1 is a perspective view of a cross section in a direction parallel to a word line of a semiconductor device according to a first exemplary embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置の断面図。FIG. 2 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図3】本発明の第1の実施例の半導体装置の断面図。FIG. 3 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図4】本発明の第1の実施例の半導体装置の平面図及
び断面図。
FIG. 4 is a plan view and a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の第1の実施例の半導体装置の断面図。FIG. 5 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図6】本発明の第1の実施例の半導体装置の断面図。FIG. 6 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図7】本発明の第1の実施例の半導体装置の断面図。FIG. 7 is a sectional view of the semiconductor device according to the first embodiment of the present invention.

【図8】本発明の第1の実施例に用いたレティクルの平
面図及び断面図。
FIG. 8 is a plan view and a sectional view of a reticle used in the first embodiment of the present invention.

【図9】本発明の第1の実施例の半導体装置の蓄積電極
の平面図。
FIG. 9 is a plan view of a storage electrode of the semiconductor device according to the first embodiment of the present invention.

【図10】従来の方法の半導体装置の断面図。FIG. 10 is a sectional view of a semiconductor device according to a conventional method.

【図11】従来の半導体装置の断面図。FIG. 11 is a cross-sectional view of a conventional semiconductor device.

【図12】従来の製造方法に用いたレティクルの平面図
並びに製造した半導体装置の平面図及び断面図。
FIG. 12 is a plan view of a reticle used in a conventional manufacturing method, and plan views and cross-sectional views of a manufactured semiconductor device.

【図13】従来の半導体装置の断面図。FIG. 13 is a sectional view of a conventional semiconductor device.

【図14】従来の半導体装置の断面図。FIG. 14 is a sectional view of a conventional semiconductor device.

【図15】本発明の第2の実施例の半導体装置の断面
図。
FIG. 15 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図16】本発明の第2の実施例の半導体装置の断面
図。
FIG. 16 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図17】本発明の第2の実施例の半導体装置の断面
図。
FIG. 17 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図18】本発明の第2の実施例の半導体装置の断面
図。
FIG. 18 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図19】本発明に用いた位相シフト法を説明する図。FIG. 19 is a diagram illustrating a phase shift method used in the present invention.

【図20】レチクル基板上のシフタ膜配置図。FIG. 20 is a layout view of a shifter film on a reticle substrate.

【図21】従来の半導体装置の断面の斜視図。FIG. 21 is a perspective view of a cross section of a conventional semiconductor device.

【図22】光強度分布のシミュレーション結果を示す
図。
FIG. 22 is a diagram showing a simulation result of light intensity distribution.

【図23】光強度分布のシミュレーション結果を示す
図。
FIG. 23 is a diagram showing a simulation result of light intensity distribution.

【図24】光強度分布のシミュレーション結果を示す
図。
FIG. 24 is a diagram showing a simulation result of light intensity distribution.

【符号の説明】[Explanation of symbols]

101、201、301…Si単結晶基板 102、202、302…素子分離領域 103、203、303…ゲート絶縁膜 104、204、304…ゲート電極 105、107、110、111、113、116、2
09、211、214、305、307、310、31
1…SiO2膜 106(a)(b)、205(a)(b)、306
(a)(b)…拡散層 108、207、308…リンドープ多結晶Si膜 109、208、309…ビット線 112、210…Si34膜 114…ホトレジストパターン 115、213、313…蓄積電極 117…容量絶縁膜 118…プレート電極 119…層間絶縁膜 120…配線 206…絶縁膜 212、314…ホトレジスト 312…有機高分子膜
101, 201, 301 ... Si single crystal substrate 102, 202, 302 ... Element isolation region 103, 203, 303 ... Gate insulating film 104, 204, 304 ... Gate electrode 105, 107, 110, 111, 113, 116, 2
09, 211, 214, 305, 307, 310, 31
1 ... SiO 2 film 106 (a) (b), 205 (a) (b), 306
(A) (b) ... Diffusion layers 108, 207, 308 ... Phosphorus-doped polycrystalline Si films 109, 208, 309 ... Bit lines 112, 210 ... Si 3 N 4 films 114 ... Photoresist patterns 115, 213, 313 ... Storage electrodes 117 Capacitance insulating film 118 ... Plate electrode 119 ... Interlayer insulating film 120 ... Wiring 206 ... Insulating film 212, 314 ... Photoresist 312 ... Organic polymer film

