JPS582602A - Optical displacement detector - Google Patents

Optical displacement detector

Info

Publication number
JPS582602A
JPS582602A JP10213681A JP10213681A JPS582602A JP S582602 A JPS582602 A JP S582602A JP 10213681 A JP10213681 A JP 10213681A JP 10213681 A JP10213681 A JP 10213681A JP S582602 A JPS582602 A JP S582602A
Authority
JP
Japan
Prior art keywords
light
detected
prism coupler
pressure
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10213681A
Other languages
Japanese (ja)
Inventor
Nobuyuki Katsuta
葛田 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP10213681A priority Critical patent/JPS582602A/en
Publication of JPS582602A publication Critical patent/JPS582602A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To detect physical quantity such as pressure without the effect of electromagnetic fields by mounting light wave guide paths on a displacement body, and detecting the change in the quantity of the received light which is introduced to the light wave guide paths through a prism and fibers. CONSTITUTION:On a diaphragm 1 which is displaced by the pressure to be detected, the thin film light wave guide paths (ZnO, SiO2) 2 and 3 are formed. The light outputted from a laser diode 5 is transmitted to the thin film light wave guide path 3 through the light sending fiber 6, a light sending rod lens 7, and a prism coupler 4, and detected by a photodiode 10 through the prism coupler 4, a light receiving rod lens 8, and the light receiving fibers 9. By processing said electric signal, the pressure is detected without the effect of the electromagnetic field.

Description

【発明の詳細な説明】 この発明は、たとえば圧カ、温度等の物理量を検出する
だめの光学式変位検知器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical displacement detector for detecting physical quantities such as pressure and temperature.

近年、たとえば圧力を検出するだめの圧力センサとして
は小形比、高性能ということがら純電子式のものが多く
開発され、実施されている。しかし純電子式の圧力セン
サは電磁界の誘導による影響を受けるという欠点がある
In recent years, for example, many purely electronic pressure sensors for detecting pressure have been developed and put into practice because of their compact size and high performance. However, purely electronic pressure sensors have the disadvantage of being influenced by electromagnetic field induction.

それゆえにこの発明の目的は、電磁界の影響を受けるこ
となく、圧力等の物理量を検出し得る変位検出器を提供
するにある。
Therefore, an object of the present invention is to provide a displacement detector that can detect physical quantities such as pressure without being influenced by electromagnetic fields.

この発明の光学式変位検出器は以上の目的を達成するた
めに、被検出物理量に応じて変位する変位体上に光導波
路を装着し、との光導波路上方にプリズムカップラを配
し、このプリズムカップラに送光用のファイバにより光
を入力するとともに。
In order to achieve the above object, the optical displacement detector of the present invention has an optical waveguide mounted on a displacement body that displaces according to the physical quantity to be detected, and a prism coupler arranged above the optical waveguide. In addition to inputting light into the coupler through a light transmission fiber.

プリズムカップラよりの光を受光用ファイバを通じて受
光し、変位体の被検出物理量による変位を光導波路とプ
リズムカップラの結合度変化による受光量の変化として
検出し、被検出物理量を検出するようにしている。
The light from the prism coupler is received through a light-receiving fiber, and the displacement of the displacement body due to the physical quantity to be detected is detected as a change in the amount of received light due to a change in the degree of coupling between the optical waveguide and the prism coupler, thereby detecting the physical quantity to be detected. .

以下2図面に示す実施例によりこの発明の詳細な説明す
る。
The present invention will be explained in detail with reference to embodiments shown in the following two drawings.

第1図1はこの発明〇一実施例を示す光学式圧力センサ
の概略図である。
FIG. 1 is a schematic diagram of an optical pressure sensor showing an embodiment of the present invention.

