JPH0418710A - Manufacture of rare-earth resin coupled type magnet - Google Patents

Manufacture of rare-earth resin coupled type magnet

Info

Publication number
JPH0418710A
JPH0418710A JP2122578A JP12257890A JPH0418710A JP H0418710 A JPH0418710 A JP H0418710A JP 2122578 A JP2122578 A JP 2122578A JP 12257890 A JP12257890 A JP 12257890A JP H0418710 A JPH0418710 A JP H0418710A
Authority
JP
Japan
Prior art keywords
magnet
resin
rare earth
mold
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2122578A
Other languages
Japanese (ja)
Inventor
Takeshi Ikuma
健 井熊
Masaaki Sakata
正昭 坂田
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2122578A priority Critical patent/JPH0418710A/en
Publication of JPH0418710A publication Critical patent/JPH0418710A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily obtain a magnet having excellent heat-proof property excellent chemical-resisting property and high dimensional accuracy by a method wherein the mixed molten substance consisting of rare-earth magnet powder, resin and an addition agent is shaped, thermosetting resin is hardened by heat, the final shape of a magnet is maintained, and it is extrusion-molded. CONSTITUTION:The magnetic powder consisting of the transition metal element mainly composed of R and cobalt or the magnetic powder, consisting of a transition metal element mainly composed of R and iron and boron, is used as rare-earth magnet powder. This rare-earth magnet powder, thermosetting resin and an adding agent are mixed by a roll mill, an extruding machine and the like, this compound is crushed and put in an extrusion molding machine. The compound is iron heated up in the extrusion machine, resin is brought into a molten state and sent to a mold which is connected to the extrusion machine. The compound is shaped into the final form in the mold, it is hardened by heating, and a magnet molded body is pushed out from the mold. Then, postcuring is conducted, and a rare-earth resin coupled type magnet is formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は希土類樹脂結合型磁石の製造方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for manufacturing a rare earth resin bonded magnet.

[従来の技術] 樹脂結合型磁石の成形方法としては以下に示したような
成形方法が挙げられる。
[Prior Art] Examples of molding methods for resin-bonded magnets include the following molding methods.

1、圧縮成形法 2、射出成形法 圧縮成形法は磁石粉末と熱硬化性樹脂からなる磁石組成
物をプレスの金型中に充填し、これに圧力を加えて圧縮
して成形し、その後、加熱して樹脂を硬化させて成形す
る方法である。この時、磁石組成物中の磁性粉末量は9
5wt%以上含まれる。
1. Compression molding method 2. Injection molding method In the compression molding method, a magnet composition consisting of magnet powder and thermosetting resin is filled into a press mold, compressed and molded by applying pressure, and then, This is a method of molding by heating and curing the resin. At this time, the amount of magnetic powder in the magnet composition was 9
Contains 5wt% or more.

この圧縮成形法は」1記のように他の成形方法に比べ磁
石組成物中の樹脂成分量が少ないため、成形された磁石
の磁気性能は高いが、磁石の形状に対する自由度は小さ
い。
This compression molding method has a lower amount of resin component in the magnet composition than other molding methods as described in 1. Although the magnetic performance of the molded magnet is high, the degree of freedom regarding the shape of the magnet is small.

射出成形法は磁石粉末と熱可塑性樹脂からなる磁石組成
物を加熱溶融し、十分な流動性をもたせた状態で金型内
に注入して所定の形状に成形する方法である。射出成形
法は磁石組成物に流動性をもたせるために磁石組成物中
の樹脂成分量が圧縮成形に比べて多く、磁石組成物中の
磁石粉末量は90〜95wt%程度となるために磁石成
形体の磁気性能は低下する。しかし、形状の自由度は圧
縮成形法に比べ大きい。
The injection molding method is a method in which a magnet composition made of magnet powder and a thermoplastic resin is heated and melted, and injected into a mold with sufficient fluidity to be molded into a predetermined shape. In the injection molding method, in order to give fluidity to the magnet composition, the amount of resin component in the magnet composition is larger than that in compression molding, and the amount of magnet powder in the magnet composition is about 90 to 95 wt%, so magnet molding is difficult. The magnetic performance of the body decreases. However, the degree of freedom in shape is greater than in compression molding.

[発明が解決しようとする課題] しかしながら、上記の製造方法には以下に示すような課
題を有している。
[Problems to be Solved by the Invention] However, the above manufacturing method has the following problems.