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】2重の筒状の外周部と内周部とそれらの下
部を接続する底部とからなる蓄積電極及びトランジスタ
からなる半導体素子を有する半導体装置において、上記
外周部、内周部及び底部は、同一層からなることを特徴
とする半導体装置。
1. A semiconductor device having a semiconductor element composed of a storage electrode and a transistor, which has a double cylindrical outer peripheral portion, an inner peripheral portion, and a bottom portion connecting the lower portion to each other. A semiconductor device having a bottom made of the same layer.
【請求項2】請求項1記載の半導体装置において、上記
蓄積電極の所望の縦断面に現われる一対の上記外周部と
内周部の上端の間隔が実質的に同じ長さであることを特
徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the distance between the upper ends of the pair of the outer peripheral portion and the inner peripheral portion, which appear in a desired vertical section of the storage electrode, is substantially the same. Semiconductor device.
【請求項3】請求項1又は2記載の半導体装置におい
て、上記蓄積電極の外周部と内周部の上端の間隔が0.
1μmから0.3μmの範囲にあることを特徴とする半
導体装置。
3. The semiconductor device according to claim 1 or 2, wherein the distance between the upper ends of the outer peripheral portion and the inner peripheral portion of the storage electrode is 0.
A semiconductor device having a range of 1 μm to 0.3 μm.
【請求項4】請求項1から3のいずれか一に記載の半導
体装置において、上記蓄積電極の外周部と内周部の上端
が実質的に同じ高さにあることを特徴とする半導体装
置。
4. The semiconductor device according to claim 1, wherein the outer peripheral portion and the inner peripheral portion of the storage electrode have substantially the same height at their upper ends.
【請求項5】請求項1から4のいずれか一に記載の半導
体装置において、上記蓄積電極の内周部に囲まれた領域
の底部は、蓄積電極を構成する材質と異なる材質である
ことを特徴とする半導体装置。
5. The semiconductor device according to claim 1, wherein the bottom of the region surrounded by the inner periphery of the storage electrode is made of a material different from that of the storage electrode. Characteristic semiconductor device.
【請求項6】所望の領域を囲んで形成された外周部の壁
状構造、その内側に形成された内周部の壁状構造及びそ
れらの下部を接続する底部から構成される蓄積電極並び
にトランジスタからなる半導体素子を有する半導体装置
において、上記外周部及び内周部の壁状構造並びに底部
は、同一層からなることを特徴とする半導体装置。
6. A storage electrode and a transistor comprising a wall-shaped structure of an outer peripheral portion formed so as to surround a desired region, a wall-shaped structure of an inner peripheral portion formed inside thereof, and a bottom portion connecting the lower portions thereof. In the semiconductor device having a semiconductor element made of, the outer peripheral portion and the inner peripheral portion have a wall-shaped structure and a bottom portion that are formed of the same layer.
【請求項7】請求項6記載の半導体装置において、上記
蓄積電極の所望の縦断面に現われる一対の上記外周部の
壁状構造と内周部の壁状構造の上端の間隔が実質的に同
じ長さであることを特徴とする半導体装置。
7. The semiconductor device according to claim 6, wherein a pair of outer peripheral wall-shaped structures and inner peripheral wall-shaped structures which appear in a desired vertical cross section of the storage electrode have substantially the same upper end spacing. A semiconductor device having a length.
【請求項8】請求項6又は7記載の半導体装置におい
て、上記蓄積電極の外周部の壁状構造と内周部の壁状構
造の上端の間隔が0.1μmから0.3μmの範囲にあ
ることを特徴とする半導体装置。
8. The semiconductor device according to claim 6 or 7, wherein the distance between the upper ends of the outer peripheral wall-shaped structure and the inner peripheral wall-shaped structure of the storage electrode is in the range of 0.1 μm to 0.3 μm. A semiconductor device characterized by the above.