第1図において1は被検出圧力によって変位するダイヤ
フラムであり、このダイヤフラム1には薄膜光導波路(
ZnO,5i02)2及びろが形成装着されている。ま
だ4はプリズムカップラであって、光源としてのレーザ
ダイオード5を出た光が送光用ファイバ6、送光用ロッ
ドレンズ7を介して入力される。プリズムカップラ4を
出た光は受光側ロッドレンズ8.受光用ファイバ9を経
て受光素子としてのホトダイオード10で受光される。
In FIG. 1, 1 is a diaphragm that is displaced by the detected pressure, and this diaphragm 1 has a thin film optical waveguide (
ZnO, 5i02)2 and filters are formed and mounted. Reference numeral 4 denotes a prism coupler, into which light emitted from a laser diode 5 as a light source is inputted via a light transmitting fiber 6 and a light transmitting rod lens 7. The light exiting the prism coupler 4 is sent to the light receiving side rod lens 8. The light is received by a photodiode 10 as a light receiving element via a light receiving fiber 9.

プリズムカップラ4は、薄膜光導波路6と光学的に結合
しており、その結合度は、圧力の変化によるダイヤフラ
ム1の変位で薄膜光導波路3とプリズムカップラ4の距
離が変化することにより変化する。なお11はプリズム
の高さ調整用のネ次に以上のように構成される第111
1実施例光学式圧カセンサの動作について説明する。
The prism coupler 4 is optically coupled to the thin film optical waveguide 6, and the degree of coupling changes as the distance between the thin film optical waveguide 3 and the prism coupler 4 changes due to displacement of the diaphragm 1 due to changes in pressure. Note that 11 is the 111th screw for adjusting the height of the prism, which is constructed as described above.
The operation of the optical pressure sensor according to the first embodiment will be explained.

レーザダイオード5を出た光は、送光用ファイバ6を経
て、送光用ロッドレンズ7に導かれるがこの送光用ロッ
ドレンズ7でコリメートされ、プリズムカップラ4に入
力される。もしここでプリズムカップラ4と薄膜光導波
路乙の距離が第2図に示すように離れていると、入力さ
れた光はプリズムカップラ4の底面で全反射して、その
光の伝播経路12は図に示す通りとなり、導入光は受光
側に伝わらない。
The light emitted from the laser diode 5 passes through a light transmitting fiber 6 and is guided to a light transmitting rod lens 7, where it is collimated and input to the prism coupler 4. If the distance between the prism coupler 4 and the thin film optical waveguide A is as shown in FIG. As shown in , the introduced light is not transmitted to the light receiving side.

しかしプリズムカップラ4と薄膜光導波路6間の距離が
短かいと、第3図に示すようにプリズムカップラ4に導
入された光は、薄膜光導波路6へと光結合にて伝播し、
その光伝播経路12は図に示す通りとなり、プリズムカ
ップラ4の右半分より、受光用ロッドレンズ8.受光用
ファイバ9を経て伝播光が導出され、この光をホトダイ
オード10で電気信号に変換して出力する。そしてこの
電気信号が圧力を示すものとして表示処理等なされる。
However, if the distance between the prism coupler 4 and the thin film optical waveguide 6 is short, the light introduced into the prism coupler 4 propagates to the thin film optical waveguide 6 through optical coupling, as shown in FIG.
The light propagation path 12 is as shown in the figure, from the right half of the prism coupler 4 to the light receiving rod lens 8. Propagating light is led out through a light receiving fiber 9, and this light is converted into an electrical signal by a photodiode 10 and output. This electrical signal is then processed for display as an indication of pressure.

以−上のようにホトダイオード10に出力される電気信
号が、プリズムカップラ4と薄膜光導波路3の距離、す
なわちダイヤフラム1の変位によって変るので、圧力を
検出することができる。
As described above, since the electrical signal output to the photodiode 10 changes depending on the distance between the prism coupler 4 and the thin film optical waveguide 3, that is, the displacement of the diaphragm 1, pressure can be detected.

なおプリズム高さ調整ネジ11によってプリズムカップ
ラ4と薄膜光導波路6の距離が調整されると同時に、プ
リズムカップラ4が固定される。
Note that while the distance between the prism coupler 4 and the thin film optical waveguide 6 is adjusted by the prism height adjustment screw 11, the prism coupler 4 is fixed at the same time.

