JPS6076646A - Liquid refractive-index sensor head - Google Patents

Liquid refractive-index sensor head

Info

Publication number
JPS6076646A
JPS6076646A JP18423483A JP18423483A JPS6076646A JP S6076646 A JPS6076646 A JP S6076646A JP 18423483 A JP18423483 A JP 18423483A JP 18423483 A JP18423483 A JP 18423483A JP S6076646 A JPS6076646 A JP S6076646A
Authority
JP
Japan
Prior art keywords
refractive index
liquid
optical waveguide
sensor head
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18423483A
Other languages
Japanese (ja)
Inventor
Yoshinobu Omae
大前 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP18423483A priority Critical patent/JPS6076646A/en
Publication of JPS6076646A publication Critical patent/JPS6076646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Abstract

PURPOSE:To obtain a refractive-index measuring method, whose explosion-proof property is excellent, by branching a main optical waveguide, which receives input light, forming two optical waveguides having bent parts with large and small curvatures, and detecting the output light beams. CONSTITUTION:A optical waveguide 3 is constituted by a main optical waveguide 4, which receives input light (a) and two branched optical waveguides 5 and 6. The branched optical waveguides 5 and 6 include bent parts 5a and 6a having different curvatures. The light from an input optical fiber 7 is outputted as output light beams (b) and (c) through output optical fibers 8 and 9. In measuring the refractive index of a liquid by using such a sensor head 1, the bent parts 5a and 6a of the head 1 are immersed in the liquid 10 to be measured, and the difference in intensities of the output light beams (b) and (c) is measured. Thus the refractive index of the liquid to be measured can be measured.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は被測定液体例えば石油精製プラント等におけ
るM製油の屈折率を測定するための液体屈折率センサヘ
ッド、特に光導波路を用いた液体屈折率センサヘッドに
関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to a liquid refractive index sensor head for measuring the refractive index of a liquid to be measured, such as M oil in an oil refining plant, etc. This invention relates to a refractive index sensor head.

仲)従来技術 従来、液体の屈折率を測定する方法としては。Naka) Conventional technology Conventionally, the method of measuring the refractive index of a liquid is

単色光をプリズムの面に沿って試料に入射し、流体の屈
折率に対応して得られる光線をプリズム。
Monochromatic light is incident on the sample along the surface of the prism, and the resulting light beam corresponds to the refractive index of the fluid.

レンズ、移動スリットを経て光電増倍管に照射し。The light passes through a lens and a moving slit and is irradiated onto a photomultiplier tube.

発生した電流によりバランシング・モータを回転させ、
その動きを光電増倍管の前にあるスリットに伝達し、同
時に指針を動かすようにしたものがある。しかしながら
、この方法では、測定系に電気回路を含むため、防爆性
やリモートセンシングに問題がある。
The generated current rotates the balancing motor,
There is one that transmits this movement to a slit in front of a photomultiplier tube and moves the pointer at the same time. However, since this method includes an electric circuit in the measurement system, there are problems with explosion protection and remote sensing.

石油精製プラン1〜では精製油の品質管理の一つとして
、精製油のF(折率を測定する必要があるが。
In oil refining plan 1~, it is necessary to measure the F (fraction index) of refined oil as one of the quality control of refined oil.

その製品の特質上、測定の際、特に防爆性に留意する必
要があり、また制御室からのリモートセンシングも必要
となる。
Due to the nature of the product, special attention must be paid to its explosion-proof properties during measurements, and remote sensing from the control room is also required.

(ハ)目的 この発明の目的は上記に@み、防爆性に優れ。(c) Purpose The purpose of this invention is to achieve the above-mentioned results and to provide excellent explosion-proof properties.

リモートセンシングが可能な屈折率測定をなし得る液体
屈折率センザヘッドを提供することである。
It is an object of the present invention to provide a liquid refractive index sensor head capable of performing refractive index measurement capable of remote sensing.

