JPH04144206A - Rare earth bonded magnet - Google Patents

Rare earth bonded magnet

Info

Publication number
JPH04144206A
JPH04144206A JP2267620A JP26762090A JPH04144206A JP H04144206 A JPH04144206 A JP H04144206A JP 2267620 A JP2267620 A JP 2267620A JP 26762090 A JP26762090 A JP 26762090A JP H04144206 A JPH04144206 A JP H04144206A
Authority
JP
Japan
Prior art keywords
rare earth
magnetic powder
spherical
alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2267620A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Shigenori Sato
佐藤 成徳
Makoto Oketani
誠 桶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2267620A priority Critical patent/JPH04144206A/en
Publication of JPH04144206A publication Critical patent/JPH04144206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve density without deteriorating magnetic characteristics, and obtain superior magnetic characteristics, by binding magnetic powder obtained by pulverizing bulk type alloy whose basic composition is composed of specified elements, and spherical type magnetic powder having the similar composition, by using resin. CONSTITUTION:Basic composition of bulk type alloy is the following; rare earth metals (at least one kind of rare earth element containing Y), cobalt Co, to which iron Fe, copper Cu, zirconium Zr, etc., are added in the case of need, and inevitable impurities of manufacturing. Magnetic powder obtained by pulverizing said alloy and spherical type magnetic powder having the similar composition are bound by using resin. The bulk type alloy is casted alloy or sintered magnet which is heat-treated and cured in a magnetic field. The spherical magnetic powder is obtained by using a quenching solidification method such as a gas atomization method, a rotary electrode method, and a centrifugal atomization method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類ボンド磁石に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth bonded magnets.

[従来の技術] 従来、ボンド磁石は磁性粉末を樹脂で結合させることか
ら、非磁性の樹脂を含む分得られる磁気特性は焼結磁石
などのバルク状磁石と比較すると低くなってしまう。そ
こで、低い磁気特性の改善手段としては密度を高めるこ
とが考えられる訳だが、具体的には樹脂を減らすことや
成形圧を高めることが挙げられる。しかし、これらの改
善手段も粉末同士の摩擦力の問題などから自ずと限界が
あることから、液体もしくは固体の潤滑材を添加するこ
とにより、密度の向上を図ってきた。
[Prior Art] Conventionally, bonded magnets combine magnetic powder with a resin, so the magnetic properties obtained are lower than those of bulk magnets such as sintered magnets due to the inclusion of non-magnetic resin. Therefore, one possible way to improve the poor magnetic properties is to increase the density, but specific examples include reducing the amount of resin and increasing the molding pressure. However, these improvement measures naturally have their limits due to the problem of frictional force between powders, and so attempts have been made to improve the density by adding liquid or solid lubricants.

[発明が解決しようとする課題] しかし、前記の従来技術では密度向上(=磁気特性向上
)のために磁気特性に寄与しない液体もしくは固体の潤
滑材を添加することから、どうしても磁気特性が低下す
るといった問題点を有する。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, a liquid or solid lubricant that does not contribute to the magnetic properties is added to improve the density (=improve the magnetic properties), so the magnetic properties inevitably deteriorate. It has the following problems.

そこで、本発明はこれらの問題点を解決するもので、そ
の目的とするところは、磁気特性を損なうことなく密度
を向上させ、高い磁気特性の希土類ボンド磁石を提供す
るところにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to provide a rare earth bonded magnet with improved density and high magnetic properties without impairing the magnetic properties.

[課題を解決するための手段] 本発明の希土類ボンド磁石は、基本組成が希土類金属、
コバルトおよび必要に応じて鉄、銅、ジルコニウムなど
を添加し、かつ製造上不可避な不純物からなるバルク状
合金を粉砕した磁性粉末と、それと同様の組成を有する
球状磁性粉末とを樹脂で結合させたことを特徴とする。
[Means for Solving the Problems] The rare earth bonded magnet of the present invention has a basic composition of rare earth metals,
A magnetic powder made by pulverizing a bulk alloy made of cobalt and, if necessary, iron, copper, zirconium, etc. and impurities unavoidable during manufacturing, is bonded with a spherical magnetic powder having a similar composition using a resin. It is characterized by

また、前記バルク状合金が、熱処理を施し磁気硬化させ
た鋳造合金もしくは焼結磁石であることを特徴とする。
Further, the bulk alloy is a cast alloy or a sintered magnet that has been heat-treated and magnetically hardened.

