JPH04134807A - Manufacture of rare earth-resin bonded magnet - Google Patents
Manufacture of rare earth-resin bonded magnetInfo
- Publication number
- JPH04134807A JPH04134807A JP2257647A JP25764790A JPH04134807A JP H04134807 A JPH04134807 A JP H04134807A JP 2257647 A JP2257647 A JP 2257647A JP 25764790 A JP25764790 A JP 25764790A JP H04134807 A JPH04134807 A JP H04134807A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- resin
- magnet
- magnet powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 41
- 239000011347 resin Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000843 powder Substances 0.000 claims abstract description 34
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 33
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 26
- 238000001125 extrusion Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 abstract description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 abstract description 2
- 239000004615 ingredient Substances 0.000 abstract 2
- 238000000465 moulding Methods 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 9
- 238000000748 compression moulding Methods 0.000 description 9
- 238000001746 injection moulding Methods 0.000 description 8
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 239000006247 magnetic powder Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 208000015943 Coeliac disease Diseases 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0558—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野コ 本発明は希土類樹脂結合型磁石の製造方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for manufacturing a rare earth resin bonded magnet.
[従来技術]
樹脂結合型磁石の成形方法としては以下に示したような
成形方法が挙げられる。[Prior Art] As a method for molding a resin-bonded magnet, the following molding method can be mentioned.
1、圧縮成形法
2、射出成形法
圧縮成形法は磁石粉末と熱硬化性樹脂からなる磁石組成
物をプレスの金型中に充填し、これに圧力を加えて圧縮
して成形し、その後、加熱して樹脂を硬化させて成形す
る方法である。この時、磁石組成物中の磁性粉米量は9
5wt%以上含まれる。1. Compression molding method 2. Injection molding method In the compression molding method, a magnet composition consisting of magnet powder and thermosetting resin is filled into a press mold, compressed and molded by applying pressure, and then, This is a method of molding by heating and curing the resin. At this time, the amount of magnetic powder in the magnet composition was 9
Contains 5wt% or more.
この圧縮成形法は上記のように他の成形方法に比べ磁石
組成物中の樹脂成分量が少ないため、成形された磁石の
磁気性能は高いが、磁石の形状に対する自由度は小さい
。As mentioned above, in this compression molding method, the amount of resin component in the magnet composition is smaller than in other molding methods, so although the magnetic performance of the molded magnet is high, the degree of freedom regarding the shape of the magnet is small.
射出成形法は磁石粉末と熱可塑性樹脂からなる磁石組成
物を加熱溶融し、十分な流動性をもたせた状態で金型内
に注入して所定の形状に成形する方法である。射出成形
法は磁石組成物に流動性をもたせるために磁石組成物中
の樹脂成分量が圧縮成形に比べて多く、磁石組成物中の
磁石粉末量は90〜95wt%程度となるために磁石成
形体の磁気性能は低下する。しかし、形状の自由度は圧
縮成形法に比べ大きい。The injection molding method is a method in which a magnet composition made of magnet powder and a thermoplastic resin is heated and melted, and injected into a mold with sufficient fluidity to be molded into a predetermined shape. In the injection molding method, in order to give fluidity to the magnet composition, the amount of resin component in the magnet composition is larger than that in compression molding, and the amount of magnet powder in the magnet composition is about 90 to 95 wt%, so magnet molding is difficult. The magnetic performance of the body decreases. However, the degree of freedom in shape is greater than in compression molding.
[発明が解決しようとする課題]
しかしながら、上記の製造方法には以下に示すような課
題を有している。[Problems to be Solved by the Invention] However, the above manufacturing method has the following problems.
第一に、圧縮成形法、射出成形法ともに成形工程が磁石
組成物の金型への充填、成形、成形品の取り出しという
一定のサイクルがあり、基本的にバッチ式生産システム
であるため、その生産性には限界がある。また、最近需
要が増えている寸法の長い磁石の成形に対しても原料の
充填や成形品の取り出しが困難であることや成形磁石の
磁気性能が低下する等の理由から、成形品の長さには限
界がある。First, the molding process for both compression molding and injection molding involves a fixed cycle of filling a mold with a magnetic composition, molding, and removing the molded product, and is basically a batch-type production system. There are limits to productivity. In addition, when molding long magnets, which have been in increasing demand recently, it is difficult to fill the raw materials and take out the molded product, and the magnetic performance of the molded magnet deteriorates. has its limits.