第一に、圧縮成形法、射出成形法ともに成形工程が磁石
組成物の金型への充填、成形、成形品の取り出しという
一定のサイクルがあり、基本的にバッチ式生産システム
であるため、その生産性には限界がある。また、最近需
要が増えている寸法の長い磁石の成形に対しても原料の
充填や成形品の取り出しが困難であることや成形磁石の
磁気性能が低下する等の理由から、成形品の長さには限
界がある。
First, the molding process for both compression molding and injection molding involves a fixed cycle of filling a mold with a magnetic composition, molding, and removing the molded product, and is basically a batch-type production system. There are limits to productivity. In addition, when molding long magnets, which have been in increasing demand recently, it is difficult to fill the raw materials and take out the molded product, and the magnetic performance of the molded magnet deteriorates. has its limits.

そこで、これらの問題を解決する手段として押出成形法
が挙げられる。押出成形法は磁石粉末を樹脂と混練した
後に押出機で金型内に送り込み金型内で賦形して成形す
る方法である。この方法の場合には生産工程が連続的で
あるため、生産性が良く、また長さに関しては任意に成
形可能である。
Therefore, an extrusion molding method can be cited as a means to solve these problems. The extrusion molding method is a method in which magnet powder is kneaded with resin, then fed into a mold using an extruder, and shaped and molded within the mold. In the case of this method, since the production process is continuous, productivity is high, and the length can be formed arbitrarily.

この様に従来の圧縮成形や射出成形には無い利点を押出
成形は有している。しかしながら、この押出成形法も以
下の課題を有している。
In this way, extrusion molding has advantages that conventional compression molding and injection molding do not have. However, this extrusion molding method also has the following problems.

すなわち、押出成形に使用される樹脂としては熱可塑性
樹脂、熱硬化性樹脂の両者が挙げられる。
That is, resins used for extrusion molding include both thermoplastic resins and thermosetting resins.

しかし、熱可塑性樹脂は一般に耐熱性が悪く、高温での
使用には不適である。また、最近、熱可塑性樹脂でもか
なり耐熱性の向上したものも上申されているがこれらの
樹脂の場合には成形性が悪く、成形温度が高くなるため
、成形中に磁石粉末が劣化し、成形磁石の磁気特性が劣
化するという問題点がある。一方、熱硬化性樹脂を使用
した場合には成形磁石の耐熱性は良好であり、また耐薬
品性にも優れている。この樹脂を使用して成形する方法
としては金型内で賦形した後に冷却固化して押出成形し
た後にキユアリングを施すという方法がある。しかし、
この方法の場合には押出成形後、キユアリングの工程が
加わるため、生産性が低下し、またコストも上昇する。
However, thermoplastic resins generally have poor heat resistance and are unsuitable for use at high temperatures. In addition, recently, some thermoplastic resins with significantly improved heat resistance have been reported, but these resins have poor moldability and the molding temperature is high, which causes the magnet powder to deteriorate during molding, resulting in poor molding. There is a problem that the magnetic properties of the magnet deteriorate. On the other hand, when a thermosetting resin is used, the molded magnet has good heat resistance and is also excellent in chemical resistance. As a method for molding using this resin, there is a method in which the resin is shaped in a mold, cooled and solidified, extruded, and then cured. but,
In this method, a curing step is added after extrusion molding, which reduces productivity and increases costs.

さらに寸法精度を向上させるためには例えば、特開平1
−169911のような方法が必要となる。さらに、上
記のような熱可塑性樹脂を使用した場合や熱硬化性樹脂
を使用して冷却固化して成形する方法の場合は金型の寸
法と成形磁石の寸法が収縮等により必ずしも一致しない
ため正確な寸法で成形することが困難である。
In order to further improve dimensional accuracy, for example,
A method like -169911 is required. Furthermore, when using thermoplastic resins or thermosetting resins as described above, which are molded by cooling and solidifying, the dimensions of the mold and the dimensions of the molded magnet do not necessarily match due to shrinkage, etc., so accuracy cannot be guaranteed. It is difficult to mold to a certain size.

そこで本発明はこのような課題を解決するもので、その
目的とするところは、従来の成形技術では成形が困難で
あった長尺の磁石を提供するところにある。また、他の
目的としては成形工程を簡略にし、これによってコスト
を低減させるところにある。さらに他の目的としては耐
熱性、耐薬品性が良好でかつ成形中での磁石粉末の劣化
を抑えた高性能な磁石を提供するところにある。さらに
他の目的としては寸法精度の高い磁石を容易に提供する
ところにある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a long magnet that is difficult to mold using conventional molding techniques. Another purpose is to simplify the molding process and thereby reduce costs. Another object of the present invention is to provide a high-performance magnet that has good heat resistance and chemical resistance, and suppresses deterioration of the magnet powder during molding. Another purpose is to easily provide a magnet with high dimensional accuracy.