また、前記球状磁性粉末が、ガスアトマイズ法2回転電
極法、遠心アトマイズ法などの急冷凝固法を用いて得ら
れたものであることを特徴とする。
Further, the spherical magnetic powder is characterized in that it is obtained using a rapid solidification method such as a gas atomization method, a two-rotation electrode method, or a centrifugal atomization method.

[作用] 本発明の上記の構成によれば、バルク状磁石を粉砕した
磁性粉末と、それと同様の組成の球状の磁性粉末を樹脂
で結合させることにより、大きな粒子と小さな粒子の組
み合せ効果および球状粉末のコロ効果によって高密度化
が達成でき、そのために非磁性のものを添加しないこと
から、高磁気特性の希土類ボンド磁石が得られるのであ
る。
[Function] According to the above configuration of the present invention, magnetic powder obtained by pulverizing a bulk magnet and spherical magnetic powder having the same composition are bonded with resin, thereby achieving the combination effect of large particles and small particles and the spherical shape. High density can be achieved by the powder colloid effect, and because no non-magnetic material is added, rare earth bonded magnets with high magnetic properties can be obtained.

すなわち、バルク状合金を粉砕した磁性粉末の形状は、
どうしても不定形で表面に凹凸の多いものとなってしま
う。したがって、高性能化のために密度を向上させよう
と樹脂量を減らしたり成形圧を高めたりすると、このよ
うな粉末同士が接触するようになる。しかし、その間の
摩擦力は大きく互いに滑べり難いことから、高充填化が
進まず、高密度化が妨げられるのである。
In other words, the shape of the magnetic powder obtained by crushing the bulk alloy is
The result is an irregular shape with many irregularities on the surface. Therefore, when the amount of resin is reduced or the molding pressure is increased in order to improve the density in order to improve performance, these powders come into contact with each other. However, since the frictional force between them is large and it is difficult for them to slide against each other, it is difficult to increase the filling rate and increase the density.

本発明の効果のひとつは、大きな粒子と小さな粒子の組
み合わせ効果であるが、これは、200ccの大豆と2
00ccのお米を混ぜても400ccにはならないこと
からも分かるだろう。すなわち、大きな不定形の粉末の
間に小さな球状粉末が入り込んでしまうことから、結果
的にはおのおのだけの場合と比べて密に詰めることがで
きるのである。
One of the effects of the present invention is the combination effect of large particles and small particles, which is achieved by combining 200cc of soybean and 2.
This can be seen from the fact that even if you mix 00cc of rice, it will not become 400cc. In other words, since small spherical powders are inserted between large irregularly shaped powders, they can be packed more densely than when each powder is packed alone.

また、球状粒子のコロ効果は、不定形で凹凸があるゆえ
に摩擦力の大きな粉末間に球状の小さな粉末が入り込む
ことによって、不定形の粉末間の滑べりの際に小さな球
状粉末が転がることによって摩擦力を大幅に低下させ、
高充填すなわち高密度化が実現できるのである。
In addition, the rolling effect of spherical particles is caused by small spherical powders getting stuck between powders that have a large frictional force due to irregular shapes and unevenness, and by rolling when small spherical powders slide between irregularly shaped powders. Significantly reduces frictional force,
High filling, that is, high density can be achieved.

なお、基本組成が希土類金属およびコバルトからなる希
土類磁石としては、Sm−Co系が知られているが、希
土類金属としては、Sm、 Y、 La、 Ce、 P
r。
Incidentally, as a rare earth magnet whose basic composition is a rare earth metal and cobalt, Sm-Co system is known, but rare earth metals include Sm, Y, La, Ce, P.
r.

Nd、ミツシュメタルなどの希土類金属群であればよい
。すなわち、希土類金属としては、Y、 La。
Any rare earth metal group such as Nd or Mitsushi metal may be used. That is, examples of rare earth metals include Y and La.

Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 G
d、 Tb、 Dy、 Ho、 Er、 Tm。
Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm.

