JPH04134888A - Manufacture of superconducting device - Google Patents

Manufacture of superconducting device

Info

Publication number
JPH04134888A
JPH04134888A JP2257860A JP25786090A JPH04134888A JP H04134888 A JPH04134888 A JP H04134888A JP 2257860 A JP2257860 A JP 2257860A JP 25786090 A JP25786090 A JP 25786090A JP H04134888 A JPH04134888 A JP H04134888A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
oxygen
thin film
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2257860A
Other languages
Japanese (ja)
Other versions
JP2641973B2 (en
Inventor
Takao Nakamura
孝夫 中村
Hiroshi Inada
博史 稲田
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2257860A priority Critical patent/JP2641973B2/en
Priority to EP91402594A priority patent/EP0478464B1/en
Priority to DE69127418T priority patent/DE69127418T2/en
Priority to CA002052380A priority patent/CA2052380C/en
Publication of JPH04134888A publication Critical patent/JPH04134888A/en
Priority to US08/652,846 priority patent/US5717222A/en
Application granted granted Critical
Publication of JP2641973B2 publication Critical patent/JP2641973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to eliminate the need for a fine processing technology and prepare a high performance device which uses an oxide superconductor by controlling a superconducting current flowing in a superconduction circuit with gate voltage. CONSTITUTION:At first, when compared with an oxide insulator, a thin film of an insulator with a smaller amount of oxygen is formed. Then, oxygen ions are implanted in this thin film so as to form a superconducting source and a superconducting drain region. Furthermore, they are heat-treated in the oxygen atmosphere and oxygen is diffused so that a conduction channel 10 may be formed. Then, a source electrode 2, a drain electrode 3, and a gate electrode 4 are formed thereon. The current which flows in the superconducting channel 10 between the electrodes 2 and 3 is controlled with voltage applied to the electrode 4. The channel 10 is turned on and off with the voltage applied to the electrode 4, which calls for the superconducting channel 10 with an extremely thin film. Oxygen ions are implanted into a part which becomes a superconducting region where a thin film has been formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子の作製方法に関する。より詳細に
は、超電導素子の新規な作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a superconducting element. More specifically, the present invention relates to a novel method for manufacturing superconducting elements.

従来の技術 超電導を使用した代表的な素子に、ジョセフソン素子が
ある。ジョセフソン素子は、一対の超電導体をトンネル
障壁を介して結合した構成であり、高速スイッチング動
作が可能である。しかしながら、ジョセフソン素子は2
端子の素子であり、論理回路を実現するためには複雑な
回路構成になってしまう。
A Josephson device is a typical device using conventional technology superconductivity. A Josephson device has a configuration in which a pair of superconductors are coupled via a tunnel barrier, and is capable of high-speed switching operation. However, the Josephson element is 2
It is a terminal element and requires a complicated circuit configuration to realize a logic circuit.

一方、超電導を利用した3端子素子としては、超電導ベ
ーストランジスタ、超電導FET等がある。第2図に、
超電導ベーストランジスタの概念図を示す。第2図の超
電導ベーストランジスタは、超電導体または常電導体で
構成されたエミッタ21、絶縁体で構成されたトンネル
障壁22、超電導体で構成されたベース23、半導体ア
イソレータ24および常電導体で構成されたコレクタ2
5を積層した構成になっている。この超電導ベーストラ
ンジスタは、トンネル障壁22を通過した高速電子を利
用した低電力消費で高速動作を行う素子である。
On the other hand, three-terminal elements using superconductivity include superconducting base transistors, superconducting FETs, and the like. In Figure 2,
A conceptual diagram of a superconducting base transistor is shown. The superconducting base transistor shown in FIG. 2 is composed of an emitter 21 made of a superconductor or a normal conductor, a tunnel barrier 22 made of an insulator, a base 23 made of a superconductor, a semiconductor isolator 24, and a normal conductor. collector 2
It has a structure in which 5 layers are stacked. This superconducting base transistor is an element that operates at high speed with low power consumption using high speed electrons that have passed through the tunnel barrier 22.