に)構成 −」二記目的を達成するために、この発明は、光導波路
が回路部を含む場合、外周部分の屈折率が大きくなり、
その程度が回路部の曲率に関係することを利用している
。この発明の液体屈折率センザヘッドは基板と、この基
板」二に形成され9人力光を受ける主光導波路と、この
主光導波路から分岐され1曲率のイ゛目対的に大なる回
路部を持つ第1の分岐光導波路と、前記主光導波路から
分岐され。
(b) Structure - In order to achieve the second object, the present invention provides that when an optical waveguide includes a circuit portion, the refractive index of the outer peripheral portion becomes large;
This method utilizes the fact that the degree of curvature is related to the curvature of the circuit section. The liquid refractive index sensor head of the present invention has a substrate, a main optical waveguide formed on the substrate and receiving human-powered light, and a relatively large circuit section branched from the main optical waveguide and having a curvature of 1. a first branch optical waveguide branched from the main optical waveguide;

曲率のイ゛1」苅的に小なる回路部を持つ第2の分岐光
導波路とを備え、前記第1及び第2の分岐光導波路の出
力光により、被測定液体の屈折率を算量するようにして
いる。
a second branched optical waveguide having a circuit section with a curvature of 1", and calculates the refractive index of the liquid to be measured using the output light of the first and second branched optical waveguides. That's what I do.

0→実施例 以下、実施例によりこの発明をさらに詳細に訂明する。0 → Example Hereinafter, this invention will be explained in more detail with reference to Examples.

第1図は、この発明の一実施例を示す液体屈折率センサ
ヘッドの斜視図、第2図は第1図に示す液体屈折率セン
サヘッドを線I−1で切断した断面図である。
FIG. 1 is a perspective view of a liquid refractive index sensor head showing an embodiment of the present invention, and FIG. 2 is a sectional view of the liquid refractive index sensor head shown in FIG. 1 taken along line I-1.

第1図及び第2図において、液体屈折率センサヘッド1
は、光を吸収しない低屈折重相例えばガラヌの基板2上
に、力゛ラスイオン交換等で形成される高屈折率の先導
波路6が形成されてlY+:を成されている。
In FIGS. 1 and 2, a liquid refractive index sensor head 1
A leading waveguide 6 with a high refractive index formed by forceful ion exchange or the like is formed on a substrate 2 of a low-refractive heavy phase, such as galanus, which does not absorb light, thereby forming lY+:.

光導波路6は1入力光aを受ける主光導波路4と、この
主光導波路4から分岐される2本の分岐光導波路5及び
6から構成されている。これら分岐光導波路5及び6は
、それぞれ曲率の異なる回路部5a、6aを含み1分岐
光導波路5の回路部5aの方が曲率が大きく設定されて
いる。
The optical waveguide 6 includes a main optical waveguide 4 that receives one input light a, and two branch optical waveguides 5 and 6 branched from the main optical waveguide 4. These branched optical waveguides 5 and 6 include circuit portions 5a and 6a having different curvatures, and the circuit portion 5a of the one-branched optical waveguide 5 is set to have a larger curvature.

主光導波路4には、入力用光ファイバ7が結合され2図
示しガい外部の発光源より、入力光aが入射されるよう
になっている。この入力光aは分岐光導波路5,6に導
かれ、この分岐光導波路5゜乙の先端に結きされる出力
用光ファイバ8,9を経て、出力光す及びCとして導出
されるようになっている。
An input optical fiber 7 is coupled to the main optical waveguide 4, so that input light a is input from an external light source (see FIG. 2). This input light a is guided to branched optical waveguides 5 and 6, and outputted as output lights A and C through output optical fibers 8 and 9 connected to the tip of this branched optical waveguide 5°. It has become.

以上のように構成される液体屈折率センサヘッド1を用
いて、油等の屈折率を測定する場合には。
When measuring the refractive index of oil or the like using the liquid refractive index sensor head 1 configured as described above.

第6図に示すように、液体屈折率センサヘッド1の分岐
光導波路5及び6の少なくとも回路部5a及び6aが被
測定液体10中に浸される。したがって9曲路部5a及
び6aの近傍には被測定液体10が満たされる。
As shown in FIG. 6, at least the circuit portions 5a and 6a of the branched optical waveguides 5 and 6 of the liquid refractive index sensor head 1 are immersed in the liquid 10 to be measured. Therefore, the liquid to be measured 10 is filled in the vicinity of the nine curved portions 5a and 6a.

