JPH0152707B2 - - Google Patents

Info

Publication number
JPH0152707B2
JPH0152707B2 JP55116696A JP11669680A JPH0152707B2 JP H0152707 B2 JPH0152707 B2 JP H0152707B2 JP 55116696 A JP55116696 A JP 55116696A JP 11669680 A JP11669680 A JP 11669680A JP H0152707 B2 JPH0152707 B2 JP H0152707B2
Authority
JP
Japan
Prior art keywords
light
receiving
fiber
receiving fiber
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55116696A
Other languages
Japanese (ja)
Other versions
JPS5740668A (en
Inventor
Mitsuki Sagane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP55116696A priority Critical patent/JPS5740668A/en
Publication of JPS5740668A publication Critical patent/JPS5740668A/en
Publication of JPH0152707B2 publication Critical patent/JPH0152707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Description

【発明の詳細な説明】 この発明は空間に設定された光軸を断続する被
検知部材の検知を行なう信号検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal detection device that detects a member to be detected that interrupts an optical axis set in a space.

一般に自動化された装置は各種物理量を検知し
て装置全体を自動的に制御している。この自動制
御装置に使用されるフオトインタラプタは無接触
で各種物理量の検知を行なうことができる特徴を
持ち、各種制御装置の入力回路として重要な役割
を持つ。従来のフオトインタラプタ1は第1図に
示すように発光素子2と受光素子3とを設定空間
4に配設された光路lを介して連結させ、この光
路lを断続する図示しない被検知部材の有無を光
量変化に変換し、これを信号として受けて制御装
置の入力回路に出力する。このフオトインタラプ
タ1の発光素子3は設定空間4と対向し、かつ基
台5より突出する支持部材6に固定されており、
設定空間4側からの全ての角度で入射する光を受
光している。このため受光素子3には光路lを経
てくる受光素子2からの光の外に、外部より設定
空間4を経てくる外乱光も受光され易く、受光素
子2の出力信号に対してのノイズのレベル(以後
単にS/Nと記す)が高くなるという悪い特性を
示していた。
Generally, automated equipment detects various physical quantities and automatically controls the entire equipment. The photointerrupter used in this automatic control device has the feature of being able to detect various physical quantities without contact, and plays an important role as an input circuit for various control devices. As shown in FIG. 1, a conventional photointerrupter 1 connects a light emitting element 2 and a light receiving element 3 via an optical path l arranged in a setting space 4, and connects a detected member (not shown) to interrupt this optical path l. The presence or absence is converted into a change in the amount of light, which is received as a signal and output to the input circuit of the control device. The light emitting element 3 of this photo interrupter 1 is fixed to a support member 6 facing the setting space 4 and protruding from the base 5.
It receives light incident from the setting space 4 side at all angles. Therefore, in addition to the light from the light receiving element 2 passing through the optical path l, the light receiving element 3 is likely to receive disturbance light passing through the setting space 4 from the outside, and the noise level with respect to the output signal of the light receiving element 2 is likely to be received. (hereinafter simply referred to as S/N) exhibited poor characteristics such as a high ratio.

更に、このフオトインタラプタ1は発光素子2
と受光素子3とを被検知部材の通過する光路lを
介し対設する必要があり、これら素子に接続する
入力回路側とは離れて取付けられる。このフオト
インタラプタ1が振動の多い装置に取付けられた
場合、入力回路側との連結配線の接続部分が電気
的ノイズを生じることがありS/N特性を悪化す
る。しかもこのフオトインタラプタ1を構成する
発光素子2や受光素子3は制御装置本体側から離
れ独立しているため、個々のこれらフオトインタ
ラプタ1の入力回路を集約化し、信号の集中処理
ができるよう構成することも困難である。
Furthermore, this photo interrupter 1 has a light emitting element 2.
and the light receiving element 3 must be arranged opposite to each other via the optical path l through which the detected member passes, and are mounted apart from the input circuit side connected to these elements. If this photo interrupter 1 is installed in a device that generates a lot of vibration, electrical noise may be generated at the connection portion of the connection wiring to the input circuit side, deteriorating the S/N characteristic. Moreover, since the light-emitting element 2 and light-receiving element 3 that make up this photo interrupter 1 are separate and independent from the control device main body side, the input circuits of each of these photo interrupters 1 are consolidated and configured to enable centralized signal processing. It is also difficult.