[課題を解決するための手段] 本発明の希土類樹脂結合型磁石の製造方法は希土類磁石
粉末と熱硬化性樹脂および添加剤(無機物を含む)から
なる希土類樹脂結合型磁石の製造方法において、金型内
で希土類磁石粉末と樹脂および添加剤の混合溶融物を賦
形し、かつ熱硬化性樹脂を加熱硬化して磁石の最終形状
を維持し、押出成形することを特徴とする特 また、上記製造方法において、成形された磁石の最大肉
厚と最小肉厚の差△tが成形磁石の平均肉厚tに対して
、 0≦Δt≦0.5t であることを特徴とする。
[Means for Solving the Problems] The method for producing a rare earth resin-bonded magnet of the present invention is a method for producing a rare-earth resin-bonded magnet made of rare earth magnet powder, a thermosetting resin, and additives (including inorganic substances). The above-mentioned method is characterized in that a mixed melt of rare earth magnet powder, resin, and additives is shaped in a mold, and the thermosetting resin is heated and cured to maintain the final shape of the magnet, and then extrusion molded. The manufacturing method is characterized in that the difference Δt between the maximum wall thickness and the minimum wall thickness of the molded magnet is 0≦Δt≦0.5t with respect to the average wall thickness t of the formed magnet.

また、上記希土類磁石粉末がRとコバルトを主体とする
遷移金属元素からなる磁石粉末である。
Further, the above-mentioned rare earth magnet powder is a magnet powder made of a transition metal element mainly consisting of R and cobalt.

さらに、上記希土類磁石粉末がRと鉄を主体とする遷移
金属元素およびほう素からなる磁石粉末である。
Further, the rare earth magnet powder is a magnet powder made of R, a transition metal element mainly composed of iron, and boron.

[作用] 本発明の構成によれば、希土類磁石粉末と樹脂からなる
希土類樹脂結合型磁石の成形方法として押出成形法を用
いることにより、従来の圧縮成形法や射出成形法では成
形が困難である形状が成形可能となる。すなわち、磁石
成形体の長尺化が可能どなる。押出成形法の場合、希土
類磁石粉末と樹脂からなる混合溶融物を金型内で連続的
に絞り込む方法であり、従来の成形法では基本的にバッ
チ処理であるために従来の成形方法は磁石成形体の長さ
は金型の形状pこ依存し、従って成形体の長さには制限
があるのに対し、押出成形法では金型から連続的に成形
されるため磁石成形体の長さは任意に成形される。
[Function] According to the configuration of the present invention, by using extrusion molding as a molding method for a rare earth resin-bonded magnet made of rare earth magnet powder and resin, molding is difficult using conventional compression molding or injection molding methods. The shape can be molded. That is, it becomes possible to lengthen the magnet molded body. In the case of extrusion molding, a mixed melt consisting of rare earth magnet powder and resin is continuously squeezed in a mold, and since conventional molding methods are basically batch processing, conventional molding methods are magnetic molding. The length of the magnetic body depends on the shape of the mold, so there is a limit to the length of the molded body, whereas in extrusion molding, the length of the magnetic molded body is limited because it is continuously molded from the mold. Shaped arbitrarily.