また、圧縮成形法は形状自由度が低く、アーク形状等の
異形状の成形についてはプレス時の成形圧力を均一に掛
けることが困難であり、これによって磁石成形体内での
密度にばらつきが生じ、磁気性能にもばらつきを生じる
という問題点を有している。一方、射出成形法の場合は
形状自由度が高く、アーク形状の成形は可能であるが、
スプルやランナーが生じるためこれらを再生利用(リサ
イクル)を行う必要があるが、希土類磁石粉末特にR−
Fe−B基磁石粉末は高温雰囲気で劣化しやすいためリ
サイクル品を使用することで磁石の磁気性能を低下させ
るという問題点を有する。In addition, the compression molding method has a low degree of freedom in shape, and when molding irregular shapes such as arc shapes, it is difficult to apply molding pressure uniformly during pressing, which causes variations in density within the magnet molded body. It also has the problem of variations in magnetic performance. On the other hand, injection molding has a high degree of freedom in shape, and arc-shaped molding is possible;
Since sprues and runners are generated, these need to be reused (recycled), but rare earth magnet powder, especially R-
Since Fe-B-based magnet powder easily deteriorates in a high-temperature atmosphere, there is a problem in that using a recycled product lowers the magnetic performance of the magnet.
そこで、これらの問題を解決する手段として押出成形法
が挙げられる。押出成形法は磁石粉末を樹脂と混練した
後に押出機で金型内に送り込み金型内で賦形して成形す
る方法である。この方法の場合には生産工程が連続的で
あるため、生産性が良く、また射出成形のようにスプル
ーやランナを生じることが無いためリサイクル品は生じ
難く従ってこれによる磁気性能の低下は生じない。この
様に従来の圧縮成形や射出成形には無い利点を押出成形
は有している。しかしながら、この押出成形法も以下の
課題を有している。Therefore, an extrusion molding method can be cited as a means to solve these problems. The extrusion molding method is a method in which magnet powder is kneaded with resin, then fed into a mold using an extruder, and shaped and molded within the mold. In the case of this method, the production process is continuous, so productivity is good, and unlike injection molding, sprues and runners are not produced, so it is difficult to produce recycled products, so there is no deterioration in magnetic performance due to this. . In this way, extrusion molding has advantages that conventional compression molding and injection molding do not have. However, this extrusion molding method also has the following problems.
すなわち、アーク形状、もしくは平板状を成形する場合
には断面形状に対して溶融混合物を均一に流動させる事
が困難であり、特に磁石粉末の様な充填材が有る場合に
は流動性が悪いため一層困難となる。このことによって
金型のギャップに対して充填し易い部分とし難い部分が
生じ、金型通りに賦形する事が困難であるという問題点
を有している。In other words, when molding an arc shape or a flat plate shape, it is difficult to make the molten mixture flow uniformly with respect to the cross-sectional shape, and especially when there is a filler such as magnet powder, the fluidity is poor. It becomes even more difficult. This creates a portion that is difficult to fill into the gap in the mold, which poses a problem in that it is difficult to shape according to the mold.
そこで本発明はこのような課題を解決するもので、その
目的とするところは、従来の成形方法で成形することが
困難であったアーク形状の磁石をより高性能に生産性良
く、低コストで提供することを目的とする。The present invention is intended to solve these problems, and its purpose is to produce arc-shaped magnets that are difficult to mold using conventional molding methods, with higher performance, higher productivity, and lower cost. The purpose is to provide.
[課題を解決するための手段]
本発明の希土類樹脂結合型磁石の製造方法は希土類磁石
粉末と樹脂及び添加剤(無機物を含む)からなる希土類
樹脂結合型磁石の製造方法において希土類磁石粉末と樹
脂及び添加剤の混合物の粘度ηが樹脂成分が液状となる
温度範囲に於て、η≦2kpoise
(せん断速度1000sec−1)
であり、これをアーク形状もしくは平板状に押出成形す
ることを特徴とする。[Means for Solving the Problems] The method for manufacturing a rare earth resin-bonded magnet of the present invention is a method for manufacturing a rare-earth resin-bonded magnet consisting of a rare earth magnet powder, a resin, and an additive (including an inorganic substance). The viscosity η of the mixture of and additives is η≦2 kpoise (shear rate 1000 sec-1) in the temperature range where the resin component becomes liquid, and the mixture is extruded into an arc shape or a flat plate shape. .