この発明は外乱光によるノイズを阻止できる信
号検知装置を提供することを目的とする。
An object of the present invention is to provide a signal detection device that can block noise caused by ambient light.

この発明は空間を介して送光フアイバと受光フ
アイバとの各端部を基台を用いて共通の設定光軸
上に支持し、空間内の設定光軸を通過する光が被
検知部材により変化することによる受光フアイバ
からの光量の変化を信号として検知するものであ
つて、 送光フアイバを支持する基台側の支持部材には
設定光軸と垂直な受光フアイバ対向面を形成し、
かつこの受光フアイバ対向面の外周縁と受光フア
イバの受光端面とを結ぶ直線が設定光軸となす角
を受光フアイバの受光角より大きくなるよう設定
するよう構成される。
This invention supports each end of a light transmitting fiber and a light receiving fiber through a space on a common set optical axis using a base, and the light passing through the set optical axis in the space changes depending on the detected member. The device detects the change in the amount of light from the light-receiving fiber due to the change in the amount of light from the light-receiving fiber as a signal, and the support member on the base side that supports the light-sending fiber is formed with a surface facing the light-receiving fiber perpendicular to the set optical axis;
Further, the angle formed by the straight line connecting the outer peripheral edge of the facing surface of the light receiving fiber and the light receiving end surface of the light receiving fiber with the set optical axis is set to be larger than the light receiving angle of the light receiving fiber.

この発明によれば受光フアイバにより伝送され
てくる光を信号として検知し、これを受けた受光
素子により出力信号を発することができる。この
ため受光フアイバの受光端面に入射する光のう
ち、受光フアイバ内を全反射を繰り返し受光素子
側に伝送される光は受光フアイバの臨界角に対応
した受光角以内の入射角で入射した光だけであ
り、受光角以上で入射した光、即ち外乱光は除去
される。更に、受光フアイバ対向面の外周縁と受
光端面とを結ぶ直線が設定光軸となす角を受光角
以上とした場合、受光端面に直接入射して伝送さ
れる光は、全て受光フアイバ対向面からの光のみ
に規制され、直接受光端面に入射する外乱光は受
光フアイバにより所定位置まで伝送されることは
ない。
According to this invention, the light transmitted by the light receiving fiber can be detected as a signal, and the light receiving element that receives this can generate an output signal. Therefore, of the light that enters the light-receiving end face of the light-receiving fiber, the light that repeats total reflection within the light-receiving fiber and is transmitted to the light-receiving element is only the light that has entered at an angle of incidence within the acceptance angle corresponding to the critical angle of the light-receiving fiber. Therefore, light incident at an angle greater than or equal to the acceptance angle, that is, disturbance light, is removed. Furthermore, if the angle between the set optical axis and the straight line connecting the outer periphery of the facing face of the receiving fiber and the receiving end face is greater than or equal to the receiving angle, all of the light directly incident on the receiving end face and transmitted will be transmitted from the facing face of the receiving fiber. The disturbance light that directly enters the light-receiving end face is not transmitted to a predetermined position by the light-receiving fiber.

以下添付図面と共にこの発明を説明する。 The present invention will be described below with reference to the accompanying drawings.