押出成形法として、金型内で成形磁石の最終形状に賦形
し、加熱硬化して成形を行うことにより、熱硬化性樹脂
を使用して冷却固化成形を行う場合には寸法を維持しな
がらのキユアリング工程が必要になるがこの工程も寸法
の維持を行う必要がなくなる。これらのことから従来の
成形方法に比べ製造方法が前略化され、これによってコ
ストを低減させることができる。また、熱可塑性樹脂を
使用して、冷却固化成形をする場合や熱硬化性樹脂を使
用して冷却固化成形をする場合には冷却固化は基本的に
物理的な変化による形状の維持を図るため金型から出た
時点で応力緩和等による寸法の変化が生じ、金型の寸法
と成形磁石の寸法が異なるが、本発明の方法では金型内
で加熱硬化させ、樹脂を三孜元架橋させる化学的変化を
ともなう成形を行うため金型から押し出された後の寸法
変化はほとんど無いため、はぼ金型の寸法通りの成形が
可能となる。
As an extrusion molding method, the final shape of the molded magnet is formed in a mold, and the molding is performed by heating and curing.When cooling and solidifying molding using a thermosetting resin, it is possible to maintain the dimensions. A curing process is required, but this process also eliminates the need to maintain dimensions. For these reasons, the manufacturing method can be simplified compared to conventional molding methods, thereby reducing costs. In addition, when using thermoplastic resin to perform cooling solidification molding, or when using thermosetting resin to perform cooling solidification molding, cooling solidification is basically a method to maintain the shape through physical changes. Dimensional changes occur due to stress relaxation etc. when the magnet comes out of the mold, and the dimensions of the mold and the dimensions of the molded magnet differ, but in the method of the present invention, the resin is cured by heating within the mold and the resin is cross-linked. Because molding involves chemical changes, there is almost no dimensional change after extrusion from the mold, so it is possible to mold the product to the exact dimensions of the mold.

樹脂として、熱硬化性樹脂を採用することにより、熱可
塑性樹脂を使用することに比べ、耐熱性、耐薬品性が向
上する。
By employing a thermosetting resin as the resin, heat resistance and chemical resistance are improved compared to using a thermoplastic resin.

ここで、成形磁石の最大肉厚と最小肉厚の差Δtが成形
磁石の平均肉厚tに対して 0≦Δt≦0.5t としたのは、本発明の製造方法は金型内で三吹元架橋す
るという化学的な不可逆変化を伴う方法であるため押出
成形の金型のプロファイル上では均一に化学変化が行わ
れる必要がある。もし、化学変化が不均一になると磁石
粉末と樹脂の混合溶融物の流れに偏向が生じ、成形する
ことが不可能になる。したがって、この均一性を確保す
るために上記のような規定が必要となる。すなわち、成
形磁石の平均肉厚に対して最大肉厚と最小肉厚の差が半
分以上になると磁石中の樹脂は熱伝導率が低いために磁
石表面と内部に温度差が生じるため温度分布が不均一と
なり、このため、架橋反応にも不均一さが生じる。これ
によって、磁石を成形することが困難になる。肉厚規定
の下限については上記のような理由から肉厚差が少ない
ほど成形条件の均一性が増すことから最小値は肉厚差が
0となるときである。
Here, the difference Δt between the maximum wall thickness and the minimum wall thickness of the molded magnet is set to 0≦Δt≦0.5t with respect to the average wall thickness t of the molded magnet. Since this is a method that involves irreversible chemical changes such as crosslinking at the blowing point, it is necessary that the chemical changes occur uniformly on the profile of the extrusion mold. If the chemical changes become non-uniform, the flow of the mixed melt of magnet powder and resin will be deflected, making it impossible to mold it. Therefore, the above regulations are required to ensure this uniformity. In other words, if the difference between the maximum thickness and the minimum thickness is more than half of the average thickness of the molded magnet, the resin in the magnet has low thermal conductivity, causing a temperature difference between the surface and the inside of the magnet, resulting in a change in temperature distribution. This results in non-uniformity in the crosslinking reaction. This makes it difficult to mold the magnet. As for the lower limit of the wall thickness specification, for the reason mentioned above, the smaller the wall thickness difference, the more uniform the molding conditions will be, so the minimum value is when the wall thickness difference is 0.

以下、実施例に従い詳細に説明を行う。Hereinafter, a detailed explanation will be given according to examples.

[実施例コ 第1図は本発明の希土類樹脂結合型磁石の製造工程を示
している。希土類磁性粉末と樹脂と添加剤を所望の混合
比に秤量した後にロールミル、押出機等の混合機で混合
し、コンパウンドを作成する。このコンパウンドを成形
機に投入しゃすい大きさに粉砕し、押出成形機に投入す
る。ここで使用した押出機は一軸のスクリュー式押出機
だった。
[Example 1] FIG. 1 shows the manufacturing process of the rare earth resin bonded magnet of the present invention. After weighing the rare earth magnetic powder, resin, and additives to a desired mixing ratio, they are mixed in a mixer such as a roll mill or extruder to create a compound. This compound is put into a molding machine and pulverized into a size that is easy to fit, and then put into an extrusion molding machine. The extruder used here was a single screw type extruder.