また、上記希土類磁石粉末が希土類元素とコバルトを主
体とする遷移金属元素からなる磁石粉末であり、その含
有率が体積比で40から80%である。Further, the rare earth magnet powder is a magnet powder composed of a rare earth element and a transition metal element mainly consisting of cobalt, and the content thereof is 40 to 80% by volume.
また、上記希土類磁石粉末が希土類元素と鉄を主体とす
る遷移金属元素及びほう素からなる磁石粉末であり、そ
の含有率が体積比で40から80%である。Further, the rare earth magnet powder is a magnet powder consisting of a rare earth element, a transition metal element mainly composed of iron, and boron, and the content thereof is 40 to 80% by volume.
[作用]
本発明の構成によれば、希土類磁石粉末と樹脂からなる
希土類樹脂結合型磁石の成形方法として押出成形法を用
いることにより、基本的にバッチ処理である圧縮成形法
や射出成形法等の従来製法に比べ、連続成形が可能とな
り、これによって生産性が上がり、低コスト化を図るこ
とが可能となる。[Function] According to the configuration of the present invention, by using an extrusion molding method as a molding method for a rare earth resin-bonded magnet made of rare earth magnet powder and resin, compression molding method, injection molding method, etc., which are basically batch processes, can be used. Compared to conventional manufacturing methods, continuous molding is possible, which increases productivity and reduces costs.
希土類磁石粉末と樹脂及び添加剤の混合物の粘度ηを樹
脂成分が液状となる温度領域に於いてη≦2kpois
e
(せん断速度1000sec−1)
としたのは混合物の成形を行うためには混合物が塑性変
形を起こす必要があるため、この様な変形を生じるため
には樹脂成分が液状となる必要があるため、温度範囲は
樹脂成分が液状となる温度領域となる。混合物の粘度η
が2kpoise以下としたのは混合溶融物の流れを成
形体形状に対して均一にするためである。即ち、一般に
かわら形状用もしくは平板状用金型は成形体形状に対し
て流動性が異なり、成形体形状の中央部には混合溶融物
が流れ易く、エツジ部には溶融物は流れにくい。これを
解決する手段としては金型の流路をエツジ部に流れ易く
するように流路の形状を変形する等の処理が挙げられる
が混合溶融物の粘度が高すぎる場合にはこの処理の効果
には限度がある。The viscosity η of the mixture of rare earth magnet powder, resin and additives is set to η≦2kpois in the temperature range where the resin component becomes liquid.
e (shear rate 1000 sec-1) was chosen because in order to mold the mixture, it is necessary for the mixture to undergo plastic deformation, and in order to cause such deformation, the resin component must become liquid. , the temperature range is a temperature range in which the resin component becomes liquid. Viscosity of the mixture η
The reason why the temperature is set to 2 kpoise or less is to make the flow of the mixed melt uniform over the shape of the molded product. That is, in general, molds for flat or flat molds have different fluidity depending on the shape of the molded product, with the mixed melt flowing easily in the center of the molded product and difficult to flow in the edge portions. One way to solve this problem is to change the shape of the flow path in the mold so that it flows more easily toward the edges, but this treatment is effective if the viscosity of the mixed melt is too high. There are limits.
従って混合物の粘度を下げる必要があり、その上限は2
kpoiseとなる。即ちこの粘度以上では混合物の流
動性が低く、成形体断面形状に対して混合物の流れ性に
差を生じて形状を成形することができない。粘度の下限
についてはより低粘度な混合物が作成できれば粘度は低
い方が望ましい。Therefore, it is necessary to lower the viscosity of the mixture, and the upper limit is 2
It becomes kpoise. That is, if the viscosity exceeds this value, the fluidity of the mixture is low, and there is a difference in the fluidity of the mixture depending on the cross-sectional shape of the molded product, making it impossible to mold the shape. Regarding the lower limit of the viscosity, it is desirable that the viscosity be lower if a mixture with a lower viscosity can be prepared.
使用する磁石粉末についてはSm−Co系、もしくはN
d−Fe−B系の希土類磁石粉末であり、その含有率を
体積比で40〜80%としたのは40%以下では高性能
な希土類磁石粉末を使用する効果が得られないためであ
り、80%以上では押出成形を行うために必要な流動性
を確保できないためである。The magnet powder used is Sm-Co or N.