第2図はこの発明の一実施例としての信号検知
装置7を示しており、図示しない制御装置の入力
回路8に接続されている。この信号検知装置7は
被検知部材9の通路Rに対向する、遮光性の剛性
材、ここではプラスチツクからなる基台10を有
する。基台10はこれと一体的に形成され、かつ
空間11を介して互いに対向する一対の支持部材
12,13を突出している。一方の支持部材12
の中央部には受光用の光フアイバ14の受光端部
141が、他方の支持部材13の中央部には送光
用の光フアイバ15の送光端部151がそれぞれ
固着されている。しかも受光フアイバ14の受光
端部141と送光フアイバ15の送光端部151
とは、空間11を介し設定された共通の一本の光
軸(以後単に設定光軸と記す)l1上に配設され
る。空間11内の設定光軸l1は被検知部材9の
通路Rと交差しており、この被検知部材9は作動
時に設定光軸l1を遮断する。一対の支持部材1
2,13は空間11と対向する側にそれぞれ設定
光軸l1と垂直な送光フアイバ対向面16と受光
フアイバ対向面17とを形成している。この送光
フアイバ対向面16の中ほどにはこれと受光端部
141の先端の受光端面142が重なるよう配設
され、同様に受光フアイバ対向面17の中ほどに
はこれと送光端部151の先端の送光端面152
が重なるように配設される。このように一対の支
持部材12,13は長さLの空間11を介し互い
に送光フアイバ対向面16と受光フアイバ対向面
17とを対向させている。このため一方の支持部
材12側の受光端面142と他方の支持部材13
側に送光端面152とは長さLの設定光軸l1を
介し対向している。支持部材12に受光端部14
1を支持された受光フアイバ14はその他方端を
入力回路8に直結された受光素子18の受光面に
連結され、支持部材13に送光端部151を支持
された送光フアイバ15はその他方端を入力回路
8に直結された発光素子19に連結される。
FIG. 2 shows a signal detection device 7 as an embodiment of the present invention, which is connected to an input circuit 8 of a control device (not shown). This signal detection device 7 has a base 10 made of a light-shielding rigid material, here plastic, and facing the path R of the detected member 9. The base 10 is integrally formed therewith, and has a pair of supporting members 12 and 13 protruding from the base 10, which are opposed to each other with a space 11 in between. One support member 12
A light receiving end 141 of a light receiving optical fiber 14 is fixed to the center of the support member 13, and a light transmitting end 151 of a light transmitting optical fiber 15 is fixed to the center of the other supporting member 13. Moreover, the light receiving end 141 of the light receiving fiber 14 and the light transmitting end 151 of the light transmitting fiber 15
are arranged on one common optical axis (hereinafter simply referred to as a set optical axis) l1 set through the space 11. The set optical axis l1 in the space 11 intersects with the path R of the detected member 9, and the detected member 9 blocks the set optical axis l1 during operation. A pair of support members 1
2 and 13 form a light transmitting fiber facing surface 16 and a light receiving fiber facing surface 17, which are perpendicular to the set optical axis l1, on the side facing the space 11, respectively. A light-receiving end surface 142 at the tip of the light-receiving end portion 141 is arranged in the middle of the light-transmitting fiber facing surface 16 so that it overlaps with the light-receiving end surface 142 at the tip of the light-receiving fiber-opposing surface 16. Light transmitting end surface 152 at the tip of
are arranged so that they overlap. In this way, the pair of support members 12 and 13 have the light transmitting fiber facing surface 16 and the light receiving fiber facing surface 17 facing each other through the space 11 having the length L. Therefore, the light receiving end surface 142 on one support member 12 side and the support member 13 on the other side
It faces the light transmitting end surface 152 on the side via a set optical axis l1 having a length L. The light receiving end 14 is attached to the support member 12.
The other end of the light-receiving fiber 14 supported by the light-receiving fiber 14 is connected to the light-receiving surface of the light-receiving element 18 that is directly connected to the input circuit 8. The end thereof is connected to a light emitting element 19 which is directly connected to the input circuit 8 .

このため周知の定電流回路により駆動される発
光素子19からの光は送光フアイバ15により送
光端部151に伝送され、伝光面152より設定
光軸l1に沿つて照射される。この光は空間11
を通過する際、被検知部材9により断続され、受
光フアイバの受光端面142に入射する。入射光
は受光フアイバ14によりその他方端側へ伝送さ
れ、受光素子18に受光される。この受光フアイ
バ14により導びかれた光は光量変化する。これ
は空間における被検知部材9の有無を表わす光量
変化信号であり、受光素子18により検知され
る。光量変化信号を受けた受光素子18は光量変
化信号に対応した出力信号Iを入力回路8に発す
ることになる。
Therefore, light from the light emitting element 19 driven by a well-known constant current circuit is transmitted to the light transmitting end portion 151 by the light transmitting fiber 15, and is irradiated from the light transmitting surface 152 along the set optical axis l1. This light is space 11
When passing through, it is interrupted by the member to be detected 9 and enters the light receiving end face 142 of the light receiving fiber. The incident light is transmitted to the other end side by the light-receiving fiber 14 and is received by the light-receiving element 18 . The amount of light guided by this light receiving fiber 14 changes. This is a light amount change signal indicating the presence or absence of the detected member 9 in the space, and is detected by the light receiving element 18. The light receiving element 18 receiving the light amount change signal issues an output signal I corresponding to the light amount change signal to the input circuit 8.

つぎに受光フアイバ14と支持部材13の受光
フアイバ対向面17との相対的関係を第3図およ
び第4図を用いて説明する。
Next, the relative relationship between the light-receiving fiber 14 and the light-receiving fiber facing surface 17 of the support member 13 will be explained with reference to FIGS. 3 and 4.