押出機中でコンパウンドは加熱され、樹脂が溶融状態と
なり、この状態で押出機に接続された金型に送り込まれ
る。金型中でコンパウンドは最終形状に賦形され、かつ
金型内で加熱硬化され、金型から磁石成形体がが押し出
される。この時、比較例として冷却固化成形を行ったと
きには金型先端部で冷却されて成形される。押し出され
た磁石は引き取られ、切断機によって切断される。この
後必要があればボストキユアリングを行い、希土類樹脂
結合型磁石を成形した。比較例として熱硬化性樹脂を冷
却固化したときには切断後、成形磁石の寸法を雑持しな
がらキユアリングをなった。また、磁場配向成形を行っ
た時には切断前に脱磁を行った。
The compound is heated in the extruder to melt the resin, which is then fed into a mold connected to the extruder. The compound is shaped into a final shape in the mold, heated and hardened in the mold, and a molded magnet is extruded from the mold. At this time, when cooling solidification molding was performed as a comparative example, the mold was cooled and molded at the tip of the mold. The extruded magnet is taken out and cut by a cutting machine. Thereafter, if necessary, boss curing was performed to form a rare earth resin bonded magnet. As a comparative example, when the thermosetting resin was cooled and solidified, the molded magnet was cured while keeping the dimensions of the molded magnet after cutting. Furthermore, when magnetic field orientation molding was performed, demagnetization was performed before cutting.

以下、更に詳細な実施例を示す。More detailed examples will be shown below.

(実施例1) 第1表に熱硬化性樹脂を使用して金型内で熱硬化成形及
び熱可塑成形を行ったときの結果を示す。
(Example 1) Table 1 shows the results of thermosetting molding and thermoplastic molding in a mold using a thermosetting resin.

この時使用した樹脂としては室温では固形であり、12
0から150’Cで熱可塑領域を持ち、180から20
0°Cで硬化するエポキシ樹脂を使用した。
The resin used at this time is solid at room temperature, and 12
Thermoplastic range from 0 to 150'C, 180 to 20
An epoxy resin that hardens at 0°C was used.

磁石粉末としてはSSm2T+7(TMはコバルトを主
体とする遷移金属)を使用し、磁石粉末と樹脂(添加剤
を含む)の混合比を体積比で60:40となるように秤
量した。成形した磁石の形状は金型の寸法で外径32.
80mm、内径30.80mmの円筒状磁石であり、ラ
ジアル配向磁石を成形した。
SSm2T+7 (TM is a transition metal mainly composed of cobalt) was used as the magnet powder, and the mixture ratio of the magnet powder and resin (including additives) was weighed to be 60:40 by volume. The shape of the molded magnet has an outer diameter of 32.
It was a cylindrical magnet with a diameter of 80 mm and an inner diameter of 30.80 mm, and was molded as a radially oriented magnet.

第1表 *;単位 MGOe 表中の成形法1及び2はそれぞれ本発明の加熱硬化成形
、比較例の冷却固化成形を表わしている。
Table 1*; Unit: MGOe Molding methods 1 and 2 in the table represent heat-curing molding of the present invention and cooling-hardening molding of the comparative example, respectively.

表から明らかなように本発明の成形方法で成形した磁石
は比較例で成形した磁石の性能に比べ性能が高い。これ
は比較例の場合、押出成形後、脱磁した後にキユアリン
グを行い、磁石を成形するが完全に脱磁をすることが困
難であるため、若干磁束が残り、この状態でキユアリン
グを行うため、残留磁束により磁場配向が乱れ、磁気性
能が劣化するためであると考えられる。また、成形後の
寸法についてみてみると本発明の成形方法の場合はほぼ
金型の寸法通りに成形を行うことが可能であるが比較例
の場合、押出後、応力緩和等の影響により収縮し、金型
寸法に比べ成形磁石の寸法は小さくなっている。このこ
とから本発明の方法の場合は磁石の正確な寸法に成形し
易く、また表値からもわかるように寸法精度高く成形す
ることが可能であることは明らかである。
As is clear from the table, the performance of the magnet molded by the molding method of the present invention is higher than that of the magnet molded by the comparative example. This is because in the case of the comparative example, curing is performed after extrusion molding and demagnetization to form the magnet, but it is difficult to completely demagnetize, so some magnetic flux remains, and curing is performed in this state. This is thought to be because the magnetic field orientation is disturbed by the residual magnetic flux, deteriorating the magnetic performance. In addition, looking at the dimensions after molding, in the case of the molding method of the present invention, it is possible to mold almost to the dimensions of the mold, but in the case of the comparative example, after extrusion, the mold shrinks due to stress relaxation, etc. , the dimensions of the molded magnet are smaller than the dimensions of the mold. From this, it is clear that in the case of the method of the present invention, it is easy to mold the magnet to accurate dimensions, and as can be seen from the table values, it is possible to mold with high dimensional accuracy.