It is a d-Fe-B rare earth magnet powder, and the reason why its content is 40 to 80% by volume is because the effect of using high-performance rare earth magnet powder cannot be obtained if it is less than 40%. This is because if it exceeds 80%, the fluidity necessary for extrusion molding cannot be secured.
使用する樹脂としては熱硬化性樹脂、熱可塑性樹脂どち
らも使用可能であり、例えば熱硬化性樹脂ではエポキシ
樹脂、フェノール樹脂等があり、熱可塑性樹脂としては
ポリアミド樹脂、ポリフェニレンサルファイド樹脂(P
PS)等が挙げられる。ここに挙げた樹脂は一例であり
、これは本発明を限定するものではない。これらの樹脂
をベスレジンとし、混合物の粘度を下げる際には必要に
応じて平均分子量を下げるか可塑剤等の添加剤を加える
等の処理を行うことによって対応する。Both thermosetting resins and thermoplastic resins can be used.For example, thermosetting resins include epoxy resins and phenol resins, while thermoplastic resins include polyamide resins and polyphenylene sulfide resins (P
PS) etc. The resins listed here are just examples and do not limit the invention. When these resins are used as bess resins, the viscosity of the mixture can be lowered by reducing the average molecular weight or adding additives such as plasticizers as necessary.
本発明のアーク状磁石とは以下の様なものを指す。即ち
外径R2内径r、射角θ(θ≦180°)の円弧状断面
を有する長さtの磁石を示している。The arc-shaped magnet of the present invention refers to the following. In other words, it shows a magnet having an outer diameter R2, an inner diameter r, and an arc-shaped cross section with an angle of incidence θ (θ≦180°) and a length t.
以下、実施例に従い詳細に説明を行う。Hereinafter, a detailed explanation will be given according to examples.
[実施例]
第1図は本発明の希土類樹脂結合型磁石の製造工程を示
している。希土類磁性粉末と樹脂と添加剤を所望の混合
比に秤ユした後にロールミル、押出機等の混合機で混合
し、コンパウンドを作成する。このコンパウンドを成形
機に投入しやすい大きさに粉砕し、押出成形機に投入す
る。ここで使用した押出機は一軸のスクリュー式押出機
だった。[Example] Fig. 1 shows the manufacturing process of the rare earth resin bonded magnet of the present invention. After weighing the rare earth magnetic powder, resin, and additives to a desired mixing ratio, they are mixed in a mixer such as a roll mill or extruder to create a compound. This compound is crushed into a size that can be easily fed into a molding machine, and then fed into an extrusion molding machine. The extruder used here was a single screw type extruder.
押出機中でコンパウンドは加熱され、樹脂が溶融状態と
なり、この状態で押出機に接続された金型に送り込まれ
る。金型中でコンパウンドは最終形状に賦形され、金型
から磁石成形体がが押し出される。押し出された磁石は
引き取られ、切断機によって切断される。この後熱硬化
性樹脂を使用した場合にはキユアリングを行い、希土類
樹脂結合型磁石を成形した。また、磁場配向成形を行っ
た時には切断前に脱磁を行った。The compound is heated in the extruder to melt the resin, which is then fed into a mold connected to the extruder. The compound is shaped into the final shape in the mold, and the molded magnet is extruded from the mold. The extruded magnet is taken out and cut by a cutting machine. After this, when a thermosetting resin was used, curing was performed to form a rare earth resin bonded magnet. Furthermore, when magnetic field orientation molding was performed, demagnetization was performed before cutting.
以下、更に詳細な実施例を示す。More detailed examples will be shown below.
(実施例1)
第1表に磁石粉末と樹脂の混合溶融物(以下コンパウン
ドと称す)の粘度を変えた時の成形性を示している。(Example 1) Table 1 shows the moldability when the viscosity of a mixed melt of magnet powder and resin (hereinafter referred to as compound) was changed.
2kpoise以上ではエツジ部にコンパウンド第1表 が充填されず、成形はできなかった。For 2kpoise or more, apply compound Table 1 to the edges. was not filled and molding was not possible.