受光フアイバ14は中心部に屈折率ncのコア部
143を、その外側に中心部より小さな屈折率nd
のクラツド部144を有し、全体は湾曲自在であ
る。この受光フアイバのコア部143は光導波路
を形成しており、曲げられたコア部においても光
は全反射を繰り返し伝送される。コア部143に
対し受光端面142より入射した光のうちA光線
は比較的小さな入射角θでコア部143に入射し
た後、コア部とクラツド部との界面145で全反
射され、他方端側に伝送される。一方、B光線は
比較的大きな入射角θ1でコア部143に入射し
た後、界面145よりクラツド部144にぬけ出
てしまう。このため受光端面142に入射して他
方端側に全反射を繰り返し伝送される光のうち最
大の入射角、即ち受光角θnaxにより入射し、屈折
角θ2で屈折されるC光線は、その後界面145
に入射角として臨界角θcで入射し、界面145に
沿つて進む。ところで受光フアイバ14の開口数
NAは空気の屈折率(n≒1)と受光角θnaxの正
弦との積として(1)式のように表わされる。即ち、 NA=n0sinθnax ……(1) ここで、屈折の法則を受光端面142と界面1
45とにおいて適用し(2),(3)式が得られる。
The light-receiving fiber 14 has a core portion 143 with a refractive index n c in the center, and a core portion 143 with a refractive index n d smaller than the central portion on the outside thereof.
It has a clad part 144, and the whole is bendable. The core portion 143 of this light-receiving fiber forms an optical waveguide, and light is repeatedly transmitted through total reflection even in the bent core portion. Of the light incident on the core section 143 from the light-receiving end surface 142, ray A enters the core section 143 at a relatively small incident angle θ, is totally reflected at the interface 145 between the core section and the cladding section, and is reflected to the other end side. transmitted. On the other hand, after the B ray enters the core portion 143 at a relatively large incident angle θ1, it escapes from the interface 145 into the cladding portion 144. Therefore, among the light that enters the light-receiving end face 142 and is repeatedly transmitted through total reflection to the other end, the C ray that enters at the maximum angle of incidence, that is, the light-receiving angle θ nax , and is refracted at the refraction angle θ2, is 145
The light is incident at a critical angle θ c as an incident angle and proceeds along the interface 145 . By the way, the numerical aperture of the receiving fiber 14
NA is expressed as the product of the refractive index of air (n≈1) and the sine of the acceptance angle θ nax as shown in equation (1). That is, NA=n 0 sinθ nax ...(1) Here, the law of refraction is expressed by the light receiving end surface 142 and the interface 1.
45, equations (2) and (3) are obtained.

nc/n0=sinθnax/sinθ2 ……(2) nd/nc=sinθc/sin90゜=cosθ2 ……(3) (1)式に(2),(3)式を代入して(4)式を得る。 n c /n 0 = sinθ nax /sinθ2 ...(2) n d /n c = sinθ c /sin90゜=cosθ2 ...(3) Substituting equations (2) and (3) into equation (1) Obtain equation (4).

NA=n0sinθnax=ncsinθ2 =nc(√1−22)=√c 2d 2 ……(4) (1),(4)式より(5)式が得られる。 NA=n 0 sinθ nax = n c sinθ2 = n c (√1−2 2 )=√ c 2d 2 ...(4) Equation (5) is obtained from equations (1) and (4).

θnax=sin-1NA=sin-1c 2d 2 ……(5) 即ち、受光フアイバのコア部とクラツド部の屈
折率nc,ndより開口数NAを、また開口数NAよ
り受光角θnaxを求めることができる。
θ nax = sin -1 NA = sin -1c 2d 2 ...(5) In other words, the numerical aperture NA is calculated from the refractive index n c and n d of the core and cladding parts of the receiving fiber, and the numerical aperture NA From this, the acceptance angle θ nax can be determined.