YbおよびLuの希土類元素のうちの1種または2種以
上であればよい。さらには、SmとCoが原子比で1:
5であるSmCosや、Coの一部をFeやCuなどの
Co以外の遷移金属群で置換した、例えばSmなどの希
土類金属群とCo、 Fe、 CuおよびZrからなる
遷移金属群との原子比が2=17であるSm2(Co、
 Fe、 Cu。
It may be one or more of the rare earth elements Yb and Lu. Furthermore, the atomic ratio of Sm and Co is 1:
5, SmCos, or a part of Co replaced with a transition metal group other than Co such as Fe or Cu, for example, the atomic ratio of a rare earth metal group such as Sm and a transition metal group consisting of Co, Fe, Cu and Zr. Sm2(Co, where 2=17
Fe, Cu.

Zr)x7などが知られているが、本発明はいかなる組
成のものを用いても同様の効果が得られるものであり、
特定の組成系に限定されるものではない。
Zr)
It is not limited to a specific composition system.

[実施例] 以下、本発明について実施例に基づいて詳細に説明する
[Examples] Hereinafter, the present invention will be described in detail based on Examples.

(実施例−1) いずれも重量比で、S m 24.7%、 Fe22.
9%。
(Example-1) In both weight ratios, S m 24.7%, Fe22.
9%.

Cu5.3%、 Zr1.9%および残部Coの組成と
なるように、高周波溶解炉を用いアルゴン雰囲気下で溶
解・鋳造した。得られたインゴットを1160℃で24
時間溶体化処理した後、800℃で4時間保持した後、
400℃まで0.5℃/分の冷却速度で連続冷却時効を
施した。そして、はとんどが10〜30μmとなるよう
に粉砕し、磁性粉末を得た。
It was melted and cast in an argon atmosphere using a high frequency melting furnace to have a composition of 5.3% Cu, 1.9% Zr, and the balance Co. The obtained ingot was heated at 1160℃ for 24 hours.
After time solution treatment and holding at 800°C for 4 hours,
Continuous cooling aging was performed at a cooling rate of 0.5°C/min to 400°C. Then, the powder was ground to a particle size of 10 to 30 μm to obtain magnetic powder.

つぎに同じインゴットを用い、アルゴンガスアトマイズ
法でほとんどが1〜30μmである球状微粉末を得、同
様の熱処理を施した。
Next, using the same ingot, spherical fine powder, most of which had a diameter of 1 to 30 μm, was obtained by argon gas atomization and subjected to the same heat treatment.

以上の二種類の粉末を98:2の割合で混ぜ合わせ、2
重量%のエポキシ樹脂と混合・混練したものを17kO
eの磁場中で配向させ、50kg/mm2で加圧成形し
、キュア処理して8X8X12mmのボンド磁石を作成
した。これを本発明1とする。
Mix the above two types of powder in a ratio of 98:2,
Mixed and kneaded with epoxy resin of 17kO by weight%
The magnet was oriented in a magnetic field of e, pressed at 50 kg/mm2, and cured to produce a bonded magnet of 8 x 8 x 12 mm. This is referred to as present invention 1.

また、比較例1として鋳造合金の粉末だけのボンド磁石
を、比較例2として比較例1に潤滑剤としてオレイン酸
を0.5重量%添加したボンド磁石を作成した。
Further, as Comparative Example 1, a bonded magnet made of only cast alloy powder was created, and as Comparative Example 2, a bonded magnet was created in which 0.5% by weight of oleic acid was added to Comparative Example 1 as a lubricant.

各ボンド磁石の磁気特性を第1表に示した。Table 1 shows the magnetic properties of each bonded magnet.

第1表から分かるように、比較例1のボンド磁石が密度
が低くその結果残留磁束密度(Br)が低くなっており
、最大エネルギー積((BH)max)も低くなってい
る。また、比較例2のボンド磁石は密度が高くなってい
るものの磁気特性に寄与しなし)潤滑剤を含んでいるこ
とからBrの向上はわずかである。それに対し、本発明
1のボンド磁石は保磁力(iHc)はあまり変ることな
く、密度が高くなっており、B r 、 (BH)ma
xも大きく改善されている。
As can be seen from Table 1, the bonded magnet of Comparative Example 1 has a low density, resulting in a low residual magnetic flux density (Br) and a low maximum energy product ((BH)max). Further, although the bonded magnet of Comparative Example 2 has a higher density, the improvement in Br is slight because it contains a lubricant (which does not contribute to the magnetic properties). On the other hand, the bonded magnet of Invention 1 has a higher density without much change in coercive force (iHc), and B r , (BH)ma
x has also been greatly improved.