第3図に、超電導FETの概念図を示す。第3図の超電
導FETは、超電導体で構成されている超電導ソース電
極41および超電導ドレイン電極42が、半導体層43
上に互いに近接して配置されている。超電導ソース電極
41および超電導ドレイン電極42の間の部分の半導体
層43は、下側が大きく削られ厚さが薄くなっている。
FIG. 3 shows a conceptual diagram of a superconducting FET. In the superconducting FET shown in FIG. 3, a superconducting source electrode 41 and a superconducting drain electrode 42 made of a superconductor are connected to a semiconductor layer
are placed close to each other on top. The semiconductor layer 43 in the portion between the superconducting source electrode 41 and the superconducting drain electrode 42 has its lower side largely shaved and has a reduced thickness.

また、半導体層43の下側表面にはゲート絶縁膜46が
形成され、ゲート絶縁膜46上にゲート電極44が設け
られている。
Further, a gate insulating film 46 is formed on the lower surface of the semiconductor layer 43, and a gate electrode 44 is provided on the gate insulating film 46.

超電導FETは、近接効果で超電導ソース電極41およ
び超電導ドレイン電極42間の半導体層43を流れる超
電導電流を、ゲート電圧で制御する低電力消費で高速動
作を行う素子である。
A superconducting FET is an element that operates at high speed with low power consumption and controls a superconducting current flowing through a semiconductor layer 43 between a superconducting source electrode 41 and a superconducting drain electrode 42 by a gate voltage due to the proximity effect.

さらに、ソース電極、ドレイン電極間に超電導体でチャ
ネルを形成し、この超電導チャネルを流れる電流をゲー
ト電極に印加する電圧で制御する3端子の超電導素子も
発表されている。
Furthermore, a three-terminal superconducting element has been announced in which a channel is formed between a source electrode and a drain electrode using a superconductor, and the current flowing through this superconducting channel is controlled by a voltage applied to a gate electrode.

発明が解決しようとする課題 上記の超電導ベーストランジスタおよび超電導FETは
、いずれも半導体層と超電導体層とが積層された部分を
有する。ところが、近年研究が進んでいる酸化物超電導
体を使用して、半導体層と超電導体層との積層構造を作
製することは困難である。また、この構造が作製できて
も半導体層と超電導体層の間の界面の制御が難しく、素
子として満足な動作をしなかった。
Problems to be Solved by the Invention The above-described superconducting base transistor and superconducting FET both have a portion in which a semiconductor layer and a superconductor layer are laminated. However, it is difficult to fabricate a stacked structure of a semiconductor layer and a superconductor layer using oxide superconductors, which have been studied in recent years. Moreover, even if this structure could be fabricated, it was difficult to control the interface between the semiconductor layer and the superconductor layer, and the device did not operate satisfactorily.

また、超電導FETは、近接効果を利用するため、超電
導ソース電極41および超電導ドレイン電極42を、そ
れぞれを構成する超電導体のコヒーレンス長の数倍程度
以内に近接させて作製しなければなるない。特に酸化物
超電導体は、コヒーレンス長が短いので、酸化物超電導
体を使用した場合には、超電導ソース電極41および超
電導ドレイン電極42間の距離は、数lQnm以下にし
なければならない。このような微細加工は非常に困難で
あり、従来は酸化物超電導体を使用した超電導FETを
再現性よく作製できなかった。
Furthermore, in order to utilize the proximity effect, the superconducting FET must be manufactured so that the superconducting source electrode 41 and the superconducting drain electrode 42 are located close to each other within several times the coherence length of the superconductor that constitutes each. In particular, an oxide superconductor has a short coherence length, so when an oxide superconductor is used, the distance between the superconducting source electrode 41 and the superconducting drain electrode 42 must be several lQnm or less. Such microfabrication is extremely difficult, and conventionally it has not been possible to fabricate superconducting FETs using oxide superconductors with good reproducibility.

