JPH04138303A - Edge detection for light transmitting material - Google Patents

Edge detection for light transmitting material

Info

Publication number
JPH04138303A
JPH04138303A JP2262315A JP26231590A JPH04138303A JP H04138303 A JPH04138303 A JP H04138303A JP 2262315 A JP2262315 A JP 2262315A JP 26231590 A JP26231590 A JP 26231590A JP H04138303 A JPH04138303 A JP H04138303A
Authority
JP
Japan
Prior art keywords
light
transmitting material
glass
incident
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2262315A
Other languages
Japanese (ja)
Inventor
Masaaki Kawahara
正明 川原
Eiji Nishikata
西形 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2262315A priority Critical patent/JPH04138303A/en
Publication of JPH04138303A publication Critical patent/JPH04138303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the detecting accuracy of an edge by casting light on the surface of a light transmitting material at an acute angle, comparing the light with light which is cast at a vertical angle and detecting the edge of the light transmitting material based on the attenuation of the amount of the received light in a photodetector due to the increase in the light path. CONSTITUTION:The incident light 7 from a light source 6 is incident on the surface of quartz glass 5 at the incident angle of 45 degrees. The light passes through the glass 5 and reaches a photodetector 11. The light path is deviated by 0.7 mm by the refractive index of the glass 5, and the light is emitted from the glass 5. At this time, 2% of the incident light 7 is reflected from the surface of the glass 5, and the reflected light 8 is formed. In the glass 5, 6% is absorbed, and 92% of the incident light 7 becomes the transmitted light 9. Therefore, the amount of the transmitted light 9 is decreased by the amount corresponding to the increased length of the light path passing the glass 5 by about 40% in comparison with the case of the vertical incident light. The transmitted light 9 is refracted in the glass 5 and deviated downward by 0.7 mm. Therefore, an aperture 10 which restricts the light receiving plane to the minute area of 0.5 phi is provided on the entier surface of the photodetector 11. Then, the transmitted light through the glass 5 does not reach the photodetector 11 at all, and the output of a detecting device becomes zero. Thus the edge can be detected accurately.

Description

【発明の詳細な説明】 〔概要〕 本発明は、ガラスマスク等の光透過性材料の端面検出方
法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for detecting an end face of a light-transmitting material such as a glass mask.

簡単に、かつ精度良く端面検出が出来る方法を得ること
を目的とし。
The purpose is to obtain a method that can easily and accurately detect end faces.

■光源から発する光を、光透過性材料の表面に入射し、
該光透過性材料を透過した光を受光素子で受け、受光量
の変化の大きさにより、該光透過性材料の端面の位置を
判定する端面検出方法において、該光透過性材料の表面
に入射する眩光の入射面を、該光透過性材料の表面に垂
直な面より角度を有して入射し、眩光を該光透過性材料
に垂直に入射した場合に比較して、眩光の光路の増大に
よる。該受光素子への受光量の減衰により、該光透過性
材料の端面を検出するように。
■The light emitted from the light source is incident on the surface of the light-transmitting material,
In an end face detection method in which light transmitted through the light transmitting material is received by a light receiving element and the position of the end face of the light transmitting material is determined based on the magnitude of change in the amount of received light, the light that is incident on the surface of the light transmitting material is The incident surface of the dazzling light is incident at an angle from a plane perpendicular to the surface of the light-transmitting material, and the optical path of the dazzling light is increased compared to when the dazzling light is incident perpendicularly to the light-transmitting material. by. The end face of the light-transmitting material is detected by attenuation of the amount of light received by the light-receiving element.

■眩光透過性材料の屈折率による眩光の光路のすれによ
る。該受光素子への受光量の有無により。
(2) Due to the optical path of glare due to the refractive index of the glare-transmitting material. Depending on the presence or absence of the amount of light received by the light receiving element.

該光透過性材料の端面を検出するように構成する。The end face of the light-transmitting material is configured to be detected.

〔産業上の利用分野〕[Industrial application field]

本発明は、マスクに使用するガラス基板等の光透過性材
料の端面検出方法に関する。
The present invention relates to a method for detecting an end face of a light-transmitting material such as a glass substrate used in a mask.

近年2半導体デバイスの高集積化、高微細化にともなう
半導体装置の機構の精密化、クリーンルームの超清浄化
にともなって、半導体製造設備の自動化が進み、これに
対応した半導体の製造方法が必要となってきている。
In recent years, as semiconductor devices have become more highly integrated and finer, the mechanisms of semiconductor devices have become more precise, and clean rooms have become ultra-clean, the automation of semiconductor manufacturing equipment has progressed, and semiconductor manufacturing methods that are compatible with this have become necessary. It has become to.

〔従来の技術〕[Conventional technology]

第3図は従来例の説明図である。 FIG. 3 is an explanatory diagram of a conventional example.

図において、13は石英ガラス、14はフォトカブ元1
5は光源、16は光、17は受光素子である。
In the figure, 13 is quartz glass, 14 is photocube element 1
5 is a light source, 16 is a light, and 17 is a light receiving element.

半導体製造設備の自動化が進み、マスクを取り扱う工程
において、第3図(a)に示すようにこれに使用する石
英ガラス13等のマスク用ガラス基板の有無、或いは位
置調整を行うために、従来からフォトカブラ14が使用
されている。
As the automation of semiconductor manufacturing equipment progresses, in the process of handling masks, as shown in Figure 3 (a), in order to check the presence or absence of a mask glass substrate such as quartz glass 13, or to adjust the position, it has been necessary to A photocoupler 14 is used.

しかし、ガラスが透明であるために2次のような問題点
を有している。
However, since glass is transparent, it has secondary problems.

第3図(b)は従来例のガラス基板端面(エツジ)検出
装置であり2石英ガラス]3の表面とフォトカブラ14
の位置が、垂直に交差した形に設置されている。そして
1石英ガラス13を移動して1石英ガラス13の端面を
検出する場合に、実際の石英ガラス13は、ガラスの表
面状態や端面の断面形状がさまざまなものがあるために
、端面位置の検出の再現性は、±0.5mm程度しか精
度が得られずLSIプロセスで必要とする±0.2mm
以下の検出精度の要求には応えられなかった。
FIG. 3(b) shows a conventional glass substrate edge detection device showing the surface of 2 quartz glass 3 and the photocoupler 14.
are arranged in a vertically intersecting manner. When moving the quartz glass 13 and detecting the end face of the quartz glass 13, the actual quartz glass 13 has various surface conditions and end face cross-sectional shapes, so the end face position cannot be detected. The reproducibility is only about ±0.5mm, which is ±0.2mm, which is required in the LSI process.
The following detection accuracy requirements could not be met.

これは、透過率の大きい石英ガラス13等の基板を使用
するために、第3図(c)のように1石英ガラス13の
端面部分で細分して光16を透過させても、第3図(d
)に示すように、光の透過量の出力変化があまりにも小
さくて判定が難しく1またばらつきも大きくて精度が得
られないためである。
This is because a substrate such as quartz glass 13 with high transmittance is used, so even if one quartz glass 13 is subdivided at the end face part as shown in FIG. 3(c) and the light 16 is transmitted through it, (d
), this is because the output change in the amount of light transmitted is too small to make a determination, and the variation is large, making it impossible to obtain accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これは、前述の石英ガラスの様に、ガラス基板として非
常に透明度の高い材料を使用しているためであり、光を
多少は遮っても、遮らない時、つまりガラス基板のない
時との光量変化が殆どなくまた。ガラス基板等の光透過
性材料に対するフォトカブラの端面検出回路の検出精度
が低いためである。
This is because a very transparent material is used as the glass substrate, such as the quartz glass mentioned above, and even if some light is blocked, the amount of light is different from when it is not blocked, that is, when there is no glass substrate. Again, there is almost no change. This is because the detection accuracy of the end face detection circuit of the photocoupler with respect to a light-transmitting material such as a glass substrate is low.

本発明は、透過光に対するガラス基板による光減衰量を
増加させて、ガラス基板に対するフォトカブラの端面検
出精度を向上させることを目的として提供されるもので
ある。
The present invention is provided for the purpose of increasing the amount of light attenuation by the glass substrate for transmitted light and improving the end face detection accuracy of a photocoupler with respect to the glass substrate.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図である。 FIG. 1 is a diagram explaining the principle of the present invention.

図において、1は光透過性材料、2は光源、3は光、4
は受光素子である。
In the figure, 1 is a light-transmitting material, 2 is a light source, 3 is a light, and 4
is a light receiving element.

本発明は、透明なガラス基板等の光透過性材料1を通過
する光3の減衰量を増加して、光透過性材料1の端面の
有無での信号の大きさの差を太きくするために、端面検
出装置であるフォトカブラの光源2と受光素子4の配置
を、従来の光透過性材料1に対する直角方向から、第1
図(a)に示すように、光透過性材料IGこ対する直角
面から角度を持たせて、つまり斜め方向に設置するよう
にする。
The present invention increases the amount of attenuation of light 3 passing through a light-transmitting material 1 such as a transparent glass substrate, thereby increasing the difference in signal magnitude between the presence and absence of an end face of the light-transmitting material 1. The arrangement of the light source 2 and the light receiving element 4 of the photocoupler, which is an end face detection device, is changed from the direction perpendicular to the conventional light-transmitting material 1 to the first direction.
As shown in Figure (a), the light-transmissive material IG is placed at an angle from a perpendicular surface, that is, in an oblique direction.

このことにより5図に示すように、光透過性材料1内を
透過する光3の光路の増大(延長)による光減衰量の増
加が生じる。
As a result, as shown in FIG. 5, an increase in the amount of light attenuation occurs due to an increase (extension) of the optical path of the light 3 that passes through the light-transmitting material 1.

また、光透過性材料1の有する屈折率に対応した光3の
屈折によって2透過した光の光路がずれるため、受光素
子4の入射面をずれの範囲より小さな微小面積としてお
けば、光透過性材料を通した光の受光素子4に対する受
光量を零とすることができる。
In addition, since the optical path of the transmitted light 2 is shifted due to the refraction of the light 3 corresponding to the refractive index of the light-transmitting material 1, if the incident surface of the light-receiving element 4 is made into a minute area smaller than the range of shift, the light transmittance can be improved. The amount of light received by the light receiving element 4 through the material can be reduced to zero.

即ち1本発明の目的は、第1図に示すように光源2から
発する光3を、光透過性材料1の表面に入射し、該光透
過性材料1を透過した光3を受光素子4で受け1受光量
の変化の大きさにより。
That is, one object of the present invention is to make light 3 emitted from a light source 2 enter the surface of a light-transmitting material 1 as shown in FIG. Depending on the magnitude of the change in the amount of light received by receiver 1.

該光透過性材料1の端面の位置を判定する端面検出方法
において。
In an end face detection method for determining the position of an end face of the light-transmitting material 1.

該光透過性材料1の表面に入射する線光3の入射面を、
該光透過性材料1の表面に垂直な面より角度を有して入
射し、線光(3)を該光透過性材料1に垂直に入射した
場合に比較して、線光3の光路の増大による。該受光素
子4への受光量の減衰により、該光透過性材料1の端面
を検出することにより また。該光透過性材料lの屈折率による線光3の光路の
ずれによる。該受光素子4への受光量の有無により、該
光透過性材料1の端面を検出することにより達成される
The plane of incidence of the linear light 3 incident on the surface of the light-transmitting material 1 is
The optical path of the line light 3 is smaller than that in the case where the line light (3) is incident at an angle from a plane perpendicular to the surface of the light transmitting material 1, and the line light (3) is incident perpendicularly to the light transmitting material 1. Due to increase. Also, by detecting the end face of the light-transmitting material 1 due to the attenuation of the amount of light received by the light-receiving element 4. This is due to the deviation of the optical path of the linear beam 3 due to the refractive index of the light-transmitting material 1. This is achieved by detecting the end face of the light-transmitting material 1 based on the presence or absence of the amount of light received by the light-receiving element 4.

〔4?l:…〕 このように、ガラス基板のような光透過性材料の表面に
対して、傾斜した角度で透過光を入射する端面検出方法
を採用することにより、光透過性材料の光の屈折により
光路長が長くなり9それだけ透過光の減衰量が増加し、
更に光路のずれが生じて、光源から一直線上にある受光
素子への透過光がなくなり、受光量の有無による検出の
ために従来方法に比較して、透過性材料の端面検出精度
が大幅に向上する。
[4? l:...] In this way, by adopting an edge detection method in which transmitted light is incident on the surface of a light-transmitting material such as a glass substrate at an inclined angle, the refraction of light by the light-transmitting material As the optical path length increases9, the amount of attenuation of transmitted light increases accordingly.
In addition, a shift in the optical path occurs, eliminating the transmission of light from the light source to the light-receiving element in a straight line, and compared to conventional methods for detecting the presence or absence of the amount of light received, the accuracy of detecting the end face of transparent materials is greatly improved. do.

〔実施例〕〔Example〕

第2図は本発明の一実施例の説明図である。 FIG. 2 is an explanatory diagram of one embodiment of the present invention.

図において、7は入射光、8は反射光、9は透過光、1
0はアパーチャ、11は受光素子、12はフォトカプラ
である。
In the figure, 7 is incident light, 8 is reflected light, 9 is transmitted light, 1
0 is an aperture, 11 is a light receiving element, and 12 is a photocoupler.

本発明の一実施例として1石英ガラス5の端面をフォト
カプラ12を用いて検出する場合について。
As an embodiment of the present invention, the end face of 1 quartz glass 5 is detected using a photocoupler 12.

第2図を用いて説明する。This will be explained using FIG.

第2図(b)に示すように1石英ガラス5は。1 quartz glass 5 as shown in FIG. 2(b).

屈折率n=1.46で、ガラス厚さが2.31のものを
使用する。
A glass with a refractive index n=1.46 and a glass thickness of 2.31 is used.

フォトカプラ12の光源6としてLED発光素子を用い
、受光素子11としてシリコン(Si )フォトダイオ
ードを使用する。
An LED light emitting element is used as the light source 6 of the photocoupler 12, and a silicon (Si) photodiode is used as the light receiving element 11.

フォトカプラ12は石英ガラス5の表面に対して30度
以上1例えば、45度の位置になるように調整する。
The photocoupler 12 is adjusted to be at a position of 30 degrees or more, for example, 45 degrees, with respect to the surface of the quartz glass 5.

光源6を出た入射光7は石英ガラス5の表面に入射角度
45度で入射され2石英ガラス5を透過して受光素子1
1に到達するが、この場合に2石英ガラスの屈折率によ
り、光路が0.7mmずれて石英ガラスから出る。
Incident light 7 from the light source 6 enters the surface of the quartz glass 5 at an incident angle of 45 degrees, passes through the quartz glass 5, and reaches the light receiving element 1.
1, but in this case, due to the refractive index of 2 quartz glass, the optical path exits the quartz glass with a deviation of 0.7 mm.

光源6からの入射光7は石英ガラス5の表面で2% が
反射されて反射光8となり2石英ガラス5中で6%が吸
収されて、入射光の92%が透過光9として石英ガラス
5を透過する。
2% of the incident light 7 from the light source 6 is reflected on the surface of the quartz glass 5 to become reflected light 8 2 6% is absorbed in the quartz glass 5 , and 92% of the incident light is transmitted to the quartz glass 5 as transmitted light 9 Transmit.

このために、透過光9は石英ガラス5の中を透過する光
路が約40%長くなった分、光量は垂直に入射した場合
よりも減少する。
For this reason, the optical path of the transmitted light 9 through the quartz glass 5 is approximately 40% longer, and the amount of light is reduced compared to when the light is incident perpendicularly.

また、透過光9は石英ガラス5によって屈折され、 0
.7mm下側にずれてしまうので、受光素子11の全面
に受光面を0.5Φと微小面積に制限するようなアパー
チャ10.或いはスリットを設ければ。
Further, the transmitted light 9 is refracted by the quartz glass 5, and 0
.. Since the light-receiving element 11 is shifted downward by 7 mm, an aperture 10. Or if you make a slit.

受光素子には、第2図(c)に示すように1石英ガラス
5の透過光は全く到達しなくなり、検出装置の出力が零
となって、容易に精度良く端面の現出が出来る。
As shown in FIG. 2(c), the light transmitted through the quartz glass 5 does not reach the light receiving element at all, and the output of the detection device becomes zero, making it possible to easily and precisely reveal the end face.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に1本発明による検出方法により2石英
ガラスのような透明度の良い光透過性材料でも、端面の
検出が入射した光の減衰量でなく。
As explained above, 1. With the detection method according to the present invention, 2. Even in a highly transparent light-transmitting material such as quartz glass, detection of the end face is not based on the amount of attenuation of incident light.

光路のずれを利用するため、誤検出がなくなり。By using the deviation of the optical path, false detections are eliminated.

従来±0.5n+mの検出精度が、±0 、2mmと飛
躍的に向上した。
The conventional detection accuracy of ±0.5n+m has been dramatically improved to ±0.2mm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図。 第2図は本発明の一実施例の説明図。 第3図は従来例の説明図 である。 図において。 1は光透過性材料。 3は光。 5は石英ガラス。 7は入射光 9は透過光。 11は受光素子。 2は光源 4は受光素子 6は光源。 8は反射光 10はアパーチャ。 12はフォトカプラ 13は石英ガラス。 14はフォトカプラ 15は光源。 16は光 17は受光素子 ■ 鴻←1− FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is an explanatory diagram of one embodiment of the present invention. Figure 3 is an explanatory diagram of the conventional example. It is. In fig. 1 is a light-transmitting material. 3 is light. 5 is quartz glass. 7 is incident light 9 is transmitted light. 11 is a light receiving element. 2 is the light source 4 is a light receiving element 6 is a light source. 8 is reflected light 10 is the aperture. 12 is a photocoupler 13 is quartz glass. 14 is a photocoupler 15 is a light source. 16 is light 17 is a light receiving element ■ Ko←1-

Claims (1)

【特許請求の範囲】 1)光源(2)から発する光(3)を、光透過性材料(
1)の表面に入射し、該光透過性材料(1)を透過した
光(3)を受光素子(4)で受け、受光量の変化の大き
さにより、該光透過性材料(1)の端面の位置を判定す
る端面検出方法において、 該光透過性材料(1)の表面に入射する該光(3)の入
射面を、該光透過性材料(1)の表面に垂直な面より角
度を有して入射し、該光(3)を該光透過性材料(1)
に垂直に入射した場合に比較して、該光(3)の光路の
増大による、該受光素子(4)への受光量の減衰により
、該光透過性材料(1)の端面を検出することを特徴と
する光透過性材料の端面検出方法。 2)該光透過性材料(1)の屈折率による該光(3)の
光路のずれによる、該受光素子(4)への受光量の有無
により、該光透過性材料(1)の端面を検出することを
特徴とする請求項1記載の光透過性材料の端面検出方法
[Claims] 1) Light (3) emitted from a light source (2) is transmitted through a light-transmitting material (
The light (3) that is incident on the surface of the light-transmitting material (1) and transmitted through the light-transmitting material (1) is received by the light-receiving element (4). In an end face detection method for determining the position of an end face, the incident plane of the light (3) incident on the surface of the light transmitting material (1) is angled from a plane perpendicular to the surface of the light transmitting material (1). and the light (3) is incident on the light-transmitting material (1).
Detecting the end face of the light-transmitting material (1) by attenuating the amount of light received by the light-receiving element (4) due to an increase in the optical path of the light (3) compared to when the light is incident perpendicularly to the light-transmitting material (1). A method for detecting an end face of a light-transmitting material, characterized by: 2) Depending on the presence or absence of the amount of light received by the light receiving element (4) due to the deviation of the optical path of the light (3) due to the refractive index of the light transmitting material (1), the end face of the light transmitting material (1) may be 2. The method for detecting an end face of a light-transmitting material according to claim 1, further comprising detecting an end face of a light-transmitting material.
JP2262315A 1990-09-28 1990-09-28 Edge detection for light transmitting material Pending JPH04138303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262315A JPH04138303A (en) 1990-09-28 1990-09-28 Edge detection for light transmitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262315A JPH04138303A (en) 1990-09-28 1990-09-28 Edge detection for light transmitting material

Publications (1)

Publication Number Publication Date
JPH04138303A true JPH04138303A (en) 1992-05-12

Family

ID=17374071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262315A Pending JPH04138303A (en) 1990-09-28 1990-09-28 Edge detection for light transmitting material

Country Status (1)

Country Link
JP (1) JPH04138303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042018A1 (en) * 1997-03-19 1998-09-24 Omron Corporation Transmitting photoelectric sensor array
JP2008020379A (en) * 2006-07-14 2008-01-31 Topy Ind Ltd System and method for measuring endless track shoe
JP2009168507A (en) * 2008-01-11 2009-07-30 Nsk Ltd Method and apparatus for detecting edge position of transparent substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042018A1 (en) * 1997-03-19 1998-09-24 Omron Corporation Transmitting photoelectric sensor array
US6528808B1 (en) 1997-03-19 2003-03-04 Omron Corporation Transmitting photoelectric sensor array
JP2008020379A (en) * 2006-07-14 2008-01-31 Topy Ind Ltd System and method for measuring endless track shoe
JP4716433B2 (en) * 2006-07-14 2011-07-06 トピー工業株式会社 Measuring system and measuring method for track plate for endless track
JP2009168507A (en) * 2008-01-11 2009-07-30 Nsk Ltd Method and apparatus for detecting edge position of transparent substrate

Similar Documents

Publication Publication Date Title
JPH04138303A (en) Edge detection for light transmitting material
US10605729B2 (en) ATR-spectrometer
JPH0737888B2 (en) Device for measuring cross-sectional area or volume of running yarn
JPS62184332A (en) Tapered waveguide type liquid detector
US5177564A (en) Apparatus for measuring thickness of plate-shaped article
JPH0196515A (en) Tube liquid level measuring instrument
JPH0814943A (en) Displacement-amount detection apparatus
JPH0827293B2 (en) Liquid sensor
CN109119355A (en) Section inclination angle detection device
JPH06120193A (en) Liquid detection device and semiconductor manufacturing device using same
JPS6066137A (en) Liquid refractive index sensor head
SU1712782A1 (en) Device for testing surface roughness
JPS63135810A (en) Detector for light pervious deposit
JPH0481997A (en) Photoelectric smoke sensor
JPH0843227A (en) Optical waveguide type pressure sensor
WO2020039478A1 (en) Detector for chromatography
JPS60128330A (en) Refractive index measuring device of thin film
JPS60222816A (en) Photoelectrical contact
JPS6315143A (en) Method for detecting flaw of planar body
JPS6129745A (en) Detecting device for pinhole defect
JPH02259550A (en) Alcohol concentration detector
JPH0545902B2 (en)
JPH0152707B2 (en)
JPS57211505A (en) Position detector
JPH0714327U (en) Liquid level detector