(実施例2) 次に樹脂として熱硬化性樹脂を使用した時と熱可塑性樹
脂を使用したときの影響について調べた。
(Example 2) Next, the effects of using a thermosetting resin and a thermoplastic resin as the resin were investigated.

この結果を第2表に示す。この時使用した樹脂としては
熱硬化性樹脂としてはフェノール樹脂を使用し、熱可塑
性樹脂としてはナイロン12を使用した。磁石粉末には
Nd−Fe−B系急冷磁石粉末を使用し、磁石粉末と樹
脂(添加剤を含む)の混合比は体積比で66:  34
となるように秤量した。成形した磁石の形状は実施例1
と同様であり、等方性磁石を成形した。
The results are shown in Table 2. As the resins used at this time, a phenol resin was used as a thermosetting resin, and nylon 12 was used as a thermoplastic resin. Nd-Fe-B quenched magnet powder is used as the magnet powder, and the mixing ratio of magnet powder and resin (including additives) is 66:34 by volume.
It was weighed so that The shape of the molded magnet is as in Example 1.
This is similar to the above, and an isotropic magnet was formed.

第2表 *;単位 MGOe ここで表中の樹脂1及び2はそれぞれフェノール樹脂、
ナイロン12を表わしている。表より明らかなように熱
硬化性樹脂のフェノール樹脂を使用した時の方が熱可塑
性樹脂のナイロン12を使用した時よりも磁気性能が高
い。これは磁石の成形温度がフェノール樹脂の場合は1
60〜200°Cであるのに対し、ナイロン12の場合
は250〜280°Cと高いため、ナイロン12を使用
したときには成形中に磁石粉末が劣化したためであると
考えられる。また、寸法についてみるとナイロン12を
使用したときには押出後、収縮が起こるため、成形磁石
の寸法が小さくなっているが、フェノール樹脂を使用し
た場合には寸法変化はほとんどなく寸法精度良く成形す
ることが可能であった。
Table 2*; Unit: MGOe Here, resins 1 and 2 in the table are phenolic resins, respectively.
It represents nylon 12. As is clear from the table, magnetic performance is higher when phenolic resin, which is a thermosetting resin, is used than when nylon 12, which is a thermoplastic resin, is used. This is 1 if the molding temperature of the magnet is phenolic resin.
The temperature was 60 to 200°C, whereas the temperature for nylon 12 was as high as 250 to 280°C, which is thought to be due to deterioration of the magnet powder during molding when nylon 12 was used. In addition, when looking at dimensions, when nylon 12 is used, shrinkage occurs after extrusion, resulting in smaller dimensions of the molded magnet, but when phenolic resin is used, there is almost no dimensional change and molding can be performed with good dimensional accuracy. was possible.

(実施例3) 欧に種々の樹脂を使用して磁石を成形したときの磁石の
諸性質について示す。第3表は本実施例に使用した樹脂
を示している。
(Example 3) Various properties of magnets formed using various resins will be described. Table 3 shows the resins used in this example.

第3表 表値より、熱可塑性樹脂を使用するよりも熱硬化性樹脂
を使用した場合の方が耐薬品性、耐熱性が向上すること
は明かである。
From the values in Table 3, it is clear that the chemical resistance and heat resistance are better when a thermosetting resin is used than when a thermoplastic resin is used.

第四表 ここで樹脂Eは比較例として示した熱可塑性樹脂であり
、樹脂結合型磁石の射出成形で一般に使用されているも
のである。第4表に上記の樹脂を使用して磁石を成形し
たときの磁石の諸性質を示す。
Table 4 Here, resin E is a thermoplastic resin shown as a comparative example, and is generally used in injection molding of resin-bonded magnets. Table 4 shows the properties of magnets formed using the above resins.

(実施例4) 次に成形磁石の最大肉厚と最小肉厚との差△tと磁石の
平均肉厚tによる磁石の成形性について調べた。その結
果を第5表に示す。
(Example 4) Next, the moldability of the magnet was investigated based on the difference Δt between the maximum wall thickness and the minimum wall thickness of the molded magnet and the average wall thickness t of the magnet. The results are shown in Table 5.