【請求項9】請求項6から8のいずれか一に記載の半導
体装置において、上記蓄積電極の外周部の壁状構造と内
周部の壁状構造の上端が実質的に同じ高さにあることを
特徴とする半導体装置。
9. The semiconductor device according to claim 6, wherein the upper ends of the outer peripheral wall-shaped structure and the inner peripheral wall-shaped structure of the storage electrode are substantially at the same height. A semiconductor device characterized by the above.
【請求項10】請求項6から9のいずれか一に記載の半
導体装置において、上記蓄積電極の内周部の壁状構造に
囲まれた領域の底部は、蓄積電極を構成する材質と異な
る材質であることを特徴とする半導体装置。
10. The semiconductor device according to claim 6, wherein a bottom of a region surrounded by a wall-shaped structure of an inner peripheral portion of the storage electrode is different from a material forming the storage electrode. A semiconductor device characterized by:
【請求項11】基板上に、少なくとも上部が蓄積電極を
構成する材料よりエッチング速度が大きい材料の膜を形
成する工程、該膜に環状の溝を形成する工程、少なくと
も該溝の外周部と内周部の壁面と底部に、連続した導電
性物質の膜を形成する工程を有し、該導電性物質の膜を
蓄積電極とすることを特徴とする半導体装置の製造方
法。
11. A step of forming a film of a material having an etching rate higher than that of a material forming a storage electrode on a substrate, a step of forming an annular groove in the film, and at least an outer peripheral portion of the groove and an inner portion of the groove. A method of manufacturing a semiconductor device, comprising a step of forming a continuous film of a conductive substance on a wall surface and a bottom part of a peripheral part, and using the film of the conductive substance as a storage electrode.
【請求項12】請求項11記載の半導体装置の製造方法
において、上記溝の外周部と内周部の壁面に形成された
導電性物質の膜の上端の間隔が0.1μmから0.3μ
mの範囲にあることを特徴とする半導体装置の製造方
法。
12. The method of manufacturing a semiconductor device according to claim 11, wherein the distance between the upper ends of the conductive material films formed on the wall surfaces of the outer peripheral portion and the inner peripheral portion of the groove is 0.1 μm to 0.3 μm.
A method for manufacturing a semiconductor device, wherein the semiconductor device is in the range of m.
【請求項13】請求項11又は12記載の半導体装置の
製造方法において、上記環状の溝を形成する工程は、上
記膜の上に形成されたホトレジスト膜に、所定のパター
ン部が光の位相を180度反転させるシフタ膜のみで形
成されたレチクルを用いたリソグラフィーにより環状の
溝を形成し、該環状の溝をドライエッチングにより上記
膜に転写することにより行うことを特徴とする半導体装
置の製造方法。
13. The method of manufacturing a semiconductor device according to claim 11, wherein in the step of forming the annular groove, a predetermined pattern portion forms a light phase on a photoresist film formed on the film. A method for manufacturing a semiconductor device, which is characterized by forming an annular groove by lithography using a reticle formed only by a shifter film which is inverted by 180 degrees, and transferring the annular groove to the film by dry etching. .
【請求項14】所望の形状の第1の導電性物質の膜上
に、第1の絶縁膜及び第2の絶縁膜を順次形成する工程
と、第2の絶縁膜上に環状の溝を有するホトレジストパ
ターンを形成する工程と、ホトレジストパターン形状を
ドライエッチング法により第2の絶縁膜及び第1の絶縁
膜に転写して環状の溝を形成し、かつ、所望の領域の第
1の導電性物質の膜の表面を露出させる工程と、ホトレ
ジストパターンを除去する工程と、溝の外周部と内周部
の壁面と底部と第2の絶縁膜上に第2の導電性物質の膜
を形成する工程と、第2の導電性物質の膜に挾まれた溝
部が十分に埋まる膜厚の第3の絶縁膜を形成する工程
と、第3の絶縁膜をエッチングして溝部のみに第3の絶
縁膜を残す工程と、第2の絶縁膜パターン上の第2の導
電性物質の膜をエッチングして第2の絶縁膜の表面を露
出させる工程と、第1の絶縁膜をストッパとして第2、
第3の絶縁膜をエッチングングにより除去する工程を少
なくとも有し、2重の筒状の外周部と内周部とそれらの
下部を接続する底部とからなる上記第2の導電性物質の
膜を蓄積電極とする半導体素子を製造することを特徴と
する半導体装置の製造方法。