つまり、本発明は、磁気特性を大きく改善することがで
きる。
In other words, the present invention can greatly improve magnetic properties.

(実施例−2) いずれも重量比で、Sm25.5%、 Fe15%。(Example-2) Both have a weight ratio of 25.5% Sm and 15% Fe.

Cu8%、 Zr1.5%および残部Coの組成となる
ように、高周波溶解炉を用いアルゴン雰囲気下で溶解・
鋳造し、得られたインゴットを3〜5μmとなるように
粉砕し、10kOeの磁場中15kOe/mm2の圧力
で圧縮成形した。このグリーン体を1150〜1250
℃で1時間焼結し、1100〜1220℃で1時間溶体
化処理し、850℃で1時間時効し400℃まで1℃1
分で連続冷却した。ここで得られた焼結磁石をほとんど
が10〜30μmになるように粉砕し、磁性粉末を得た
The composition was melted in an argon atmosphere using a high-frequency melting furnace to obtain a composition of 8% Cu, 1.5% Zr, and the balance Co.
The ingot obtained by casting was crushed to a size of 3 to 5 μm, and compression molded at a pressure of 15 kOe/mm 2 in a magnetic field of 10 kOe. This green body is 1150-1250
℃ for 1 hour, solution treated at 1100-1220℃ for 1 hour, aged at 850℃ for 1 hour, and heated to 400℃ at 1℃.
Continuous cooling in minutes. The sintered magnet obtained here was pulverized to a size of mostly 10 to 30 μm to obtain magnetic powder.

この磁性粉末を用い、実施例−1と同様にガスアトマイ
ズ粉末を8%混ぜ合わせたもの(本発明2)、焼結磁石
を粉砕した粉末だけのもの(比較例3)および比較例3
に潤滑剤としてステアリン酸を0.5重量%添加したも
の(比較例4)の三種類のボンド磁石を作成した。結果
を第2表に示す。
Using this magnetic powder, 8% of gas atomized powder was mixed as in Example 1 (Invention 2), sintered magnet powder was used alone (Comparative Example 3), and Comparative Example 3
Three types of bonded magnets were prepared, including one in which 0.5% by weight of stearic acid was added as a lubricant (Comparative Example 4). The results are shown in Table 2.

第2表から明らかなように、比較例3,4と比べ本発明
2は、実施例−1と同様に高い磁気特性が得られている
As is clear from Table 2, compared to Comparative Examples 3 and 4, Invention 2 has high magnetic properties similar to Example-1.

つまり、本発明は、出発原料が熱処理により磁気硬化さ
せた鋳造合金であれ焼結磁石であれ効果を発揮するもの
であり、その他の出発原料であってもその効果に変りは
ない。したがって、本発明は出発原料には制限されるも
のではない。
In other words, the present invention is effective regardless of whether the starting material is a cast alloy magnetically hardened by heat treatment or a sintered magnet, and the effect remains the same even if other starting materials are used. Therefore, the invention is not limited to starting materials.

また、二種類の磁性粉末の組成は必ずしも同じでなくて
もよい。
Furthermore, the compositions of the two types of magnetic powders do not necessarily have to be the same.

(実施例−3) 実施例−1の合金を回転電極法および遠心アトマイズ法
を用いて、ガスアトマイズ法と同様に球状粉末を作成し
た。これらの球状粉末を用い、実施例−1および2と同
様にボンド磁石を作成した。具体的には、実施例−1の
鋳造合金を粉砕した粉末と回転電極法および遠心アトマ
イズ法で作成した球状粉末を96:4の割合で混合させ
たものをおのおの本発明3および4、実施例−2の焼結
磁石を粉砕した粉末と回転電極法による球状粉末を92
=8で混合したものを本発明5とする。各粉末から作成
されたボンド磁石磁気特性を第3表に示す。
(Example 3) A spherical powder was produced from the alloy of Example 1 using a rotating electrode method and a centrifugal atomization method in the same manner as the gas atomization method. Using these spherical powders, bonded magnets were created in the same manner as in Examples 1 and 2. Specifically, a powder obtained by pulverizing the cast alloy of Example 1 and a spherical powder prepared by a rotating electrode method and a centrifugal atomization method were mixed at a ratio of 96:4, respectively. -2 powder obtained by crushing the sintered magnet and spherical powder produced by the rotating electrode method.92
Invention 5 is a mixture of 8 and 8. Table 3 shows the magnetic properties of bonded magnets made from each powder.