ここで成形した磁石は磁石粉末にNd−Fe−B磁石粉
末を使用し、成形磁石は円弧の径が20mmのかわら状
磁石を成形した。また樹脂としてはエポキシ樹脂を使用
し、磁石粉末と樹脂の混合比は体積比で60:40とし
た。
The molded magnet used Nd-Fe-B magnet powder as the magnet powder, and the molded magnet was a straw-shaped magnet with an arc diameter of 20 mm. Epoxy resin was used as the resin, and the mixing ratio of magnet powder and resin was 60:40 by volume.

第5表 @○:成形成形へ:成形難、×:成形不可表より明らか
なように成形磁石の最大肉厚と最小肉厚の差△tが0.
5t(t−平均肉厚)以上の時には成形が困難かもしく
は成形不可と成形性が著しく低下する。これは肉厚差が
大きくなると磁石のプロファイル上での温度分布が不均
一となり、磁石粉末と樹脂の混合溶融物の流れに偏向が
生じるために成形性が低下したものと考えられる。表中
でΔtが0のとき、特にOとしたのは肉厚差が最も少な
いときが混合溶融物の流れが均一になり、従って架橋反
応も最も均一になるため成形性が非常に良好になるため
である。
Table 5 @ ○: For molding: Difficult to mold, ×: Unable to mold As is clear from the table, the difference △t between the maximum wall thickness and the minimum wall thickness of the molded magnet is 0.
When the thickness is more than 5t (t-average thickness), molding is difficult or impossible, and moldability is significantly reduced. This is thought to be because as the wall thickness difference increases, the temperature distribution on the magnet profile becomes non-uniform, causing a deflection in the flow of the mixed melt of magnet powder and resin, resulting in a decrease in moldability. In the table, when Δt is 0, O is selected because when the difference in wall thickness is the smallest, the flow of the mixed melt becomes uniform, and therefore the crosslinking reaction becomes the most uniform, resulting in very good moldability. It's for a reason.

[発明の効果] 以上述べたように本発明の希土類樹脂結合型磁石の製造
方法により、希土類樹脂結合型磁石をより簡略な工程で
提供することが可能となり、磁石の製造コストも低減さ
せることが可能となる。また、成形中の磁石の磁気特性
劣化を防ぎ、これによる高性能な磁石を提供することが
可能となる。
[Effects of the Invention] As described above, the method for manufacturing a rare earth resin-bonded magnet of the present invention makes it possible to provide a rare earth resin-bonded magnet through a simpler process, and also reduces the manufacturing cost of the magnet. It becomes possible. Furthermore, deterioration of the magnetic properties of the magnet during molding can be prevented, thereby making it possible to provide a high-performance magnet.