14. A step of sequentially forming a first insulating film and a second insulating film on a film of a first conductive material having a desired shape, and an annular groove on the second insulating film. A step of forming a photoresist pattern, and a photoresist pattern shape is transferred to the second insulating film and the first insulating film by a dry etching method to form an annular groove, and the first conductive material in a desired region is formed. Of exposing the surface of the film, the step of removing the photoresist pattern, and the step of forming a film of the second conductive material on the outer peripheral and inner peripheral wall surfaces and bottoms of the groove and the second insulating film. And a step of forming a third insulating film having a film thickness in which the groove portion sandwiched by the film of the second conductive material is sufficiently filled, and the third insulating film is etched to form the third insulating film only in the groove portion. And the step of leaving the second conductive film on the second insulating film pattern Exposing a surface of the second insulating film is grayed, second and first insulating film as a stopper,
At least a step of removing the third insulating film by etching is included, and the film of the second conductive material is formed of a double cylindrical outer peripheral portion, an inner peripheral portion, and a bottom portion connecting the lower portions thereof. A method of manufacturing a semiconductor device, which comprises manufacturing a semiconductor element that uses a storage electrode.
【請求項15】請求項14記載の半導体装置の製造方法
において、上記溝の外周部と内周部の壁面に形成された
第2の導電性物質の膜の上端の間隔が0.1μmから
0.3μmの範囲にあることを特徴とする半導体装置の
製造方法。
15. The method of manufacturing a semiconductor device according to claim 14, wherein the distance between the upper ends of the second conductive material films formed on the wall surfaces of the outer peripheral portion and the inner peripheral portion of the groove is 0.1 μm to 0. A method for manufacturing a semiconductor device, characterized in that the thickness is in the range of 3 μm.
【請求項16】請求項14又は15記載の半導体装置の
製造方法において、上記第2の絶縁膜上に環状の溝を有
するホトレジストパターンを形成する工程は、上記第2
の絶縁膜上にホトレジストの膜を形成し、所定のパター
ン部が光の位相を180度反転させるシフタ膜のみで形
成されたレチクルを用いたリソグラフィーにより環状の
溝を形成して行うことを特徴とする半導体装置の製造方
法。
16. The method of manufacturing a semiconductor device according to claim 14, wherein the step of forming a photoresist pattern having an annular groove on the second insulating film comprises the step of forming the second photoresist pattern.
A photoresist film is formed on the insulating film, and a ring-shaped groove is formed by lithography using a reticle in which a predetermined pattern portion is formed of only a shifter film that inverts the phase of light by 180 degrees. Of manufacturing a semiconductor device.
【請求項17】所望の形状の第1の導電性物質の膜上
に、第1の有機高分子膜を形成する工程と、第1の有機
高分子膜上にドライエッチングのマスクとなる材質の膜
を形成する工程と、ドライエッチングのマスクとなる材
質の膜上に環状の溝を有するホトレジストパターンを形
成する工程と、ホトレジストパターン形状をドライエッ
チング法によりドライエッチングのマスクとなる材質の
膜に、さらに第1の有機高分子膜に転写して環状の溝を
形成し、かつ、所望の領域の第1の導電性物質の膜の表
面を露出させる工程と、ホトレジストパターンとドライ
エッチングのマスクとなる材質の膜を除く工程と、溝の
外周部と内周部の壁面と底部と第1の有機高分子膜上に
第2の導電性物質の膜を形成する工程と、第2の導電性
物質の膜に挾まれた溝部に第2の有機高分子膜を埋め込
む工程と、第1の有機高分子膜パターン上に露出した第
2の導電性物質の膜をエッチングして第1の有機高分子
膜の表面を露出させる工程と、酸素プラズマアッシャに
より第1、第2の有機高分子膜を除去する工程を少なく
とも有し、2重の筒状の外周部と内周部とそれらの下部
を接続する底部とからなる上記第2の導電性物質の膜を
蓄積電極とする半導体素子を製造することを特徴とする
半導体装置の製造方法。