一般に、直線導波路ではその導波路中心Oよシ。Generally, in a straight waveguide, the center of the waveguide is O.

幅方向Xの屈折率分布、1(、)を示すと第4図(1′
F)に示すように導波路端Tまではnoで、その外側は
110よシも小さな屈折率ano (rr〈1 )とな
る。これに列し4曲導波路の外側部分の屈折率I+ ’
 (X )は、直線導波路に比し大となり、直線導波路
の場合に換算するとn(X)(1+X/R)となる(た
だしRは曲率半径)・。したがって1曲導波路の外側部
分の屈折率と導波路内の屈折率差は直線導波路のそれに
比べて、小になり第4図(b)に示す通りとなる。導波
路内外の屈折率差が小となると、それだけ、導波路の光
閉じ込め機能が低下する。また回路部を持つ光導波路で
も1曲率の大なるものほどそれが顕著となる。すなわち
曲率が異なる光導波路では。
Fig. 4 (1') shows the refractive index distribution in the width direction X, 1 (,).
As shown in F), the refractive index is no up to the waveguide end T, and the refractive index outside thereof is ano (rr<1), which is even smaller than 110. In line with this, the refractive index I+' of the outer part of the four-curved waveguide
(X) is larger than that of a straight waveguide, and when converted to a straight waveguide, it becomes n(X)(1+X/R) (where R is the radius of curvature). Therefore, the difference between the refractive index of the outer portion of the curved waveguide and the refractive index within the waveguide is smaller than that of the straight waveguide, as shown in FIG. 4(b). As the refractive index difference between the inside and outside of the waveguide becomes smaller, the optical confinement function of the waveguide decreases accordingly. Furthermore, even in optical waveguides having circuit portions, the larger the curvature, the more pronounced this becomes. That is, for optical waveguides with different curvatures.

伝搬するモード数が異なることになり、出力光強度に相
違が生じることになる。
The number of propagating modes will differ, resulting in a difference in output light intensity.

以上よシ、上記実施例液体屈折率センサヘッド1におい
て1分岐光導波路5と6を経て出力用光ファイバ8及び
9よシ導出される出力光す及びCの強度も9曲路部5a
と6aの曲率が異なるので相違するものとなる。
From the above, in the liquid refractive index sensor head 1 of the above embodiment, the intensity of the output lights S and C led out to the output optical fibers 8 and 9 via the single-branch optical waveguides 5 and 6 is also determined at the 9-curve section 5a.
Since the curvatures of and 6a are different, they are different.

しかも、油等の被測定液体の屈折率が相違するる。Furthermore, the refractive index of the liquid to be measured, such as oil, is different.

実施例液体屈折率センサヘッド1を浸漬する液体の屈折
率11と出力光す、cの光量の関係を示すと第5図に示
ず通シとなる。すなわち浸漬液体の屈折率nが犬になる
と9曲路部5a、6a内との屈折率差が小さくなるので
2分岐光導波路5及び6の光閉じ込め機能が低下し、出
力光す及びCは小となる。
Example The relationship between the refractive index 11 of the liquid in which the liquid refractive index sensor head 1 is immersed and the amount of output light (c) is not shown in FIG. In other words, when the refractive index n of the immersion liquid becomes small, the difference in the refractive index between the inside of the nine-curved portions 5a and 6a becomes small, so the optical confinement function of the two-branch optical waveguides 5 and 6 decreases, and the output light beams S and C become small. becomes.

また、第5図よシ明かなように、出力光すとCの比率は
、浸漬液体の屈折率によって変化する。
Also, as is clear from FIG. 5, the ratio of output light to C varies depending on the refractive index of the immersion liquid.