さらに、従来の超電導チャネルを有する超電導素子は、
変調動作は確認されたが、キャリア密度が高いため、完
全なオン/オフ動作ができなかった。酸化物超電導体は
、キャリア密度が低いので、超電導チャネルに使用する
ことにより、完全なオン/オフ動作を行う上記の素子の
実現の可能性が期待されている。しかしながら、超電導
チャネルを5nm程度の厚さにしなければならず、その
ような構成を実現することは困難であった。
Furthermore, superconducting devices with conventional superconducting channels are
Although modulation operation was confirmed, complete on/off operation was not possible due to the high carrier density. Since oxide superconductors have a low carrier density, it is expected that by using them for superconducting channels, it will be possible to realize the above-mentioned devices that perform perfect on/off operation. However, the thickness of the superconducting channel must be approximately 5 nm, making it difficult to realize such a configuration.

そこで本発明の目的は、上記従来技術の問題点を解決し
た、超電導チャネルに流れる超電導電流をゲート電極で
制御する超電導素子の新規な作製方法を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel method for manufacturing a superconducting element in which the superconducting current flowing in a superconducting channel is controlled by a gate electrode, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、酸化物超電導体で形成された超電導チ
ャネルと、該超電導チャネルの両側に配置され、前記超
電導チャネルを構成する酸化物超電導体で構成された超
電導ソース領域および超電導ドレイン領域と、前記超電
導ソース領域および前記超電導ドレイン領域上に配置さ
れ、超電導チャネルに電流を流すソース電極およびドレ
イン電極と、前記超電導チャネル上に絶縁層を介して配
置されて該超電導チャネルに流れる電流を制御するゲー
ト電極を具備し、前記超電導チャネルの下方に前記酸化
物超電導薄膜を構成する酸化物超電導体と同じ構成元素
を有し、前記酸化物超電導体よりも酸素量が少ない酸化
物による絶縁領域を具備する超電導素子を作製する方法
において、前記酸化物超電導体と同じ構成元素を有し、
前記酸化物超電導体よりも酸素量が少ない酸化物の薄膜
を成膜し、該酸化物薄膜に酸素イオンを注入して前記超
電導ソース領域および前記超電導ドレイン領域を形成す
る工程および前記酸化物薄膜を酸素雰囲気中で熱処理し
て酸素を拡散させて超電導チャネルを形成した後、前記
ソース電極、ドレイン電極およびゲート電極を作製する
工程を含むことを特徴とする超電導素子の作製方法が提
供される。
Means for Solving the Problems According to the present invention, there is provided a superconducting channel formed of an oxide superconductor, and a superconducting source region disposed on both sides of the superconducting channel and composed of the oxide superconductor constituting the superconducting channel. and a superconducting drain region, a source electrode and a drain electrode that are arranged on the superconducting source region and the superconducting drain region and allow current to flow through the superconducting channel, and a source electrode and a drain electrode that are arranged on the superconducting channel with an insulating layer interposed therebetween and that flow into the superconducting channel. an oxide having the same constituent elements as the oxide superconductor constituting the oxide superconductor thin film and having a lower amount of oxygen than the oxide superconductor below the superconducting channel; In a method for producing a superconducting element having an insulating region according to
forming a thin oxide film having a lower oxygen content than the oxide superconductor, and implanting oxygen ions into the oxide thin film to form the superconducting source region and the superconducting drain region; A method for manufacturing a superconducting element is provided, which includes the step of forming a superconducting channel by performing heat treatment in an oxygen atmosphere to diffuse oxygen, and then manufacturing the source electrode, drain electrode, and gate electrode.

作用 本発明の方法では、最初に酸化物超電導体と同じ構成元
素を有し、酸化物超電導体よりも酸素量が少ない絶縁体
の酸化物の薄膜を形成する。次いで、この薄膜に酸素イ
オンを注入して超電導ソース領域および超電導ドレイン
領域を形成する。さらに酸素雰囲気中で熱処理して酸素
を拡散させて超電導チャネルを形成した後、ソース電極
、ドレイン電極およびゲート電極を作製する。
Operation In the method of the present invention, first a thin film of an oxide of an insulator having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed. Next, oxygen ions are implanted into this thin film to form a superconducting source region and a superconducting drain region. After further heat treatment in an oxygen atmosphere to diffuse oxygen and form a superconducting channel, a source electrode, a drain electrode, and a gate electrode are produced.