更に、受光フアイバ14のコア部の直径をdと
すると、コア端部、即ち受光端面142の境界座
標(xc,yc,o)は、設定光軸l1と受光端面1
42との交点Oを基点とし、該定光軸l1方向を
Z軸とし、これと直角にX軸,Y軸を取ると、(6)
式で表わされる。
Furthermore, if the diameter of the core portion of the light-receiving fiber 14 is d, the boundary coordinates (x c , y c , o) of the core end, that is, the light-receiving end surface 142, are the set optical axis l1 and the light-receiving end surface 1.
With the intersection O with 42 as the base point, the direction of the constant optical axis l1 as the Z axis, and the X and Y axes taken at right angles to this, (6)
It is expressed by the formula.

xc 2+yc 2=d2/4 ……(6) 一方、受光フアイバ対向面17は該定光軸l1
と垂直で、かつ基点OよりLの位置にある。この
受光フアイバ対向面17の外周縁171上の任意
の点Pを(X0,y0,L)とし、この点Pと受光
端面142の境界座標上の1点Q(xc,yc,O)
とを結ぶ直線l2と設定光軸l1とのなす角Qo
は(7)式で表わされる。
x c 2 + y c 2 = d 2 /4 ...(6) On the other hand, the receiving fiber facing surface 17 has the constant optical axis l1
and is located at a position L from the base point O. An arbitrary point P on the outer peripheral edge 171 of the light-receiving fiber facing surface 17 is (X 0 , y 0 , L), and a point Q (x c , y c , O)
The angle Q o formed by the straight line l2 connecting these and the set optical axis l1
is expressed by equation (7).

ところで、受光端面142に入射し受光フアイ
バ14内を全反射により他方端側に伝導される光
の限界の入射角、即ち受光角θnaxは(5)式の関係を
有する。このため、受光角θnax以上に直線l2と
該定光軸l1とのなす角θoを設定すれば、受光端
面142に直接入射する外乱光は受光フアイバ対
向面16に規制される。
Incidentally, the critical incident angle of light that enters the light-receiving end face 142 and is transmitted to the other end side by total internal reflection within the light-receiving fiber 14, that is, the light-receiving angle θ nax , has the relationship shown in equation (5). Therefore, if the angle θ o between the straight line l2 and the constant optical axis l1 is set to be greater than the light-receiving angle θ nax , the disturbance light that directly enters the light-receiving end face 142 is regulated by the light-receiving fiber opposing surface 16.

即ち、外乱光は受光角θnax以内の小さい入射角
で入射することはできず、直接入射した外乱光も
受光角θnax以上に大きな入射角のため、受光フア
イバの界面145をぬけ出てしまい、コア部内を
全反射して受光フアイバの他方端に伝送されるこ
とはない。このような受光フアイバ対向面の外周
縁171の設定条件はθo>θnaxである。これに
(5),(7)式を代入すると(8)式が得られる。
That is, the disturbance light cannot be incident at a small incident angle within the acceptance angle θ nax , and the directly incident disturbance light also escapes from the interface 145 of the light receiving fiber because the incident angle is greater than the acceptance angle θ nax . , the light is totally reflected within the core portion and is not transmitted to the other end of the light-receiving fiber. The setting condition for the outer peripheral edge 171 of the surface facing the light-receiving fiber is θ onax . to this
By substituting equations (5) and (7), equation (8) is obtained.

(8)式において、開口数NAは受光フアイバの製
作条件により決まる定数であり、Lは使用条件に
より定まる定数である。ここで(8)式を満足し、か
つ直線l2が設定光軸l1となす角θoの最少値を
与える外周縁161上の任意の点P(x0,y0,L)
を求める。(8)式において(x0−Xc2+(y0−yc2
が最少となる条件はx0−xc,y0−ycの何れかが零
で、かつxcまたはycが最大となる時である。たと
えば (i) x0=lw,xc=d/2,y0−yc=0のとき(8)式は sin-1NA<tan-1lw−d/2/L ……(9) (ii) y0=lh,yc=d/2,x0−xc=0のとき(8)式
は sin-1NA<tan-1lh−d/2/L ……(10) つまり、第2図に示した信号検知装置7の受光フ
アイバ対向面17の形状を、その外周縁161が
(9),(10)式を満足するように定めれば受光フアイバ
14への外乱光を除去することができる。なお、
送光フアイバ15は受光フアイバ14と同一のも
のでよく、場合によつては特性の異なるものでも
代用できる。
In equation (8), the numerical aperture NA is a constant determined by the manufacturing conditions of the light-receiving fiber, and L is a constant determined by the usage conditions. Here, any point P (x 0 , y 0 , L) on the outer peripheral edge 161 that satisfies equation (8) and gives the minimum value of the angle θ o that the straight line l2 makes with the set optical axis l1
seek. In equation (8), (x 0 −X c ) 2 + (y 0 −y c ) 2
The condition for the minimum is when either x 0 −x c or y 0 −y c is zero and x c or y c is maximum. For example, (i) when x 0 = l w , x c = d/2, y 0 −y c = 0, equation (8) is sin -1 NA<tan -1 lw−d/2/L ……(9 ) (ii) When y 0 = lh, yc = d/2, x 0 −x c = 0, equation (8) is sin -1 NA<tan -1 lh−d/2/L ……(10) That is , the shape of the receiving fiber facing surface 17 of the signal detection device 7 shown in FIG.
If it is determined to satisfy equations (9) and (10), disturbance light to the light receiving fiber 14 can be removed. In addition,
The light transmitting fiber 15 may be the same as the light receiving fiber 14, and in some cases, fibers with different characteristics may be used instead.