したがって出力用光ファイバ8より出力される出力光す
と出力用光ファイバ9より出力される出力光Cの光量比
率を算出することによシ、被t1す定腋体の力](折率
を検出することができる。
Therefore, by calculating the light amount ratio of the output light output from the output optical fiber 8 to the output light C output from the output optical fiber 9, can be detected.

なお」1記実施例では1分岐光導波路に1個の囲路部を
含むようにしているが、もちろん各分岐光導波路に複数
個の囲路部を含むものであってもよい。
In the first embodiment, one branched optical waveguide includes one enclosure, but each branched optical waveguide may of course include a plurality of enclosures.

捷)ζ、」二層実施例液体屈折率センサヘッドは第5図
に示すように、′g!1.体の異なる屈折率で出力光す
、cがOとなるので、この出力光す、cをモニタするこ
とにより液体の屈折率がある範囲に人っているかどうか
の判定にも使用することができる。
The liquid refractive index sensor head of the two-layer embodiment is shown in FIG. 1. Since the output light S, c becomes O due to the different refractive index of the body, by monitoring this output light S, c, it can also be used to determine whether there is a person within a certain range of the refractive index of the liquid. .

(へ)効果 この発明の屈折率センサヘッドは光導波路で形成され、
又入出力光も光ファイバを用いて入力あるいは導出でき
るものであるから、信号処理部等電気回路は遠隔地に置
かれることになり、防爆性の窩いものが得られる。まだ
光ファイバと共用することによシ、リモートセンシング
に最適のセンサとなる。捷た光信号を扱うものであるだ
め、電磁誘導ノイズを受けないという利点もある。その
」二、2つの分岐光導波路の出力光の比を算出すれば、
光源の出力変動等の影響を受けることなく。
(f) Effect The refractive index sensor head of this invention is formed of an optical waveguide,
Furthermore, since the input and output light can be input or derived using optical fibers, electric circuits such as the signal processing section are placed in a remote location, and an explosion-proof enclosure is obtained. However, by using it in conjunction with optical fiber, it becomes an ideal sensor for remote sensing. Since it handles distorted optical signals, it also has the advantage of not being affected by electromagnetic induction noise. Second, if we calculate the ratio of the output lights of the two branched optical waveguides, we get
Unaffected by light source output fluctuations, etc.

精度の高い屈折率検出を行なうことができる。Highly accurate refractive index detection can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す光導波路形の液体屈
折率センサヘッドの斜視図、第2図は第1図に示す液体
屈伍率センサヘッドを線I−1で切断した断面図、;r
55図は同液体屈折率センザヘッドを用いて測定する場
合の被測定液体への浸漬状態を示す図、第4図は光導波
路内外の屈折率分布を示し、第4図@)は直線導波路の
屈折率分布を示す図、第4図(b)は曲導波路の屈折率
分布を示す図、第5図は上記実施例液体屈折率センサヘ
ッドを液体中に浸漬した場合の液体屈折率と出力光の関
係を示す図である。 1:液体屈折率センサヘッド、 2:基板。 4:主光導波路、5・6:分岐光導波路。 5a・6a:囲路部、10:被測定液体。 第1図 第3図 第4図
FIG. 1 is a perspective view of an optical waveguide type liquid refractive index sensor head showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the liquid refractive index sensor head shown in FIG. 1 taken along line I-1. , ;r
Figure 55 shows the state of immersion in the liquid to be measured when measuring using the liquid refractive index sensor head, Figure 4 shows the refractive index distribution inside and outside the optical waveguide, and Figure 4 @) shows the state of immersion in the liquid to be measured when measuring using the same liquid refractive index sensor head. A diagram showing the refractive index distribution, FIG. 4(b) is a diagram showing the refractive index distribution of the curved waveguide, and FIG. 5 is the liquid refractive index and output when the liquid refractive index sensor head of the above embodiment is immersed in the liquid. It is a figure showing the relationship of light. 1: Liquid refractive index sensor head, 2: Substrate. 4: Main optical waveguide, 5 and 6: Branch optical waveguide. 5a and 6a: enclosure section, 10: liquid to be measured. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1) 被測定液体中に浸漬され、その被測定液体の屈
折率を検出するための液体屈折率センサヘッドであって
。 基板と、この基板」二に形成され、入力光を受ける主光
導波路と、この主光導波路から分岐され9曲率の4目対
的に大なる回路部を持つ第1の分岐光導波路と、前記主
先導波路から分岐され。 曲率の相対的に小なる回路部を持つ第2の分岐光導波路
とを備え、前記第1及び第2の分岐光導波路の出ツJ光
によシ、′$、測定液体の7)J折率を算出する液体屈
折率センサヘッド。
(1) A liquid refractive index sensor head that is immersed in a liquid to be measured and for detecting the refractive index of the liquid to be measured. a main optical waveguide formed on the substrate and receiving input light; a first branch optical waveguide branched from the main optical waveguide and having a 4-dimensionally large circuit portion with a curvature of 9; Branched from the main leading wavepath. and a second branching optical waveguide having a circuit portion with a relatively small curvature, the output J light of the first and second branching optical waveguides is provided with a Liquid refractive index sensor head that calculates the index.
JP18423483A 1983-09-30 1983-09-30 Liquid refractive-index sensor head Pending JPS6076646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18423483A JPS6076646A (en) 1983-09-30 1983-09-30 Liquid refractive-index sensor head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18423483A JPS6076646A (en) 1983-09-30 1983-09-30 Liquid refractive-index sensor head