○:成形可、△: 成形難、×: 成形不可使用した磁
石粉末はSm−Co系(表中Sm系)、Nd−Fe−B
系(表中Nd系)であり、充填率は体積比で60%であ
った。樹脂としてはポリアミド樹脂(ナイロン12)を
用い、粘度を変える手段としては高粘度化には樹脂の平
均分子量を変え、低粘度化にはステアリン酸塩等の添加
剤を加えて変化させた。成形した磁石の断面形状は外径
10mm、内径9mm、射角120°のアーク形状磁石
であった。表から明らかなように粘度が低い場合には成
形が可能であるが、粘度が上昇すると成形が困難となり
、2kpoise付近で成形可能な範囲の上限となった
。しかし、
(実施例2)
実施例1と同様の実験条件で断面形状で幅20mm、厚
さ1.5mmの平板状磁石の成形実験を行った。その結
果は第1表の実験結果と同じであり、粘度が2kpoi
se以上の時にはエツジ部にコンパウンドが充填されず
、成形はできなかった。○: Can be molded, △: Difficult to mold, ×: Cannot be molded The magnet powders used are Sm-Co type (Sm type in the table), Nd-Fe-B
system (Nd system in the table), and the filling rate was 60% by volume. Polyamide resin (nylon 12) was used as the resin, and the viscosity was changed by changing the average molecular weight of the resin to increase the viscosity, and by adding additives such as stearate to decrease the viscosity. The cross-sectional shape of the molded magnet was an arc-shaped magnet with an outer diameter of 10 mm, an inner diameter of 9 mm, and an angle of incidence of 120°. As is clear from the table, when the viscosity is low, molding is possible, but when the viscosity increases, molding becomes difficult, and around 2 kpoise is the upper limit of the moldable range. However, (Example 2) A molding experiment was conducted under the same experimental conditions as in Example 1 to form a flat magnet having a cross-sectional shape of 20 mm in width and 1.5 mm in thickness. The results are the same as the experimental results in Table 1, and the viscosity is 2kpoi
When the temperature was higher than se, the compound was not filled into the edge portion and molding could not be performed.
(実施例3)
第2表に磁石粉末の充填量を変えてコンパウンドを作成
したときの粘度及び成形性を示す。使用磁石粉末はNd
−Fe−B光磁石粉末であり、樹脂には熱硬化性のエポ
キシ樹脂を使用した。成形した形状は実施例1で成形し
た磁石と同じ寸法のアーク状磁石であった。(Example 3) Table 2 shows the viscosity and moldability of compounds prepared by changing the filling amount of magnet powder. The magnet powder used is Nd.
-Fe-B photomagnetic powder, and thermosetting epoxy resin was used as the resin. The molded shape was an arc-shaped magnet with the same dimensions as the magnet molded in Example 1.
この時は室温では固形であり、120から1500Cで
熱可塑領域を持ち、180から200°Cで硬化するエ
ポキシ樹脂であった。添加剤としてはステアリン酸塩等
の可塑剤を使用した。At this time, the epoxy resin was solid at room temperature, had a thermoplastic range at 120 to 1500°C, and hardened at 180 to 200°C. A plasticizer such as stearate was used as an additive.
第2表
注1.粘度の単位 kpoise at 140℃
2、 ○・ 可、 △: 難、 ×: 不可表から明ら
かなように磁粉の含有率が高くなるにつれて粘度は増加
し、含有率が80vo1%以上になると添加剤を加えて
も粘度は2kp○ise以下にならず、成形もできなか
った。磁粉の充填率が80v○1%の時には成形は困難
であったが可能であった。充填率が40vo1%以下の
時には成形は充分に可能であったが成形磁石の磁気性能
は3MGOe以下であり、高性能な希土類磁石粉末を使
用する効果が得られなかった。Table 2 Note 1. Unit of viscosity kpoise at 140℃
2. ○・ Acceptable, △: Difficult, ×: Impossible As is clear from the table, the viscosity increases as the content of magnetic powder increases, and when the content exceeds 80vo1%, the viscosity remains 2kp○ even when additives are added. It did not fall below the ISE and could not be molded. When the filling rate of magnetic powder was 80v○1%, molding was difficult but possible. When the filling rate was 40vo1% or less, molding was sufficiently possible, but the magnetic performance of the molded magnet was 3MGOe or less, and the effect of using high-performance rare earth magnet powder could not be obtained.