17. A step of forming a first organic polymer film on a film of a first conductive material having a desired shape, and a step of forming a material for a dry etching mask on the first organic polymer film. A step of forming a film, a step of forming a photoresist pattern having an annular groove on a film of a material which will be a mask of dry etching, and a photoresist pattern shape which is a film of a material which will be a mask of dry etching by a dry etching method, Further, the step of transferring to the first organic polymer film to form a ring-shaped groove and exposing the surface of the film of the first conductive material in a desired region is used as a photoresist pattern and a dry etching mask. A step of removing the material film, a step of forming a film of the second conductive material on the wall surfaces and bottoms of the outer peripheral portion and the inner peripheral portion of the groove, and the first organic polymer film, and a second conductive material Sandwiched in the film A step of embedding a second organic polymer film in the portion, and etching the film of the second conductive material exposed on the first organic polymer film pattern to expose the surface of the first organic polymer film And a step of removing the first and second organic polymer films by an oxygen plasma asher, which comprises a double cylindrical outer peripheral portion, an inner peripheral portion, and a bottom portion connecting the lower portions thereof. A method of manufacturing a semiconductor device, comprising manufacturing a semiconductor element using a film of a second conductive material as a storage electrode.
【請求項18】請求項17記載の半導体装置の製造方法
において、上記溝の外周部と内周部の壁面に形成された
第2の導電性物質の膜の上端の間隔が0.1μmから
0.3μmの範囲にあることを特徴とする半導体装置の
製造方法。
18. The method of manufacturing a semiconductor device according to claim 17, wherein the distance between the upper ends of the films of the second conductive material formed on the wall surfaces of the outer peripheral portion and the inner peripheral portion of the groove is 0.1 μm to 0 μm. A method for manufacturing a semiconductor device, characterized in that the thickness is in the range of 3 μm.
【請求項19】請求項17又は18記載の半導体装置の
製造方法において、上記ドライエッチングのマスクとな
る材質の膜上に環状の溝を有するホトレジストパターン
を形成する工程は、上記第2の絶縁膜上にホトレジスト
の膜を形成し、所定のパターン部が光の位相を180度
反転させるシフタ膜のみで形成されたレチクルを用いた
リソグラフィーにより環状の溝を形成して行うことを特
徴とする半導体装置の製造方法。
19. The method of manufacturing a semiconductor device according to claim 17, wherein the step of forming a photoresist pattern having an annular groove on a film of a material that serves as a mask for the dry etching includes the step of forming the second insulating film. A semiconductor device characterized by forming a photoresist film thereon and forming an annular groove by lithography using a reticle in which a predetermined pattern portion is formed of only a shifter film for inverting the phase of light by 180 degrees. Manufacturing method.
JP4229824A 1992-08-28 1992-08-28 Semiconductor device and manufacture thereof Pending JPH0677430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229824A JPH0677430A (en) 1992-08-28 1992-08-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229824A JPH0677430A (en) 1992-08-28 1992-08-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0677430A true JPH0677430A (en) 1994-03-18