Publications (1)

Publication Number Publication Date
JPS6076646A true JPS6076646A (en) 1985-05-01

Family

ID=16149718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18423483A Pending JPS6076646A (en) 1983-09-30 1983-09-30 Liquid refractive-index sensor head

Country Status (1)

Country Link
JP (1) JPS6076646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
WO2012020514A1 (en) * 2010-08-10 2012-02-16 株式会社Ihiエスキューブ Liquid detector and liquid identifying system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
WO2012020514A1 (en) * 2010-08-10 2012-02-16 株式会社Ihiエスキューブ Liquid detector and liquid identifying system
JP2012037453A (en) * 2010-08-10 2012-02-23 Ihi Scube:Kk Liquid detector and liquid identification system
CN103189727A (en) * 2010-08-10 2013-07-03 Ihi爱斯久布股份有限公司 Liquid detector and liquid identifying system
EP2604991A4 (en) * 2010-08-10 2016-10-26 Ihi Inspection & Instrumentation Co Ltd Liquid detector and liquid identifying system

Similar Documents

Publication Publication Date Title
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
TW406198B (en) An optical frequency and temperature sensor and its applications
CA1267790A (en) Fiber optic doppler anemometer
EP0167272A2 (en) Particle size measuring apparatus
US4380394A (en) Fiber optic interferometer
JPS5978307A (en) Optical fiber sensor
US6055058A (en) Method and device for determining the thickness and concentricity of a layer applied to a cylindrical body
US10401140B2 (en) Bending detecting system, light guide body, tubular apparatus, light detecting apparatus, light detecting method, and optical bending measuring apparatus
EP0274091B1 (en) Optical displacement sensor
JPS6076646A (en) Liquid refractive-index sensor head
JPS6066137A (en) Liquid refractive index sensor head
US9535214B2 (en) Method of inputting light into optical waveguide
US4934819A (en) Apparatus for measuring transverse moment of an electromagnetic field associated with an optical beam
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
JPS62159027A (en) Detecting device for degree of deterioration of oil
WO1982004311A1 (en) Fiber optic interferometer
JPH01250039A (en) Measuring instrument for liquid refractive index
JPH0310146A (en) Reflecting optical fiber type infrared-ray moisture meter
RU1824545C (en) Method of determining refraction index of liquids in capillaries
JPS6449942A (en) Physical property measuring instrument for liquid
RU2086945C1 (en) Method of measurement of divergence angle of collimated bundle of rays
SU1536233A1 (en) Method of determining mode delays in fibre-optic wadeguides and device for effecting same
JPH0194246A (en) Turbidity meter
RU1779915C (en) Method for checking angular positions of objects
RU2091801C1 (en) Two-channel fiber-optic microwave-power meter