また、寸法精度の良好な磁石をより容易に提供すること
が可能となる。さらに、樹脂として熱可塑性樹脂を使用
することにより、耐薬品性、耐熱性の優れた磁石を製造
することが可能となる。また、従来の成形方法では成形
することが困難であった長尺磁石を成形することが可能
になり、このことから希土類樹脂結合磁石の応用分野を
さらに広げることが可能となる。この製造方法による磁
石はステッピングモータ、DCモータ、センサー マグ
ロール等に広く利用できる。
Moreover, it becomes possible to more easily provide a magnet with good dimensional accuracy. Furthermore, by using a thermoplastic resin as the resin, it is possible to manufacture a magnet with excellent chemical resistance and heat resistance. Furthermore, it becomes possible to mold elongated magnets, which were difficult to mold using conventional molding methods, and this makes it possible to further expand the field of application of rare earth resin bonded magnets. Magnets produced by this manufacturing method can be widely used in stepping motors, DC motors, sensor mag rolls, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の希土類樹脂結合型磁石の製造工程を示
す図。 以上
FIG. 1 is a diagram showing the manufacturing process of the rare earth resin bonded magnet of the present invention. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)希土類磁石粉末と熱硬化性樹脂および添加剤(無
機物を含む)からなる希土類樹脂結合型磁石の製造方法
において、金型内で希土類磁石粉末と樹脂および添加剤
の混合溶融物を賦形し、かつ熱硬化性樹脂を加熱硬化し
て磁石の最終形状を維持し、押出成形することを特徴と
する希土類樹脂結合型磁石の製造方法。
(1) In a method for manufacturing a rare earth resin-bonded magnet consisting of rare earth magnet powder, thermosetting resin, and additives (including inorganic substances), a mixed melt of rare earth magnet powder, resin, and additives is shaped in a mold. A method for producing a rare earth resin-bonded magnet, characterized in that the thermosetting resin is heated and cured to maintain the final shape of the magnet, and then extrusion molded.
(2)上記製造方法において、成形された磁石の最大肉
厚と最小肉厚の差Δtが成形磁石の平均肉厚tに対して
、 0≦Δt≦0.5t であることを特徴とする請求項1記載の希土類樹脂結合
型磁石の製造方法。
(2) In the above manufacturing method, a claim characterized in that the difference Δt between the maximum wall thickness and the minimum wall thickness of the molded magnet satisfies 0≦Δt≦0.5t with respect to the average wall thickness t of the formed magnet. Item 1. A method for producing a rare earth resin bonded magnet according to item 1.
(3)上記希土類磁石粉末が希土類元素(以下Rと表わ
す)とコバルトを主体とする遷移金属元素からなる磁石
粉末であることを特徴とする請求項1、2記載の希土類
樹脂結合型磁石の製造方法。
(3) Manufacturing the rare earth resin bonded magnet according to claim 1 or 2, wherein the rare earth magnet powder is a magnet powder made of a rare earth element (hereinafter referred to as R) and a transition metal element mainly consisting of cobalt. Method.
(4)上記希土類磁石粉末がRと鉄を主体とする遷移金
属元素およびほう素からなる磁石粉末であることを特徴
とする請求項1、2記載の希土類樹脂結合型磁石の製造
方法。
(4) The method for manufacturing a rare earth resin-bonded magnet according to claim 1 or 2, wherein the rare earth magnet powder is a magnet powder consisting of R, a transition metal element mainly composed of iron, and boron.
JP2122578A 1990-05-11 1990-05-11 Manufacture of rare-earth resin coupled type magnet Pending JPH0418710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2122578A JPH0418710A (en) 1990-05-11 1990-05-11 Manufacture of rare-earth resin coupled type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122578A JPH0418710A (en) 1990-05-11 1990-05-11 Manufacture of rare-earth resin coupled type magnet

Publications (1)

Publication Number Publication Date
JPH0418710A true JPH0418710A (en) 1992-01-22

Family

ID=14839380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122578A Pending JPH0418710A (en) 1990-05-11 1990-05-11 Manufacture of rare-earth resin coupled type magnet

Country Status (1)

Country Link
JP (1) JPH0418710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0865051A1 (en) * 1996-07-23 1998-09-16 Seiko Epson Corporation Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0865051A1 (en) * 1996-07-23 1998-09-16 Seiko Epson Corporation Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal
EP0865051A4 (en) * 1996-07-23 1999-10-06 Seiko Epson Corp Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal

Similar Documents

Publication Publication Date Title
KR100435610B1 (en) METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET
JP3189956B2 (en) Rare earth bonded magnet composition, rare earth bonded magnet, and method for producing rare earth bonded magnet
KR100238371B1 (en) Rare-earth bonded magnet, rare-earth bonded magnetic composition and method for manufacturing rare-earth bonded magnet
JPH0418710A (en) Manufacture of rare-earth resin coupled type magnet
JPH05315174A (en) Rare earth/resin-bound type magnet and manufacture thereof
JPH04134807A (en) Manufacture of rare earth-resin bonded magnet
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
CN1225774C (en) Method for manufacturing molded resin piece having surface distributed metal
JPH04324914A (en) Manufacture of rare earth permanent magnet
JPH06236807A (en) Resin-bonded magnet and its manufacture
JP3686586B2 (en) Rare earth bonded magnet composition and rare earth bonded magnet
JPH03274712A (en) Manufacture of rare earth resin bonded magnet
JPS62273708A (en) Manufacture of magnet roll
JPH033215A (en) Manufacture of resin coupling-type magnet
JPH01198002A (en) Heat-resistant plastic magnet and manufacture thereof
JPH04324918A (en) Manufacture of resin-bonded type magnet
JPH06302448A (en) Method and apparatus for manufacture of resin-bonded magnet
JPH05166656A (en) Manufacture of resin-bonded magnet
JPH02251111A (en) Manufacture of resin bonded type rare earth magnet
Sakata et al. Development of extrusion molded Nd-Fe-B magnets
JPH05166655A (en) Manufacture of resin-bonded magnet
JPH0226765B2 (en)
TH37708A (en) A method for producing a solder magnet made from rare earth elements.
TH17129B (en) A method for producing a solder magnet made from rare-earth elements
JPH07249538A (en) Extrusion molding method of bond magnet