本発明の方法が対象としている超電導素子は、ソース電
極、ドレイン電極間の超電導チャネルを流れる超電導電
流をゲート電極に印加する電圧で制御する構成である。
A superconducting element targeted by the method of the present invention has a configuration in which a superconducting current flowing through a superconducting channel between a source electrode and a drain electrode is controlled by a voltage applied to a gate electrode.

超電導チ丁ネルは、ゲート電極に印加された電圧で開閉
させるた約に、ゲート電極により発生される電界の方向
で、厚さが5nm程度でなければならない。本発明の主
眼は、このような極薄の超電導チャネルを実現すること
にある。
The superconducting channel must have a thickness of about 5 nm in the direction of the electric field generated by the gate electrode in order to be opened and closed by the voltage applied to the gate electrode. The main focus of the present invention is to realize such an ultra-thin superconducting channel.

本発明の方法では、最初に約200〜300nm程度の
厚さの酸化物超電導体と同じ構成元素を有し、酸化物超
電導体よりも酸素量が少ない酸化物の薄膜を成膜する。
In the method of the present invention, first, a thin film of an oxide having a thickness of about 200 to 300 nm and having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed.

この酸化物薄膜は基板上に形成することが好ましく、厚
さは、超電導ソース領域および超電導ドレイン領域に十
分な厚さとする。
This thin oxide film is preferably formed on the substrate and has a thickness sufficient to cover the superconducting source and drain regions.

この酸化物薄膜に酸素イオンを注入して、超電導ソース
領域および超電導ドレイン領域を形成する。また、この
酸化物薄膜を酸素雰囲気中で熱処理し、表面から酸素を
拡散させて超電導チャネルを形成する。酸化物超電導体
は、結晶中の酸素原子の数が不安定であり、熱処理等に
より変化させることが可能である。また、酸化物超電導
体は、結晶中の酸素数によりその特性が変化しやすく、
特に酸素数が適正な値より小さい場合には、臨界温度が
大幅に低下したり、超電導性を失う。
Oxygen ions are implanted into this oxide thin film to form a superconducting source region and a superconducting drain region. Further, this oxide thin film is heat-treated in an oxygen atmosphere to diffuse oxygen from the surface and form a superconducting channel. The number of oxygen atoms in the crystal of an oxide superconductor is unstable and can be changed by heat treatment or the like. In addition, the properties of oxide superconductors tend to change depending on the number of oxygen in the crystal.
In particular, if the number of oxygen is lower than the appropriate value, the critical temperature will drop significantly or the superconductivity will be lost.

従って、本発明の方法では、結晶中の酸素量が少ない酸
化物超電導体、実際には、酸化物超電導体と固り構成元
素を有し、前記酸化物超電導体よりも酸素量が少ない酸
化物の薄膜を形成し、この薄膜の超電導領域となる部分
に酸素イオンを注入したり、酸素雰囲気中で熱処理して
酸素を拡散させて超電導体とする。酸素イオンの加速電
圧や酸素分圧、処理温度、処理時間等を加減することに
より、形成する酸化物超電導体を任意の厚さにすること
が可能である。また、酸化物超電導体は結晶のC軸と垂
直な方向に酸素が動きやすいので、酸化物薄膜の酸素を
拡散する部分に結晶のC軸に平行な溝を形成し、熱処理
することも好ましい。
Therefore, in the method of the present invention, an oxide superconductor with a small amount of oxygen in the crystal, in fact, an oxide that has a solid constituent element with the oxide superconductor and has a smaller amount of oxygen than the oxide superconductor. A thin film is formed, and oxygen ions are implanted into the part of this thin film that will become the superconducting region, or heat treatment is performed in an oxygen atmosphere to diffuse oxygen and make it a superconductor. By adjusting the oxygen ion acceleration voltage, oxygen partial pressure, treatment temperature, treatment time, etc., it is possible to form an oxide superconductor to have an arbitrary thickness. Further, since oxygen tends to move in the direction perpendicular to the C-axis of the crystal in an oxide superconductor, it is also preferable to form grooves parallel to the C-axis of the crystal in the portion of the oxide thin film where oxygen is diffused, and then heat-treat the groove.