Family

ID=16898251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229824A Pending JPH0677430A (en) 1992-08-28 1992-08-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0677430A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864783A (en) * 1994-05-11 1996-03-08 Hyundai Electron Ind Co Ltd Semiconductor device and manufacture thereof
JPH08306879A (en) * 1995-04-28 1996-11-22 Nec Corp Method of fabricating semiconductor device
JPH08330539A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of semiconductor device
KR100246467B1 (en) * 1995-12-23 2000-03-15 김영환 Manufacturing method of capacitor in semiconductor device using the side-lobe of phase-reversal mask
KR100333665B1 (en) * 1999-06-28 2002-04-24 박종섭 Method for fabricating semiconductor device for preventing scum using negative photoresist
US6380579B1 (en) 1999-04-12 2002-04-30 Samsung Electronics Co., Ltd. Capacitor of semiconductor device
US7034396B2 (en) 2003-09-12 2006-04-25 Oki Electric Industry Co., Ltd. Structure of semiconductor element and its manufacturing process
US7195974B2 (en) 2004-06-07 2007-03-27 Oki Electric Industry Co., Ltd. Method of manufacturing ferroelectric film capacitor
US7273780B2 (en) 2004-06-24 2007-09-25 Samsung Electronics Co., Ltd. Semiconductor device having box-shaped cylindrical storage nodes and fabrication method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864783A (en) * 1994-05-11 1996-03-08 Hyundai Electron Ind Co Ltd Semiconductor device and manufacture thereof
DE19517344B4 (en) * 1994-05-11 2005-03-03 Hyundai Electronics Industries Co., Ltd., Ichon Semiconductor device and method of making the same
JPH08306879A (en) * 1995-04-28 1996-11-22 Nec Corp Method of fabricating semiconductor device
JPH08330539A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of semiconductor device
KR100246649B1 (en) * 1995-05-31 2000-03-15 가네꼬 히사시 Method for forming a capacitor in a memory cell in a dram
KR100246467B1 (en) * 1995-12-23 2000-03-15 김영환 Manufacturing method of capacitor in semiconductor device using the side-lobe of phase-reversal mask
US6380579B1 (en) 1999-04-12 2002-04-30 Samsung Electronics Co., Ltd. Capacitor of semiconductor device
KR100333665B1 (en) * 1999-06-28 2002-04-24 박종섭 Method for fabricating semiconductor device for preventing scum using negative photoresist
US7034396B2 (en) 2003-09-12 2006-04-25 Oki Electric Industry Co., Ltd. Structure of semiconductor element and its manufacturing process
US7195974B2 (en) 2004-06-07 2007-03-27 Oki Electric Industry Co., Ltd. Method of manufacturing ferroelectric film capacitor
US7273780B2 (en) 2004-06-24 2007-09-25 Samsung Electronics Co., Ltd. Semiconductor device having box-shaped cylindrical storage nodes and fabrication method thereof

Similar Documents

Publication Publication Date Title
US7344826B2 (en) Method for forming a capacitor
JP3562895B2 (en) Method for manufacturing semiconductor device having landing pad
JP2682509B2 (en) Method for manufacturing semiconductor device
JP2000022112A (en) Capacitor and its manufacture
JPH0677430A (en) Semiconductor device and manufacture thereof
US5508218A (en) Method for fabricating a semiconductor memory
JP2001077325A (en) Method for forming trench exceeding resolution of picture process inside insulation film
JPH09237879A (en) Manufacture of capacitor of semiconductor device
JPH08330539A (en) Manufacture of semiconductor device
US6531358B1 (en) Method of fabricating capacitor-under-bit line (CUB) DRAM
US5937290A (en) Method of manufacturing semiconductor integrated circuit devices using phase shifting mask
GB2262657A (en) Semiconductor memory device and amanufacturing method therfor
JPH0321062A (en) Semiconductor storage device
JP4031852B2 (en) Manufacturing method of semiconductor integrated circuit
US5670806A (en) Semiconductor memory device
JP2602581B2 (en) Method for manufacturing semiconductor memory device
JPH08204148A (en) Semiconductor device and manufacturing method thereof
JP3203776B2 (en) Method for manufacturing semiconductor device
JP3202732B2 (en) Method for manufacturing semiconductor device
JP3331627B2 (en) Semiconductor device and manufacturing method thereof
JP2003017540A (en) Semiconductor device and method of manufacturing same
JPS63197368A (en) Semiconductor device and its manufacture
JP2893913B2 (en) Semiconductor memory
KR100268896B1 (en) method for manufacturing of capactor
KR100308640B1 (en) Core type trench capacitor and fabrication method thereof