(実施例4)
実施例1と同様の実験条件で断面形状で幅20mm、厚
さ1.5mmの平板状磁石の成形実験を行った。その結
果は第2表の実験結果と同じであり、磁石の充填率が8
0vo1%より多くなると粘度が2kpoise以上と
なり、成形を行ったときにはエツジ部にコンパウンドが
充填せず、成形を行うことはできなかった。(Example 4) Under the same experimental conditions as in Example 1, a flat magnet having a cross-sectional shape of 20 mm in width and 1.5 mm in thickness was molded. The results are the same as the experimental results in Table 2, and the filling factor of the magnet is 8.
When the amount exceeds 0vo1%, the viscosity becomes 2 kpoise or more, and when molding was performed, the compound did not fill the edge portions and molding could not be performed.
[発明の効果]
以上述べたように本発明の希土類樹脂結合型磁石の製造
方法により、希土類樹脂結合型磁石をより簡略な工程で
提供することが可能となり、磁石の製造コストも低減さ
せることが可能となる。また、これまで成形を行うこと
が困難であったアク形状や平板形状を高性能に成形する
ことが可能となる。[Effects of the Invention] As described above, the method for manufacturing a rare earth resin-bonded magnet of the present invention makes it possible to provide a rare earth resin-bonded magnet through a simpler process, and also reduces the manufacturing cost of the magnet. It becomes possible. Furthermore, it becomes possible to form square shapes and flat plate shapes with high performance, which have been difficult to mold up to now.
この製造方法による磁石はステッピングモータ、DCモ
ータ、センサー マグロール等に広く利用できる。Magnets produced by this manufacturing method can be widely used in stepping motors, DC motors, sensor mag rolls, etc.
4、4,
第1図は本発明の希土類樹脂結合型磁石の製造工程を示
す図。
以上FIG. 1 is a diagram showing the manufacturing process of the rare earth resin bonded magnet of the present invention. that's all
Claims (3)
)からなる希土類樹脂結合型磁石の製造方法において希
土類磁石粉末と樹脂及び添加剤の混合物の粘度ηが樹脂
成分が液状となる温度範囲に於て、 η≦2kpoise (せん断速度1000sec^−^1) であり、これをアーク形状もしくは平板状に押出成形す
ることを特徴とする希土類樹脂結合型磁石の製造方法。(1) In the manufacturing method of a rare earth resin bonded magnet consisting of rare earth magnet powder, resin, and additives (including inorganic substances), the viscosity η of the mixture of rare earth magnet powder, resin, and additives falls within the temperature range where the resin component becomes liquid. A method for manufacturing a rare earth resin bonded magnet, wherein η≦2kpoise (shear rate 1000sec^-^1) and extrusion molding into an arc shape or a flat plate shape.
体とする遷移金属元素からなる磁石粉末であり、その含
有率が体積比で40から80%である請求項1記載の希
土類樹脂結合型磁石の製造方法。(2) The rare earth resin bonded magnet according to claim 1, wherein the rare earth magnet powder is a magnet powder consisting of a rare earth element and a transition metal element mainly consisting of cobalt, and the content thereof is 40 to 80% by volume. Production method.