第2図に示した信号検知装置7は受光端面14
2と、これと設定光軸l1方向に対向して配設さ
れる送光端面152との間で光の送出、受光を行
ない、これらの間の設定光軸l1を被検知部材9
が遮断する時限に光量変化という信号を受光フア
イバ14により受け、これを光学的に接続された
受光素子18が光量変化信号に対応した出力信号
Iを発する。この受光素子18に受光される光は
受光フアイバ14により、その受光端面142で
受けられ、全反射をコア部143内で繰り返して
伝送されたものだけである。このコア部143内
を伝送されてくる光は受光端面142に対して受
光角θnaxより小さな入射角で入射するものだけで
ある。このため受光フアイバ14により、受光角
θnaxより大きな角度で入射する外乱光は除去さ
れ、信号検知装置7のノイズを低下でき、即ち
S/N特性が改良される。しかも受光端面142
と対向するよう、その前方を覆う受光フアイバ対
向面16は、この外周縁161全体が少なくとも
受光端面142に対する受光角θnax以内の入射角
で入射する光を遮ぎるような形状に作られる。こ
のため受光端面142に直接入射する光は送光フ
アイバの送光端面152からの光であり、この外
に受光角θnax内の角度で入射する光は必らず受光
フアイバ対向面17からの反射光のみとなる。こ
の反射光は受光フアイバ対向面17で反射する
際、大幅に減衰されるため有害なノイズとしは作
用しない。即ち、受光フアイバ対向面17を(8)式
を満足するような形状に作成すれば受光フアイバ
14による入射光の規制に加えて、受光角θnax
内で直接受光端面142に向う外乱光を遮断する
ことができ、信号検知装置7のノイズを大幅に除
去でき、S/N特性を改良できる。しかも、受光
端面142と受光フアイバ対向面17との間いつ
ぱいに被検知部材の通路を確保でき、被検知部材
の厚さに自由度を持たせることができ、拡範囲の
分野で使用できる。更にこの発明の適用された信
号検知装置7は光量変化信号を検知するのに送光
端面152と受光端面142とを入力回路8に直
結された受光素子19と受光素子18とから離れ
た所望の位置に自由に配設できる。このため振動
に弱い電気配線の接続部は入力回路8側に支持で
き、これら接続部分からのノイズの発生を防止で
きる。しかも制御装置内の複数の入力回路がある
場合、これらを集約化しやすく、信号の集中処理
も容易となる。
The signal detection device 7 shown in FIG.
2 and a light transmitting end face 152 disposed opposite to this in the direction of the set optical axis l1.
The light receiving fiber 14 receives a signal indicating a change in the amount of light at the time when the light amount is cut off, and the light receiving element 18 optically connected to the receiving fiber 14 generates an output signal I corresponding to the light amount change signal. The light received by the light-receiving element 18 is only that which is received by the light-receiving fiber 14 at its light-receiving end face 142 and transmitted through repeated total reflection within the core portion 143. The light transmitted through the core portion 143 is only incident on the light receiving end face 142 at an incident angle smaller than the light receiving angle θ nax . Therefore, the light-receiving fiber 14 removes the disturbance light incident at an angle larger than the light-receiving angle θ nax , and the noise of the signal detection device 7 can be reduced, that is, the S/N characteristic is improved. Moreover, the light receiving end surface 142
The light-receiving fiber facing surface 16 covering the front side thereof is formed in such a shape that the entire outer peripheral edge 161 blocks at least light incident on the light-receiving end surface 142 at an incident angle within the light-receiving angle θ nax . Therefore, the light that directly enters the light-receiving end face 142 is the light from the light-transmitting end face 152 of the light-transmitting fiber, and the light that enters at an angle within the light-receiving angle θ nax is necessarily from the light-receiving fiber opposing face 17. Only reflected light will be reflected. When this reflected light is reflected by the light-receiving fiber facing surface 17, it is greatly attenuated and therefore does not act as harmful noise. That is, if the receiving fiber facing surface 17 is formed in a shape that satisfies equation (8), in addition to regulating the incident light by the receiving fiber 14, it will also block external light directly directed toward the receiving end surface 142 within the receiving angle θ nax . Therefore, the noise of the signal detection device 7 can be largely removed, and the S/N characteristics can be improved. In addition, it is possible to secure a passage for the detected member between the light receiving end face 142 and the light receiving fiber facing surface 17, and the thickness of the detected member can be adjusted with a degree of freedom, so that it can be used in a wide range of fields. Further, the signal detection device 7 to which the present invention is applied detects the light amount change signal by moving the light transmitting end face 152 and the light receiving end face 142 to a desired location away from the light receiving element 19 and the light receiving element 18 which are directly connected to the input circuit 8. Can be freely placed in any position. Therefore, the connection portions of the electrical wiring that are susceptible to vibration can be supported on the input circuit 8 side, and generation of noise from these connection portions can be prevented. Moreover, when there are a plurality of input circuits in the control device, it is easy to consolidate these and it is also easy to centrally process signals.

上述の処において受光素子18としてはフオト
ダイオード、フオトトランジスタ、光導電素子、
あるいは太陽電池が、また発光素子19としては
受光素子の波長感度特性に適応した各種発光ダイ
オードをそれぞれ使用することができる。
In the above, the light receiving element 18 may be a photodiode, a phototransistor, a photoconductive element,
Alternatively, a solar cell can be used, and as the light emitting element 19, various light emitting diodes adapted to the wavelength sensitivity characteristics of the light receiving element can be used.

第2図に示した信号検知装置7は被検知部材9
が光を完全に断続し、オン、オフを繰り返す光遮
断型であつたが、更に受光素子、発光素子の組合
せを調整し、透光性の被検知部材9の可変する透
過光量による光量変化信号を検知するようにも構
成できる。
The signal detection device 7 shown in FIG.
was a light blocking type that completely interrupted the light and repeatedly turned on and off, but by further adjusting the combination of the light receiving element and the light emitting element, a light intensity change signal was generated based on the variable amount of transmitted light of the translucent detected member 9. It can also be configured to detect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフオトインタラプタの斜視図、
第2図はこの発明の一実施例としての信号検知装
置の斜視図、第3図は同上信号検知装置で使用さ
れる受光フアイバの受光角説明図、第4図は同上
信号検知装置の受光フアイバ対向面の形状説明図
である。 7…信号検知装置、9…被検知部材、10…基
台、11…空間、12,13…支持部材、14…
受光フアイバ、141…受光端部、142…受光
端面、15…送光フアイバ、151…送光端部、
152…送光端面、17…受光フアイバ対向面、
171…外周縁、18…受光素子、19…発光素
子、l1…設定光軸、l2…外周縁と受光端面と
を結ぶ直線、L…空間の長さ、θnax…受光角、I
…出力信号。
Figure 1 is a perspective view of a conventional photo interrupter.
FIG. 2 is a perspective view of a signal detection device as an embodiment of the present invention, FIG. 3 is a diagram illustrating the acceptance angle of a light receiving fiber used in the above signal detection device, and FIG. 4 is a perspective view of a light receiving fiber of the above signal detection device. It is a shape explanatory view of an opposing surface. 7...Signal detection device, 9...Member to be detected, 10...Base, 11...Space, 12, 13...Support member, 14...
Light receiving fiber, 141... Light receiving end, 142... Light receiving end surface, 15... Light transmitting fiber, 151... Light transmitting end,
152...Light transmitting end surface, 17...Light receiving fiber opposing surface,
171... Outer periphery, 18... Light receiving element, 19... Light emitting element, l1... Set optical axis, l2... Straight line connecting outer periphery and light receiving end surface, L... Length of space, θ nax ... Light receiving angle, I
...output signal.

Claims (1)

【特許請求の範囲】[Claims] 1 空間を介して互いに並設される一対の支持部
材を一体的に突設した基台と、光源光を受け、か
つその光を送出する送出端部が上記一方の支持部
材に固定される送光フアイバと、この送光フアイ
バと共通の設定光軸上で対向するよう受光端部が
上記他方の支持部材に固定され、かつこの受光端
部で受けた光を受光素子に導びく受光フアイバと
を有し、上記空間内の設定光軸を通過する光が被
検知部材により変化することによる受光フアイバ
からの光量の変化を信号として検知するよう構成
された信号検知装置において、前記送光フアイバ
を支持する支持部材には、前記受光フアイバの空
間と対向する受光端面より設定長だけ離れ、かつ
設定光軸と垂直な受光フアイバ対向面を形成する
と共に、この受光フアイバ対向面の外周縁と上記
受光端面とを結ぶ直線が設定光軸となす角を、受
光フアイバが受けた光を全反射により伝送できる
範囲を示す受光角より大きくなるよう設定するこ
とを特徴とした信号検知装置。
1. A base integrally protruding from a pair of supporting members arranged in parallel with each other with a space in between, and a transmitter whose sending end that receives the light source light and sends out the light is fixed to one of the supporting members. an optical fiber; and a light-receiving fiber whose light-receiving end is fixed to the other supporting member so as to face the light-receiving fiber on a common set optical axis, and which guides light received at the light-receiving end to a light-receiving element. and is configured to detect as a signal a change in the amount of light from the light-receiving fiber due to a change in the light passing through the set optical axis in the space due to the detected member, wherein the light-transmitting fiber is The supporting member has a surface facing the light receiving fiber that is spaced apart from the light receiving end face facing the space of the light receiving fiber by a set length and is perpendicular to the set optical axis, and has an outer peripheral edge of the surface facing the light receiving fiber and the above light receiving fiber. A signal detection device characterized in that the angle between a straight line connecting an end face and a set optical axis is set to be larger than a light receiving angle indicating a range in which light received by a light receiving fiber can be transmitted by total reflection.
JP55116696A 1980-08-25 1980-08-25 Signal detector Granted JPS5740668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55116696A JPS5740668A (en) 1980-08-25 1980-08-25 Signal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55116696A JPS5740668A (en) 1980-08-25 1980-08-25 Signal detector

Publications (2)

Publication Number Publication Date
JPS5740668A JPS5740668A (en) 1982-03-06
JPH0152707B2 true JPH0152707B2 (en) 1989-11-09

Family

ID=14693584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55116696A Granted JPS5740668A (en) 1980-08-25 1980-08-25 Signal detector

Country Status (1)

Country Link
JP (1) JPS5740668A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186804A (en) * 1985-02-11 1986-08-20 ゼロツクス コーポレーシヨン Photodetector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509452A (en) * 1973-05-22 1975-01-30
JPS51148449A (en) * 1975-06-16 1976-12-20 Hitachi Ltd Detector of materials inside conveying-cont atner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509452A (en) * 1973-05-22 1975-01-30
JPS51148449A (en) * 1975-06-16 1976-12-20 Hitachi Ltd Detector of materials inside conveying-cont atner

Also Published As

Publication number Publication date
JPS5740668A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
EP1313222B1 (en) Method and apparatus for self-monitoring of proximity sensors
US5684905A (en) Fiber optic plate for making pattern image incident on photosensor
US4381137A (en) Optical fiber mode separation systems
EP0107374B1 (en) Displacement measuring apparatus
JP3752538B2 (en) Optical coupling device
JPH0650743A (en) Electronic optical sensor for measuring straight-line value
US20080107378A9 (en) Device for transferring optical signals by means of planar optical conductors
JPH0152707B2 (en)
JPS63132139A (en) Liquid refractive index meter
US4678328A (en) Non-optimum waveguide optical sensor
EP0177928B1 (en) Optical waveguide, particularly optical fiber
JPS6338687B2 (en)
JPS5861408A (en) Transmission type optical coupler
TWI359936B (en)
JPH0726842B2 (en) Optical sensor
JP2000214345A (en) Optical communication device and bi-directional optical communication equipment
JPS57108605A (en) Displacement meter
JPH0546016Y2 (en)
JPS6258446B2 (en)
JPS582602A (en) Optical displacement detector
JPH04138303A (en) Edge detection for light transmitting material
JPS6042347Y2 (en) fiber optic temperature sensor
JPH0244374B2 (en) KOGAKUSHIKIROOTARIIENKOODA
JP3350826B2 (en) Limited reflection type photoelectric sensor
JPS62289713A (en) Reflection type photoelectric sensor