第4図は他の実施例を示しており、第1図と同一番号は
同一のものを示している。変位体として第1図に示すダ
イヤフラムの代りに2両端を固定した板状バイメタル1
3を設けた点で相違する。
FIG. 4 shows another embodiment, in which the same numbers as in FIG. 1 indicate the same parts. As a displacement body, instead of the diaphragm shown in Fig. 1, there is a plate-shaped bimetal 1 whose both ends are fixed.
The difference is that 3 is provided.

温度が変化すると、それにより板状バイメタル13が油
かり、すなわち変位し、この変位により。
When the temperature changes, the plate-shaped bimetal 13 is covered with oil, that is, it is displaced, and due to this displacement.

プリズムカップラ4と薄、膜光導波路6の距離が変り、
第1図と同様、ホトダイオード10の出力が変るので、
温度変化を検出することができる。
The distance between the prism coupler 4 and the thin film optical waveguide 6 changes,
As in Figure 1, since the output of the photodiode 10 changes,
Temperature changes can be detected.

なお上記実施例において、被検出物理量が圧力。Note that in the above embodiments, the physical quantity to be detected is pressure.

温度である場合を例にとり説明したが、この発明はこれ
に限ることなく、被検出物理量の変化に応じて変位体の
位置が変るものであれば何にでも適用できる。
Although the case of temperature has been described as an example, the present invention is not limited to this, and can be applied to anything in which the position of the displacement body changes in response to a change in the physical quantity to be detected.

以上のようにこの発明の光学式変位検出器によれば、被
検出物理量に応じて変位する変位体上に光導波路を装着
し、この光導波路上方にプリズムカップラを配し、この
プリズムカップラに送光用のファイバにより光を入力す
るとともに、プリズムカップラよりの光を受光用ファイ
バを通じて受光し、変位体の変位を光導波路とプリズム
カップラの結合度変化による受光量の変化として検出す
るものであるから検出系のほとんどを光学系で構成する
ものであり、まったく周囲の電磁誘導等による影響を受
けることなく物理量を検出できる。
As described above, according to the optical displacement detector of the present invention, an optical waveguide is mounted on a displacement body that displaces according to a physical quantity to be detected, a prism coupler is disposed above the optical waveguide, and a signal is sent to the prism coupler. In addition to inputting light through an optical fiber, the light from the prism coupler is received through a light-receiving fiber, and the displacement of the displacement body is detected as a change in the amount of received light due to a change in the degree of coupling between the optical waveguide and the prism coupler. Most of the detection system is composed of optical systems, and physical quantities can be detected without being affected by surrounding electromagnetic induction.

また光学系を用いるから比較的簡単な構成で変位検出器
を実現できる。
Furthermore, since an optical system is used, a displacement detector can be realized with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す光学式圧力センサの
概略図、第2図、第3図は第1図実施例の動作を説明す
るだめの光学式圧力センサの要部の概略図、第4図はこ
の発明の他の実施例を示す光学式温度センサの概略図で
ある。 1・・・ダイヤフラム、  2・3・・・薄膜光導波路
4・・・プリズムカップラ、  5・・・レーザダイオ
ード6・・・送光用ファイバ、   7・・・送光用ロ
ッドレンズ、          8・・・受光用ロッ
ドレンズ、          9・・・受光用ファイ
バ特許出願人  株式会社島津製作所 代理人  弁理士  中 村 茂 信 隋 1 蘭 −2図 笥 3m2!l 糊 4 図
FIG. 1 is a schematic diagram of an optical pressure sensor showing an embodiment of the present invention, and FIGS. 2 and 3 are schematic diagrams of essential parts of the optical pressure sensor to explain the operation of the embodiment of FIG. 1. , FIG. 4 is a schematic diagram of an optical temperature sensor showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Diaphragm, 2.3... Thin film optical waveguide 4... Prism coupler, 5... Laser diode 6... Light transmission fiber, 7... Light transmission rod lens, 8...・Light-receiving rod lens, 9...Light-receiving fiber Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura Shinsui 1 Orchid-2 drawing board 3m2! l Glue 4 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)被噴出物理量に応じて変位する変位体上に光導波
路を装着し、との光導波路上方にプリズムカップラを配
設し、このプリズムカップラに送光用ファイバにより光
を入力するとともにプリズムカップラよりの光を受光用
ファイバを通じて受光し、前記変位体の変位を前記光導
波路と前記プリズムカップラの結合度変化による受光量
の変化として検出し、被検出物理量を検出することを特
徴とする光学式変位検出器。
(1) An optical waveguide is mounted on a displacement body that displaces according to the physical quantity to be ejected, a prism coupler is arranged above the optical waveguide, and light is input to this prism coupler through a light transmission fiber, and the prism coupler The optical system is characterized in that a physical quantity to be detected is detected by detecting the displacement of the displacement body as a change in the amount of received light due to a change in the degree of coupling between the optical waveguide and the prism coupler. displacement detector.
(2)前記変位体は圧力に応じて変位するダイヤフラム
であることを特徴とする特許請求の範囲第1項紀載り光
学式変位検出器。
(2) The optical displacement detector according to claim 1, wherein the displacement body is a diaphragm that is displaced in response to pressure.
(3)前記変位体は温度に応じて変位するバイメタルで
あることを特徴とする特許請求の範囲第1項記載の光学
式変位検出器。
(3) The optical displacement detector according to claim 1, wherein the displacement body is a bimetal that is displaced according to temperature.
JP10213681A 1981-06-29 1981-06-29 Optical displacement detector Pending JPS582602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213681A JPS582602A (en) 1981-06-29 1981-06-29 Optical displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213681A JPS582602A (en) 1981-06-29 1981-06-29 Optical displacement detector