る遷移金属元素及びほう素からなる磁石粉末であり、そ
の含有率が体積比で40から80%である請求項1記載
の希土類樹脂結合型磁石の製造方法。(3) The rare earth resin bond according to claim 1, wherein the rare earth magnet powder is a magnet powder consisting of a rare earth element, a transition metal element mainly composed of iron, and boron, and the content thereof is 40 to 80% by volume. Method for manufacturing type magnets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257647A JPH04134807A (en) | 1990-09-27 | 1990-09-27 | Manufacture of rare earth-resin bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257647A JPH04134807A (en) | 1990-09-27 | 1990-09-27 | Manufacture of rare earth-resin bonded magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04134807A true JPH04134807A (en) | 1992-05-08 |
Family
ID=17309154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2257647A Pending JPH04134807A (en) | 1990-09-27 | 1990-09-27 | Manufacture of rare earth-resin bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04134807A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651402A1 (en) * | 1992-05-12 | 1995-05-03 | Seiko Epson Corporation | Rare earth bond magnet, composition therefor, and method of manufacturing the same |
WO1998003981A1 (en) * | 1996-07-23 | 1998-01-29 | Seiko Epson Corporation | Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal |
US8279036B2 (en) | 2009-09-29 | 2012-10-02 | Murata Manufacturing Co., Ltd. | Multilayer coil device |
US8427270B2 (en) | 2007-07-30 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Chip-type coil component |
WO2014029047A1 (en) * | 2012-08-20 | 2014-02-27 | 南通万宝实业有限公司 | Anisotropic nd-fe-b composite magnetic stripe, manufacturing method therefor, and device using same |
-
1990
- 1990-09-27 JP JP2257647A patent/JPH04134807A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651402A1 (en) * | 1992-05-12 | 1995-05-03 | Seiko Epson Corporation | Rare earth bond magnet, composition therefor, and method of manufacturing the same |
EP0651402A4 (en) * | 1992-05-12 | 1995-10-18 | Seiko Epson Corp | Rare earth bond magnet, composition therefor, and method of manufacturing the same. |
WO1998003981A1 (en) * | 1996-07-23 | 1998-01-29 | Seiko Epson Corporation | Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal |
US8427270B2 (en) | 2007-07-30 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Chip-type coil component |
US20130214891A1 (en) * | 2007-07-30 | 2013-08-22 | Murata Manufacturing Co., Ltd. | Chip-type coil component |
TWI425620B (en) * | 2007-07-30 | 2014-02-01 | Murata Manufacturing Co | Coil chip |
US9019058B2 (en) * | 2007-07-30 | 2015-04-28 | Murata Manufacturing Co., Ltd. | Chip-type coil component |
US8279036B2 (en) | 2009-09-29 | 2012-10-02 | Murata Manufacturing Co., Ltd. | Multilayer coil device |
WO2014029047A1 (en) * | 2012-08-20 | 2014-02-27 | 南通万宝实业有限公司 | Anisotropic nd-fe-b composite magnetic stripe, manufacturing method therefor, and device using same |
CN103624261A (en) * | 2012-08-20 | 2014-03-12 | 南通万宝实业有限公司 | Anisotropic NdFeB composite magnetic stripe, manufacturing method thereof, external-rotor motor, external-rotor electric generator, variable frequency ceiling fan motor and hub type electric generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100435610B1 (en) | METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET | |
US5464670A (en) | Resin bound magnet and its production process | |
EP0772211B1 (en) | Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet | |
DE68922911T2 (en) | Process for the production of resin-bonded magnetic objects. | |
JP3189956B2 (en) | Rare earth bonded magnet composition, rare earth bonded magnet, and method for producing rare earth bonded magnet | |
KR20010024183A (en) | Composition for bonded rare-earth permanent magnet, bonded rare-earth permanent magnet and method for manufacturing bonded rare-earth permanent magnet | |
JPH04134807A (en) | Manufacture of rare earth-resin bonded magnet | |
JPH05315174A (en) | Rare earth/resin-bound type magnet and manufacture thereof | |
JPH04324914A (en) | Manufacture of rare earth permanent magnet | |
JPS61184804A (en) | Manufacture of bond magnet | |
JPH09260170A (en) | Manufacture of rare earth bond magnet and composition for rare earth bond magnet | |
CN1225774C (en) | Method for manufacturing molded resin piece having surface distributed metal | |
JPH1012472A (en) | Manufacture of rare-earth bond magnet | |
JPH0418710A (en) | Manufacture of rare-earth resin coupled type magnet | |
JPH04257203A (en) | Plastic magnet composite | |
CN1595555A (en) | A rare-earth bonded magnet and method for manufacturing same | |
JPH09129427A (en) | Rare earth bond magnet, composite for rare earth bond magnet and manufacture of rare earth bond magnet | |
JPH0555017A (en) | Manufacture of rare-earth resin-bonded magnet | |
JP3686586B2 (en) | Rare earth bonded magnet composition and rare earth bonded magnet | |
JPH02297912A (en) | Manufacture of anisotropic resin bond magnet | |
JPH02254701A (en) | Rare-earth magnet and manufacture thereof | |
JPH08273959A (en) | Method for manufacturing rare earth resin coupling type magnet | |
JPH03274712A (en) | Manufacture of rare earth resin bonded magnet | |
JPH04324918A (en) | Manufacture of resin-bonded type magnet | |
JP3729908B2 (en) | Rare earth bonded magnet manufacturing method |