上記の超電導素子では、超電導ソース領域および超電導
ドレイン領域の厚さは約2001m 、超電導チャネル
の厚さは約5nmにしなければならない。
In the above superconducting device, the thickness of the superconducting source region and the superconducting drain region should be about 2001 m, and the thickness of the superconducting channel should be about 5 nm.

従って、本発明の方法では、上記の酸化物薄膜を約20
0 nmの厚さに形成し、超電導ソース領域および超電
導ドレイン領域とする部分には酸素を注入する。また、
超電導チャネルの部分は5nmと非常に薄いので、熱処
理により酸素を拡散させて超電導体とする。
Therefore, in the method of the present invention, the above oxide thin film is
It is formed to a thickness of 0 nm, and oxygen is implanted into the portions that will become the superconducting source region and the superconducting drain region. Also,
Since the superconducting channel portion is extremely thin at 5 nm, oxygen is diffused through heat treatment to make it a superconductor.

本発明の方法では、上記の酸化物薄膜はMgO1SrT
i03、CdNdAlO4等の酸化物単結晶基板上に作
製されていることが好ましい。これらの基板上には、配
向性の高い結晶からなる酸化物薄膜を成長させることが
可能であるので好ましい。また、表面にMgA1201
、BaTiO3等が被覆されているSi基板を使用する
ことも好ましい。
In the method of the present invention, the above oxide thin film is MgO1SrT
It is preferable to fabricate on an oxide single crystal substrate such as i03 or CdNdAlO4. These substrates are preferable because it is possible to grow an oxide thin film made of highly oriented crystals. In addition, MgA1201 on the surface
It is also preferable to use a Si substrate coated with , BaTiO3 or the like.

本発明では、Y −Ba −[:u−0系酸化物超電導
体、Bi −5r −Ca−Cu −0系酸化物超電導
体、TI −BaCa−Cu−0系酸化物超電導体等任
意の酸化物超電導体を使用することができる。
In the present invention, any oxidized Physical superconductors can be used.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図を参照して、本発明の超電導素子を本発明の方法
で作製する手順を説明する。まず、第1図(a)に示す
ような基板5の表面に第1図(b)に示すよう約200
nm程度のY1Ba2[u307−7酸化物薄膜11を
オファクンススパンタリング法で形成する。
EXAMPLE Referring to FIG. 1, the procedure for manufacturing the superconducting element of the present invention by the method of the present invention will be explained. First, on the surface of the substrate 5 as shown in FIG. 1(a), about 20
A Y1Ba2[u307-7 oxide thin film 11 with a thickness of approximately nm is formed by an offset sputtering method.

YIBa2Cu30i−y酸化物は、Y、Ba2CU3
07−X酸化物超電導体と比較すると、y>xで低温で
絶縁性を示す。オファクシススバッタリング法で酸化物
薄膜11を形成する場合の成膜条件を以下に示す。
YIBa2Cu30i-y oxide is Y, Ba2CU3
Compared to 07-X oxide superconductor, it exhibits insulating properties at low temperatures when y>x. The film-forming conditions for forming the oxide thin film 11 by the off-axis sputtering method are shown below.

スパッタリングガス   Ar  :90%02 :1
0% 圧    力          10  Pa基板温
度  700℃ 基板5としては、Mg0(100)基板、5rTiO3
(100)基板、CdNdAlO4(001)等の絶縁
体基板、または表面に絶縁膜を有する81等の半導体基
板が好ましい。この81基板の表面にはMgA!、○。
Sputtering gas Ar:90%02:1
0% Pressure 10 Pa Substrate temperature 700°C As the substrate 5, Mg0 (100) substrate, 5rTiO3
A (100) substrate, an insulating substrate such as CdNdAlO4 (001), or a semiconductor substrate such as 81 having an insulating film on the surface is preferable. MgA on the surface of this 81 substrate! , ○.

およびスパッタリング法でBaT+03が積層されてい
ることが好ましい。
And BaT+03 is preferably laminated by sputtering method.

酸化物超電導体としては、Y−Ba−Cu−0系酸化物
超電導体の他B+ −3r −Ca−Cu−〇系酸化物
超電導体、TI −Ba−Ca−眠−○系酸化物超電導
体が好ましく、C軸配向の薄膜とすることが好ましい。
Examples of oxide superconductors include Y-Ba-Cu-0-based oxide superconductors, B+ -3r -Ca-Cu-〇-based oxide superconductors, and TI-Ba-Ca-Nime-○-based oxide superconductors. is preferable, and a thin film with C-axis orientation is preferable.

これは、C軸配向の酸化物超電導薄膜は、基板と平行な
方向の臨界電流密度が大きいかるである。
This is because the C-axis oriented oxide superconducting thin film has a large critical current density in the direction parallel to the substrate.

次に、第1図(C)に示すよう酸化物薄膜11上にフォ
トレジスト膜91でゲート電極のパターンを形成する。
Next, as shown in FIG. 1C, a gate electrode pattern is formed on the oxide thin film 11 using a photoresist film 91.

このパターン上から第2図(d)に示すよう酸化物薄膜
11の露出部分を5〜lQnmArイオンエツチングす
る。エツチング条件は基板温度100にで、加速電圧3
kVである。
From above this pattern, the exposed portion of the oxide thin film 11 is etched with 5 to 1Q nm of Ar ion etching, as shown in FIG. 2(d). The etching conditions are a substrate temperature of 100℃ and an acceleration voltage of 3.
kV.

酸化物薄膜11に酸素イオンを注入して、酸化物薄膜1
1内に第1図(e)に示すよう超電導ソース領域12お
よび超電導ドレイン領域13を形成する。酸素イオンの
注入条件を以下に示す。
Oxygen ions are implanted into the oxide thin film 11 to form the oxide thin film 1.
As shown in FIG. 1(e), a superconducting source region 12 and a superconducting drain region 13 are formed in 1. As shown in FIG. The oxygen ion implantation conditions are shown below.

加速電圧    40kV 注入量(ドーズ量)1×1015〜1×1016個/ 
cnfフォトレジスト膜91を除去し、酸素雰囲気中で
熱処理し、酸化物薄膜の表面および溝14.15から内
部に酸素を拡散させ、第1図げ)に示すよう超電導チマ
ネル10を形成する。熱処理条件を以下に示す。
Acceleration voltage 40kV Injection amount (dose amount) 1 x 1015 to 1 x 1016 pieces/
The CNF photoresist film 91 is removed and heat treated in an oxygen atmosphere to diffuse oxygen into the surface of the oxide thin film and the grooves 14 and 15, thereby forming a superconducting chimanel 10 as shown in Fig. 1). The heat treatment conditions are shown below.

基板温度   350℃ 酸素分圧 I XIO’ Pa 保持時間   1 時間 超電導チャネル10の下側は絶縁領域50となる。Substrate temperature 350℃ Oxygen partial pressure I XIO' Pa Holding time 1 hour The underside of the superconducting channel 10 becomes an insulating region 50.

このように超電導チャネル10、超電導ソース領域12
および超電導ドレイン領域13を形成した酸化物薄膜1
1上に第1図(g)に示すようSiN等の絶縁膜16を
積層する。絶縁膜16の厚さは約10nm以上のトンネ
ル電流が無視できる厚さにする。また、絶縁膜16は、
酸化物超電導薄膜との界面で大きな準位を作らない絶縁
体を用いることが好ましく、機械的応力の減少の点から
、酸化物超電導体と組成の近い絶縁膜を連続形成するこ
とも好ましい。
In this way, the superconducting channel 10, the superconducting source region 12
and oxide thin film 1 forming superconducting drain region 13
As shown in FIG. 1(g), an insulating film 16 made of SiN or the like is laminated on top of the insulating film 16. The thickness of the insulating film 16 is set to be about 10 nm or more so that tunnel current can be ignored. Further, the insulating film 16 is
It is preferable to use an insulator that does not create a large level at the interface with the oxide superconducting thin film, and from the viewpoint of reducing mechanical stress, it is also preferable to continuously form an insulating film having a composition similar to that of the oxide superconductor.

絶縁膜16上に第1図圓に示すよう金属膜17を形成す
る。金属膜17には、AuまたはTi、 W等の高融点
金属、またはこれらのシリサイドを使用することが好ま
しい。反応性イオンエツチング等で金属膜17フよび絶
縁膜16をエツチングし、第1図(1)に示すようゲー
ト電極4および絶縁層6を形成する。
A metal film 17 is formed on the insulating film 16 as shown in the circle of FIG. For the metal film 17, it is preferable to use a high melting point metal such as Au, Ti, or W, or a silicide thereof. The metal film 17 and the insulating film 16 are etched using reactive ion etching or the like to form the gate electrode 4 and the insulating layer 6 as shown in FIG. 1(1).

絶縁膜16をエツチングする場合には、必要に応じてサ
イドエッチを促進し、絶縁層6の長さを減少させる。
When etching the insulating film 16, side etching is promoted as necessary to reduce the length of the insulating layer 6.

最後に第1図(J)に示すよう、ゲート電極4と同様の
材料を用いて、超電導ソース領域12および超電導ドレ
イン領域13それぞれの上にソース電極2およびドレイ
ン電極3を形成する。
Finally, as shown in FIG. 1(J), source electrode 2 and drain electrode 3 are formed on superconducting source region 12 and superconducting drain region 13, respectively, using the same material as gate electrode 4.

本発明の超電導素子を本発明の方法で作製すると、超電
導FETを作製する場合に要求される微細加工技術の制
限が緩和される。また、表面が平坦にできるので、後に
必要に応じ配線を形成することが容易になる。従って、
作製が容易であり、素子の性能も安定しており、再現性
もよい。
When the superconducting element of the present invention is manufactured by the method of the present invention, restrictions on microfabrication techniques required when manufacturing a superconducting FET are relaxed. Furthermore, since the surface can be made flat, it becomes easier to form wiring later as required. Therefore,
It is easy to manufacture, has stable device performance, and has good reproducibility.

発明の詳細 な説明したように、本発明の超電導素子は、超電導チャ
ネル中を流れる超電導電流をゲート電圧で制御する構成
となっている。従って、従来の超電導FETのように、
超電導近接効果を利用していないので微細加工技術が不
要である。また、超電導体と半導体を積層する必要もな
いので、酸化物超電導体を使用して高性能な素子が作製
できる。
As described in detail, the superconducting element of the present invention has a configuration in which the superconducting current flowing in the superconducting channel is controlled by the gate voltage. Therefore, like the conventional superconducting FET,
Since it does not utilize the superconducting proximity effect, microfabrication technology is not required. Furthermore, since there is no need to stack a superconductor and a semiconductor, high-performance devices can be manufactured using oxide superconductors.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

2主な参照番号:。2 Main reference numbers:.

2・・・ソース電極、 3・・・ドレイン電極、 4・・・ゲート電極、 5・・・基板2...source electrode, 3...Drain electrode, 4...gate electrode, 5... Board

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導体で形成された超電導チャネルと、該超
電導チャネルの両側に配置され、前記超電導チャネルを
構成する酸化物超電導体で構成された超電導ソース領域
および超電導ドレイン領域と、前記超電導ソース領域お
よび前記超電導ドレイン領域上に配置され、超電導チャ
ネルに電流を流すソース電極およびドレイン電極と、前
記超電導チャネル上に絶縁層を介して配置されて該超電
導チャネルに流れる電流を制御するゲート電極を具備し
、前記超電導チャネルの下方に前記酸化物超電導薄膜を
構成する酸化物超電導体と同じ構成元素を有し、前記酸
化物超電導体よりも酸素量が少ない酸化物による絶縁領
域を具備する超電導素子を作製する方法において、前記
酸化物超電導体と同じ構成元素を有し、前記酸化物超電
導体よりも酸素量が少ない酸化物の薄膜を成膜し、該酸
化物薄膜に酸素イオンを注入して前記超電導ソース領域
および前記超電導ドレイン領域を形成する工程および前
記酸化物薄膜を酸素雰囲気中で熱処理して酸素を拡散さ
せて超電導チャネルを形成した後、前記ソース電極、ド
レイン電極およびゲート電極を作製する工程を含むこと
を特徴とする超電導素子の作製方法。
a superconducting channel formed of an oxide superconductor; a superconducting source region and a superconducting drain region disposed on both sides of the superconducting channel and composed of the oxide superconductor constituting the superconducting channel; a source electrode and a drain electrode disposed on the superconducting drain region to allow current to flow through the superconducting channel; and a gate electrode disposed on the superconducting channel via an insulating layer to control the current flowing in the superconducting channel; A method for producing a superconducting element comprising an insulating region made of an oxide having the same constituent elements as the oxide superconductor constituting the oxide superconducting thin film and having a lower oxygen content than the oxide superconductor below a superconducting channel. In this step, a thin film of an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed, and oxygen ions are implanted into the oxide thin film to form the superconducting source region. and forming the superconducting drain region, and forming the source electrode, drain electrode, and gate electrode after heat-treating the oxide thin film in an oxygen atmosphere to diffuse oxygen and forming a superconducting channel. A method for producing a superconducting element characterized by:
JP2257860A 1990-09-27 1990-09-27 Superconducting element and manufacturing method thereof Expired - Lifetime JP2641973B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2257860A JP2641973B2 (en) 1990-09-27 1990-09-27 Superconducting element and manufacturing method thereof
EP91402594A EP0478464B1 (en) 1990-09-27 1991-09-27 Method for manufacturing a superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
DE69127418T DE69127418T2 (en) 1990-09-27 1991-09-27 Manufacturing process of a superconducting component with an extremely thin superconducting channel made of superconducting oxide material
CA002052380A CA2052380C (en) 1990-09-27 1991-09-27 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US08/652,846 US5717222A (en) 1990-09-27 1996-05-23 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257860A JP2641973B2 (en) 1990-09-27 1990-09-27 Superconducting element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04134888A true JPH04134888A (en) 1992-05-08
JP2641973B2 JP2641973B2 (en) 1997-08-20

Family

ID=17312179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257860A Expired - Lifetime JP2641973B2 (en) 1990-09-27 1990-09-27 Superconducting element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2641973B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Also Published As

Publication number Publication date
JP2641973B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPS61206279A (en) Superconductive element
JPH04134888A (en) Manufacture of superconducting device
JP2641974B2 (en) Superconducting element and fabrication method
JP2641977B2 (en) Superconducting element fabrication method
JP2641971B2 (en) Superconducting element and fabrication method
JP2641978B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JP2641970B2 (en) Superconducting element and fabrication method
JPS63258083A (en) Manufacture of superconductive material
JP2641975B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2641969B2 (en) Superconducting element and fabrication method
JP2597745B2 (en) Superconducting element and fabrication method
JPH0537036A (en) Superconductive device and manufacture thereof
JP2597747B2 (en) Superconducting element and fabrication method
JP2656853B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JP2641976B2 (en) Superconducting element and fabrication method
JPH04127587A (en) Manufacture of superconductive element
JPH04163975A (en) Superconducting element and manufacture thereof
JPH04167572A (en) Superconductive element and manufacture thereof