第3表から明らかなように、本発明は球状粉末の作成方
法に依存するものではなく、球状の粉末が得られるので
あればいかなる方法でもよい。また、球状粉末の量にも
依存しない。
As is clear from Table 3, the present invention does not depend on the method for producing spherical powder, and any method may be used as long as spherical powder can be obtained. It also does not depend on the amount of spherical powder.

[発明の効果] 以上に述べたように本発明によれば、基本組成が希土類
金属、コバルトおよび必要に応じて鉄。
[Effects of the Invention] As described above, according to the present invention, the basic composition is a rare earth metal, cobalt, and iron as necessary.

銅、ジルコニウムなどを添加し、かつ製造上不可避な不
純物からなるバルク状合金を粉砕した磁性粉末と、それ
と同様の組成を有する球状磁性粉末とを樹脂で結合させ
たことを特徴とすることにより、ボンド磁石の密度を高
めることができることから、高い磁気特性のボンド磁石
が得られ、さらには、これを用いることによって例えば
高トルクや小型のモータなどが実現できるなど応用面に
も多大の効果を有するものである。
By combining magnetic powder obtained by pulverizing a bulk alloy containing copper, zirconium, etc. and impurities unavoidable in manufacturing with a spherical magnetic powder having a similar composition using a resin, Since the density of bonded magnets can be increased, bonded magnets with high magnetic properties can be obtained, and furthermore, by using this, high torque and small motors can be realized, which has great effects in terms of applications. It is something.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属(ただしYを含む希土類元
素のうち少なくとも1種;以下Rと略す),コバルト(
Co)および必要に応じて鉄(Fe),銅(Cu),ジ
ルコニウム(Zr)などを添加し、かつ製造上不可避な
不純物からなるバルク状合金を粉砕した磁性粉末と、そ
れと同様の組成を有する球状磁性粉末とを樹脂で結合さ
せたことを特徴とする希土類ボンド磁石。
(1) The basic composition is rare earth metal (at least one rare earth element including Y; hereinafter abbreviated as R), cobalt (
Magnetic powder that has the same composition as the magnetic powder obtained by pulverizing a bulk alloy consisting of Co) and, if necessary, iron (Fe), copper (Cu), zirconium (Zr), etc., and impurities that are unavoidable in manufacturing. A rare earth bonded magnet characterized by bonding spherical magnetic powder with resin.
(2)前記バルク状合金が、熱処理を施し磁気硬化させ
た鋳造合金もしくは焼結磁石であることを特徴とする請
求項1記載の希土類ボンド磁石。
(2) The rare earth bonded magnet according to claim 1, wherein the bulk alloy is a cast alloy or a sintered magnet that has been magnetically hardened by heat treatment.
(3)前記球状磁性粉末が、ガスアトマイズ法,回転電
極法,遠心アトマイズ法などの急冷凝固法を用いて得ら
れたものであることを特徴とする請求項1記載の希土類
ボンド磁石。
(3) The rare earth bonded magnet according to claim 1, wherein the spherical magnetic powder is obtained using a rapid solidification method such as a gas atomization method, a rotating electrode method, or a centrifugal atomization method.
JP2267620A 1990-10-05 1990-10-05 Rare earth bonded magnet Pending JPH04144206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267620A JPH04144206A (en) 1990-10-05 1990-10-05 Rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267620A JPH04144206A (en) 1990-10-05 1990-10-05 Rare earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH04144206A true JPH04144206A (en) 1992-05-18

Family

ID=17447224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267620A Pending JPH04144206A (en) 1990-10-05 1990-10-05 Rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH04144206A (en)

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH0621324B2 (en) Rare earth permanent magnet alloy composition
JPS6181606A (en) Preparation of rare earth magnet
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6181603A (en) Preparation of rare earth magnet
JPH0352529B2 (en)
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPH04144206A (en) Rare earth bonded magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH04240703A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH04144207A (en) Rare earth bonded magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS6271201A (en) Bond magnet
JP2012186212A (en) Manufacturing method for magnetic member, and magnetic member
JPS6066802A (en) Permanent magnet material
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet