JPS6066137A - Liquid refractive index sensor head - Google Patents

Liquid refractive index sensor head

Info

Publication number
JPS6066137A
JPS6066137A JP17595183A JP17595183A JPS6066137A JP S6066137 A JPS6066137 A JP S6066137A JP 17595183 A JP17595183 A JP 17595183A JP 17595183 A JP17595183 A JP 17595183A JP S6066137 A JPS6066137 A JP S6066137A
Authority
JP
Japan
Prior art keywords
refractive index
liquid
optical waveguide
sensor head
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17595183A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kuzuta
葛田 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP17595183A priority Critical patent/JPS6066137A/en
Publication of JPS6066137A publication Critical patent/JPS6066137A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve an explosion-proof property, and also to execute a remote sensing by detecting the output light of one optical waveguide which is varied in accordance with the difference of a liquid refractive index of the optical waveguide having a prescribed gap filled with the liquid to be measured. CONSTITUTION:A liquid refractive index sensor head 1 is provided with a main optical waveguide and a sub-optical waveguide 3 and 4, and 3 and having prescribed gaps 6, 7, respectively. When this head 1 is immersed into the liquid to be measured and the gaps 6, 7 are filled with the liquid, and also light is made incident on the waveguide 3 through an optical fiber 8, light which is varied in accordance with a refractive index of the liquid is emitted from the waveguide 3 because the degree of coupling of the waveguides 3 and 4, and 3 and 5 are different in accordance with the refractive index. Subsequently, the emitted light from the waveguide 3 is detected remotely through an optical fiber 9 and the refractive index is measured. In such a way, an explosion-proof property of the liquid refractive index sensor head is improved, and also a remote sensing of the refractive index is executed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は被測定液体例えば石油精製プラント等におけ
る精製油の屈折率を測定するだめの液体屈折率センサヘ
ッド、特に光導波路を用いた液体屈折率センサヘッドに
関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to a liquid refractive index sensor head for measuring the refractive index of a liquid to be measured, such as refined oil in an oil refining plant, etc. This invention relates to a refractive index sensor head.

(ロ)従来技術 従来、液体の屈折率を測定する方法としては。(b) Conventional technology Conventionally, the method of measuring the refractive index of a liquid is

単色光をプリズムの面に沿って試料に入則し、流体の屈
折率に対応して得られる光線をプリズム。
Monochromatic light enters the sample along the surface of the prism, and the resulting light beam corresponds to the refractive index of the fluid.

レンズ、移動スリットを経て光電増倍管に照射し。The light passes through a lens and a moving slit and is irradiated onto a photomultiplier tube.

発生シた電流によりバランシング・モータを回転させ、
その動き全光電増倍管の前にあるスリットに伝達し、同
時に指針を動かすようにしたものがある。しかしながら
、この方法では、測定系に電気回路を含むため、防爆性
やリモートセンシングに問題がある。
The generated current rotates the balancing motor,
There is one in which the movement is transmitted to a slit in front of the photomultiplier tube, and the pointer is moved at the same time. However, since this method includes an electric circuit in the measurement system, there are problems with explosion protection and remote sensing.

石油精製プラントでは精製油の品質管理の一つとl−で
、精製油の屈折率を測定する必要があるが。
In oil refinery plants, it is necessary to measure the refractive index of refined oil as one of the quality controls for refined oil.

その製品の特質上、測定の際、特に防爆性に留意する必
要があシ、また制御室からのリモートセンシングも必要
となる。
Due to the characteristics of the product, special attention must be paid to explosion-proof properties during measurements, and remote sensing from the control room is also required.

(ハ)目的 この発明の目的は」二記に鑑み、防爆性に優れ。(c) Purpose The purpose of this invention is to provide a device with excellent explosion-proof properties in view of the above.

リモートセンシングが可能な屈折率測定をなし得る液体
屈折率センサヘッドを提供することである。
It is an object of the present invention to provide a liquid refractive index sensor head capable of performing refractive index measurement capable of remote sensing.

に)構成 上記目的を達成するために、この発明は9間隔を一定と
する2つの光導波路間の結合係数は両導波路間の屈折率
に依存するという原理を利用している。この発明の液体
屈折率センサヘッドは基板と、この基板上に形成され、
所定の光量の入力光を受ける第1の先導波路と、この第
1の光導波路と所定の間隙をおいて前記基板上に配され
る第2の光導波路とを備え、測定時に前記間隙に被測定
液体が満たされ、この被測定液に\の屈折率の相違に応
じて変化する前記第1の光導波路からの出方光により被
測定液体の屈折率を検出するようにしている。
B) Structure To achieve the above object, the present invention utilizes the principle that the coupling coefficient between two optical waveguides with a constant 9-interval depends on the refractive index between both waveguides. The liquid refractive index sensor head of the present invention includes a substrate, and a liquid refractive index sensor head formed on the substrate.
A first optical waveguide that receives input light of a predetermined amount of light, and a second optical waveguide arranged on the substrate with a predetermined gap from the first optical waveguide, and a second optical waveguide that is covered with the gap during measurement. A liquid to be measured is filled, and the refractive index of the liquid to be measured is detected by the light emitted from the first optical waveguide, which changes depending on the difference in the refractive index of the liquid to be measured.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図はこの発明の一実施例を示す光導波路形の液体屈
折率センサヘッドの平面図、第2図は第1図に示す液体
屈折率センサヘッドを線I−1で切断した断面図である
FIG. 1 is a plan view of an optical waveguide-type liquid refractive index sensor head showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the liquid refractive index sensor head shown in FIG. 1 taken along line I-1. be.

第1図及び第2図において液体屈折率センサヘッド1は
例えばガラスの基板2上に主光導波路(第1の光導波路
)3と副光導波路(第2の光導波路)4,5が形成され
て構成されている。
In FIGS. 1 and 2, a liquid refractive index sensor head 1 has a main optical waveguide (first optical waveguide) 3 and sub optical waveguides (second optical waveguides) 4 and 5 formed on a substrate 2 made of glass, for example. It is composed of

主光導波路6は直線部分3aと円弧状の曲線部分3bか
ら構成されている。また主光導波路乙の円弧状の曲線部
分3bの内側には1曲線部分3bと等距離の間隔6をお
いて円形の副光導波路4が配置され、さらに主光導波路
乙の曲線部分6bの外側に1曲線部分6bと等距離の間
隔をおいて。
The main optical waveguide 6 is composed of a straight portion 3a and an arcuate curved portion 3b. Furthermore, a circular sub-waveguide 4 is arranged inside the arc-shaped curved portion 3b of the main optical waveguide B at an interval 6 equidistant from one curved portion 3b, and further outside the curved portion 6b of the main optical waveguide B. 1 at an equidistant interval from the curved portion 6b.

端面が円弧状の副光導波路5が配置されている。A sub optical waveguide 5 having an arcuate end face is arranged.

主光導波路6には、入力用光ファイバ8と出力用光ファ
イバ9が結合され、外部の発光源より。
An input optical fiber 8 and an output optical fiber 9 are coupled to the main optical waveguide 6, and an external light source is connected to the main optical waveguide 6.

入力用光ファイバ8を経て一定光量の入力光が主光導波
路乙に入射され、この主光導波路6よシの出力光が出力
用光ファイバ9を経て導出されるようになっている。
A constant amount of input light is inputted into the main optical waveguide B via the input optical fiber 8, and output light from the main optical waveguide 6 is led out via the output optical fiber 9.

なお間隙6及び7の距離doは、比較的小さく。Note that the distance do between the gaps 6 and 7 is relatively small.

光源の波長1.’571mのものに対しては1μn〕程
度となる。
Wavelength of light source1. It is about 1 μn for a 571 m long one.

以北のように構成される液体屈折率センサヘッド1を用
いて、油等の液体の屈折率を測定する場合には、第1図
に示す線A−Aよシも右側の部分が被測定液体中に浸さ
れる。被測定液体中に浸されると間隙6,7には、その
被測定液体が満たされることになる。
When measuring the refractive index of a liquid such as oil using the liquid refractive index sensor head 1 configured as shown in FIG. immersed in liquid. When immersed in the liquid to be measured, the gaps 6 and 7 will be filled with the liquid to be measured.

一般に、2つの光導波路の結合度は9両光導波路の間隔
を一定とすると、その間隔の屈折率に依存する。すなわ
ち間隙の屈折率が大なる程、結合度も大となる。したが
って上記、実施例において。
Generally, the degree of coupling between two optical waveguides depends on the refractive index of the interval, assuming that the interval between the nine optical waveguides is constant. That is, the higher the refractive index of the gap, the higher the degree of coupling. Therefore, in the examples above.

間隙6,7の屈折率n1が主光導波路6及び副光導波路
4,5の屈折率ny<基板2の屈折率nsに対し、ng
>ns)よシも非常に小さいと、主光導波路5と副光導
波路4,5の結合度も小さくなる。そのだめ、入力用光
ファイバ8より入射され、主光導波「各6内を伝]供す
る光は、そのま1主光導波路6内を伝搬し1間隔る。7
を越えて副光導波路4.5に伝搬してゆかない。すなわ
ち第6図の光導波路の幅方向−光強度分布aで示すよう
に間隙6,7の屈折率nlが小さい場合は、光強度は主
光導波路6の幅d1内に分布し、副光導波路4,5の幅
域d2.a3の光強度はほとんど0となる。したがって
主光導波路6内を伝搬する光は、大部分出力量として出
力用光ファイバ9より導出される。
The refractive index n1 of the gaps 6 and 7 is such that ng
>ns) If the width is also very small, the degree of coupling between the main optical waveguide 5 and the sub optical waveguides 4 and 5 will also be small. Therefore, the light that enters from the input optical fiber 8 and provides the main optical waveguide 6 propagates as it is in the 1 main optical waveguide 6, separated by 1 interval.7.
does not propagate to the sub optical waveguide 4.5. That is, when the refractive index nl of the gaps 6 and 7 is small, as shown by the light intensity distribution a in the width direction of the optical waveguide in FIG. 6, the light intensity is distributed within the width d1 of the main optical waveguide 6, and 4, 5 width range d2. The light intensity of a3 is almost 0. Therefore, most of the light propagating within the main optical waveguide 6 is led out from the output optical fiber 9 as an output amount.

これに対し1間隙6.7すなわちillμ測定液体の屈
折率nlが犬で各光導波路の屈折率nfに近づくと、主
光導波路6と副光導波路4,5の結合度も大となる。そ
のため、入力用光ファイバ8より入射され、主光導波路
6内を伝搬する光は途中で。
On the other hand, when one gap 6.7, that is, the refractive index nl of the illμ measurement liquid approaches the refractive index nf of each optical waveguide, the degree of coupling between the main optical waveguide 6 and the sub optical waveguides 4 and 5 also increases. Therefore, the light that is input from the input optical fiber 8 and propagates within the main optical waveguide 6 is only on the way.

間隙6.7を経て副光導波路6,7内に伝搬°シてゆく
。すなわち第6図の光強度分布すで示すように間隙6,
7の屈折率n、dが大きい場合は、光強度は余光導波1
洛6の幅d1のみならず、副光導波路4,5の幅域d2
.d3にも分布することになる。しだがって主光導波路
3内を伝撥する光は。
It propagates into the sub optical waveguides 6 and 7 through the gap 6.7. In other words, as shown in the light intensity distribution in Fig. 6, the gap 6,
When the refractive indexes n and d of 7 are large, the light intensity is
Not only the width d1 of the waveguide 6 but also the width region d2 of the sub optical waveguides 4 and 5
.. It will also be distributed in d3. Therefore, the light propagating within the main optical waveguide 3 is.

減衰を受けて出方用光ファイバ9よシ導出される。It is attenuated and led out through the output optical fiber 9.

この減衰度はliJ]l原6,7の屈折率すなわち肢測
定液体の屈折率に対応するので、出方用光ファイバ9よ
り導出される出方光の光量にょ多波測定液体の屈折率を
検出することができる。
Since this degree of attenuation corresponds to the refractive index of the liJ]l sources 6 and 7, that is, the refractive index of the limb measurement liquid, the refractive index of the multiwave measurement liquid is detected based on the amount of output light derived from the output optical fiber 9. be able to.

なお上記実j(5例においては、主光導波路を云搬する
光が高次モードである程、結合度が大となるので、高次
モードが発生しゃすくなるように生先導波路、副先導波
路の形状を円形にしている。したがって光導波路の形状
は、これに限ることなく他の形状例えばジグザグ状のも
のを用いてもよい。
Note that in the above example (in Example 5), the higher the mode of light propagating through the main optical waveguide, the greater the degree of coupling. The shape of the waveguide is circular.Therefore, the shape of the optical waveguide is not limited to this, and other shapes such as a zigzag shape may be used.

また上記実施例では、副光導波路を主光導波路の伝播方
向の両側に設けているが、測定に必要な結合度を得られ
れば0片側にのみ設けてもよい。
Further, in the above embodiment, the sub optical waveguides are provided on both sides of the main optical waveguide in the propagation direction, but they may be provided only on one side if the degree of coupling required for measurement can be obtained.

(へ)効果 この発明の屈折率センサヘッドは光導波路で形成され、
又入出力光も光ファイバを用いて入力あるいは導出でき
るものであるから、信号処哩部等電気回路は遠隔地に置
かれることになシ、防爆性の高いものが得られる。また
光ファイバと共用することによシ、リモートセンシング
に最適のセンサとなる。また光信号を扱うものであるた
め、電磁誘導ノイズを受けないという利点もある。
(f) Effect The refractive index sensor head of this invention is formed of an optical waveguide,
In addition, since input and output light can be input or led out using optical fibers, electrical circuits such as the signal processing section do not have to be placed in a remote location, and a highly explosion-proof device can be obtained. Also, by using it in conjunction with optical fiber, it becomes an ideal sensor for remote sensing. Also, since it handles optical signals, it has the advantage of not being affected by electromagnetic induction noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す光尋波路形の液体屈
折率センサヘッドあ平面図、第2図は第1図に示す液体
屈折率センサヘッドを線I−Iで切断した断面図、第5
図は同液体屈折率センサヘッドを用いて測定する場合の
肢測定液体の屈折率相違による各先導波路の幅方向の光
強度分布を示す図である。 1:液体屈折率センサヘッド、 2:基板。 6:主光導波路、4・5:副光導波路。 6・7:間隙。 特許出願人 株式会社島津製作所
FIG. 1 is a plan view of an optical waveguide type liquid refractive index sensor head showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the liquid refractive index sensor head shown in FIG. 1 taken along line I-I. , 5th
The figure shows the light intensity distribution in the width direction of each leading waveguide due to the difference in the refractive index of the limb measurement liquid when measuring using the same liquid refractive index sensor head. 1: Liquid refractive index sensor head, 2: Substrate. 6: Main optical waveguide, 4 and 5: Sub optical waveguide. 6/7: Gap. Patent applicant: Shimadzu Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)被測定液体中に浸漬され、その被測定液体の屈折
率を検出するだめの液体屈折率センサヘッドであって。 基板と、この基板上に形成され、所定の光量の入力光を
受ける第1の光導波路と、この第1の光導波路と所定の
間隙をおいて前記基板上に配される第2の光導波路とを
備え、測定時に前記間隙に被測定液体が満たされ、この
被測定液体の屈折率の相違に応じて変化する前記第1の
先導波路からの出力光によシ被測定液体の屈折率を検出
するようにしだ液体屈折率センサヘッド。
(1) A liquid refractive index sensor head that is immersed in a liquid to be measured and detects the refractive index of the liquid to be measured. a substrate, a first optical waveguide formed on the substrate and receiving a predetermined amount of input light, and a second optical waveguide disposed on the substrate with a predetermined gap from the first optical waveguide. At the time of measurement, the gap is filled with a liquid to be measured, and the refractive index of the liquid to be measured is determined by the output light from the first guide wavepath that changes depending on the difference in the refractive index of the liquid to be measured. Liquid refractive index sensor head to detect.
(2)前記第1の光導波路は曲線状部分を有し、前記第
2の光導波路も、前記第1の光導波路の曲線状部分に対
し、所定の間隙をおいて配される゛++1玄白44Sて
ム9シ☆−ト7ンLも吐包l−−トフ肚ジr社4シの範
囲第1項記載の、液体屈折率センサへ・ンド。
(2) The first optical waveguide has a curved portion, and the second optical waveguide is also arranged with a predetermined gap from the curved portion of the first optical waveguide. 44S and 7L are also discharged to the liquid refractive index sensor described in item 1.
JP17595183A 1983-09-21 1983-09-21 Liquid refractive index sensor head Pending JPS6066137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17595183A JPS6066137A (en) 1983-09-21 1983-09-21 Liquid refractive index sensor head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17595183A JPS6066137A (en) 1983-09-21 1983-09-21 Liquid refractive index sensor head

Publications (1)

Publication Number Publication Date
JPS6066137A true JPS6066137A (en) 1985-04-16

Family

ID=16005098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17595183A Pending JPS6066137A (en) 1983-09-21 1983-09-21 Liquid refractive index sensor head

Country Status (1)

Country Link
JP (1) JPS6066137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141310A (en) * 1991-03-28 1992-08-25 Miles Inc. Methods and devices for measuring the specific gravity of liquids
FR2725788A1 (en) * 1994-10-12 1996-04-19 Schneider Electric Sa Fibre=optic refractometer with integrated beam separators
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
CN104266999A (en) * 2014-10-20 2015-01-07 吉林大学 Measurement instrument for refractive index of liquid based on D type plastic optical fiber probe
CN108267403A (en) * 2018-01-10 2018-07-10 重庆大学 A kind of fibre-optical sensing device and its manufacturing method for being used to monitor bridge pier surrounding soil erodsion loss

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141310A (en) * 1991-03-28 1992-08-25 Miles Inc. Methods and devices for measuring the specific gravity of liquids
EP0524370A2 (en) * 1991-03-28 1993-01-27 Bayer Corporation Methods and devices for measuring the specific gravity of liquids
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
FR2725788A1 (en) * 1994-10-12 1996-04-19 Schneider Electric Sa Fibre=optic refractometer with integrated beam separators
CN104266999A (en) * 2014-10-20 2015-01-07 吉林大学 Measurement instrument for refractive index of liquid based on D type plastic optical fiber probe
CN108267403A (en) * 2018-01-10 2018-07-10 重庆大学 A kind of fibre-optical sensing device and its manufacturing method for being used to monitor bridge pier surrounding soil erodsion loss
CN108267403B (en) * 2018-01-10 2020-10-27 重庆大学 Optical fiber sensing device for monitoring erosion loss of soil around pier and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Lomer et al. Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor
CA1267790A (en) Fiber optic doppler anemometer
US4465334A (en) Multilayer fiber light conductor
GB2217834A (en) Evanescent sensor
US4380394A (en) Fiber optic interferometer
US4714829A (en) Fibre optic sensing device and method
JPS59160729A (en) Optical fiber thermometer
JPS6066137A (en) Liquid refractive index sensor head
Thyagarajan et al. Accurate analysis of single-mode graded-index fiber directional couplers
JPS63273042A (en) Optical measuring instrument
GB2185308A (en) Optical waveguide material sensor
JPS61221629A (en) Pressure sensitive element
JP2650998B2 (en) Optical fiber for detecting liquid, gas, etc.
KR20210106218A (en) optical fiber temperature sensor and temperature measurement apparatus using the same
RU2744159C1 (en) Fiber-optical signaler of level and type of liquid
JPS6076646A (en) Liquid refractive-index sensor head
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
JPS627020A (en) Optical fiber hydrophone
RU2091801C1 (en) Two-channel fiber-optic microwave-power meter
JPH0756041A (en) Dual core optical fiber and temperature measuring instrument using the same
JPS582602A (en) Optical displacement detector
JPH01193628A (en) Measurement of average humidity
JPS63135810A (en) Detector for light pervious deposit
WO1982004311A1 (en) Fiber optic interferometer
JP3128039B2 (en) Optical IC displacement meter