Publications (1)

Publication Number Publication Date
JPS582602A true JPS582602A (en) 1983-01-08

Family

ID=14319345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213681A Pending JPS582602A (en) 1981-06-29 1981-06-29 Optical displacement detector

Country Status (1)

Country Link
JP (1) JPS582602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681451A (en) * 1986-02-28 1987-07-21 Polaroid Corporation Optical proximity imaging method and apparatus
WO1990002924A1 (en) * 1988-09-01 1990-03-22 BODENSEEWERK GERäTETECHNIK GMBH Motion sensor
BE1003831A3 (en) * 1990-10-16 1992-06-23 Joris Michel Process for detecting pressure variations in a gas or liquid and pressurevariation detector designed for this process
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653432A (en) * 1979-09-17 1981-05-13 Siemens Ag Optical device for measuring fine differential pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653432A (en) * 1979-09-17 1981-05-13 Siemens Ag Optical device for measuring fine differential pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681451A (en) * 1986-02-28 1987-07-21 Polaroid Corporation Optical proximity imaging method and apparatus
WO1990002924A1 (en) * 1988-09-01 1990-03-22 BODENSEEWERK GERäTETECHNIK GMBH Motion sensor
BE1003831A3 (en) * 1990-10-16 1992-06-23 Joris Michel Process for detecting pressure variations in a gas or liquid and pressurevariation detector designed for this process
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
US4381137A (en) Optical fiber mode separation systems
US4475789A (en) Optical fiber power tap
US6249626B1 (en) Multimode fiber optical power monitoring tap for optical transmission systems
EP0167220B1 (en) Optical transducer and measuring device
JPS582602A (en) Optical displacement detector
JP4217276B2 (en) Optical element
JP2004525397A (en) Apparatus for transmitting optical signals through a planar light guide
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPS6066137A (en) Liquid refractive index sensor head
JPS59176637A (en) Temperature sensor
US5004911A (en) Time multiplexed fiber optic sensor
JPS59226832A (en) Optical ic sensor
SU1571449A1 (en) Fiber-optic pressure transducer
SU1508170A1 (en) Fibre-optical thermoanemometer
SU1753259A1 (en) Linear movement optical converter
JPH03249502A (en) Optical sensor
JPS6148748A (en) Optical measuring device
JPS6167198A (en) Light reflection type detector
JPS627020A (en) Optical fiber hydrophone
SU956999A1 (en) Optical electronic vibration pickup
JPS6258446B2 (en)
JPS6250625A (en) Optical fiber acoustic sensor
RU2184945C1 (en) Thermally stable fiber-optical pressure transducer
SU1277733A1 (en) Fibe-optics measuring device