JPH05166655A - Manufacture of resin-bonded magnet - Google Patents
Manufacture of resin-bonded magnetInfo
- Publication number
- JPH05166655A JPH05166655A JP3335249A JP33524991A JPH05166655A JP H05166655 A JPH05166655 A JP H05166655A JP 3335249 A JP3335249 A JP 3335249A JP 33524991 A JP33524991 A JP 33524991A JP H05166655 A JPH05166655 A JP H05166655A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- resin
- molding
- anisotropic
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0558—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は樹脂結合型磁石の製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a resin-bonded magnet.
【0002】[0002]
【従来の技術】従来の樹脂結合型異方性磁石の成形方法
の中で、押出機を用いたものとしては以下に示したよう
な成形方法が挙げられる。一つはペレット状の磁石組成
物をスクリュー押出機あるいはラム押出機に給材して溶
融物とし所定の形状に絞り込みながら金型先端部で配向
させて成形する方法である。もう一つはブロック形状に
異方化させて仮成形した磁石組成物をラム押出機に給材
し半溶融状態として所定の形状に絞り込みながら再び金
型先端部で配向させて成形する方法である。これらの方
法はいずれも磁石を最終形状に成形する際に配向磁場を
加えることによって磁石粉末を配向させて異方性磁石と
するものである。この押出成形法は圧縮成形法、射出成
形法など他の成形法と異なり連続成形式の生産システム
であるため、生産性に優れている。また薄肉、長尺とい
った形状の磁石を製造することが可能である。2. Description of the Related Art Among conventional molding methods for resin-bonded anisotropic magnets, the following molding method is used as a method using an extruder. One is a method in which a pellet-shaped magnet composition is fed to a screw extruder or a ram extruder to form a melt, which is then oriented at the tip of a mold while being narrowed down to a predetermined shape and then molded. The other is a method in which a magnet composition which is anisotropically formed into a block shape and is temporarily formed is fed to a ram extruder, and the semi-molten state is narrowed down to a predetermined shape and oriented again at the tip of the die to form a shape. .. In all of these methods, an anisotropic magnetic field is obtained by orienting magnet powder by applying an orienting magnetic field when the magnet is molded into a final shape. Unlike the other molding methods such as the compression molding method and the injection molding method, this extrusion molding method is a continuous molding type production system and therefore has excellent productivity. Moreover, it is possible to manufacture a magnet having a thin shape, a long shape, and the like.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記の製
造方法は以下に示す問題点を有する。すなわち成形する
際に磁石組成物を配向させる場合には配向のための設備
が必要となり、しかも成形品形状や寸法によっては磁気
回路の機構は複雑となる。とくに多数個取りを行なう様
な場合では十分な配向磁場を得ることさえ困難となる。
また磁石組成物を製造する際に混練工程を伴うような場
合には熱的影響が大きくなるため磁石粉末の熱劣化が避
けられない。また溶融温度が高い有機物樹脂と熱的な影
響を受けやすい磁石粉末とを用いて磁石を製造した場
合、製造過程で磁石粉末の熱的劣化が生じるため成形し
た磁石の磁気性能は低下する。However, the above manufacturing method has the following problems. That is, when orienting the magnet composition during molding, equipment for orienting is required, and the mechanism of the magnetic circuit becomes complicated depending on the shape and size of the molded product. In particular, in the case of taking a large number of pieces, it is difficult to obtain a sufficient orientation magnetic field.
Further, when a kneading step is involved in the production of the magnet composition, the thermal influence becomes large, and thus the thermal deterioration of the magnet powder cannot be avoided. Further, when a magnet is manufactured using an organic resin having a high melting temperature and magnet powder which is easily affected by heat, the magnet powder is thermally deteriorated during the manufacturing process, so that the magnetic performance of the molded magnet is deteriorated.
【0004】そこで本発明はこのような課題を解決する
もので、その目的とするところは、簡略化した製造方法
で磁気性能の低下を抑えた異方性の樹脂結合型磁石を提
供することにある。The present invention solves such a problem, and an object thereof is to provide an anisotropic resin-bonded magnet which suppresses deterioration of magnetic performance by a simplified manufacturing method. is there.
【0005】[0005]
【課題を解決するための手段】本発明の樹脂結合型磁石
の製造方法は、希土類磁石粉末を有機物樹脂により結合
した樹脂結合型磁石の製造方法において、希土類金属と
コバルトを主体とする遷移金属からなる磁石粉末と熱硬
化性樹脂の混合物を磁場中で配向させて温間圧縮成形法
により仮成形した後、さらにラム押出機を用いて成形を
行なって異方性磁石とする事を特徴とする。A method for producing a resin-bonded magnet according to the present invention is a method for producing a resin-bonded magnet in which rare earth magnet powder is bound by an organic resin, wherein a transition metal mainly composed of a rare earth metal and cobalt is used. An anisotropic magnet is obtained by orienting a mixture of magnet powder and thermosetting resin in a magnetic field, preforming by warm compression molding, and further molding by using a ram extruder. ..
【0006】[0006]
【作用】本発明の上記製造方法によれば、希土類金属と
コバルトを主体とする遷移金属からなる磁石粉末と熱硬
化性樹脂の混合物を磁場中で配向させて温間圧縮成形法
によって仮成形する方法を用いることにより、異方化さ
せた仮成形ブロックが得られる。この製造方法は単純な
加圧機構であるため、配向のための磁気回路は簡単な構
成となり、磁石組成物の配向も容易に行なうことができ
る。ここで熱硬化性樹脂は溶融温度が低いため、温間圧
縮成形で磁石粉末と樹脂とをバインドする工程や押出成
形工程を低温プロセスで行なうことができるため磁石粉
末が受ける熱的影響は少ない。さらに磁石粉末として S
m-Co系を用いることにより熱的にも安定で、かつ耐熱性
の高い磁石を製造することができる。上記のごとく異方
化させた磁石組成物をラム押出機に給材し半溶融状態と
して押し出しを行なうことにより仮成形した磁石組成物
の異方性を保ったまま押出成形が成され異方性磁石を得
ることが可能となり、特にかわら形状のような複雑な形
状の磁石で複数個取りを行なう場合でも、あらかじめ配
向させたものを分割して押出成形するだけなので、性能
ばらつきが少なくある程度の異方性を有した磁石を製造
することが可能となる。(ここで半溶融状態とは栓流に
より仮成形した磁石組成物が押し出される状態のことを
言う。)従って押出成形する際に磁気回路によって配向
させる過程を省略してもある程度の異方性を有した磁石
を性能ばらつきなく、しかも簡略化した製造方法で実現
することが可能となる。According to the above-mentioned manufacturing method of the present invention, a mixture of a magnet powder composed of a transition metal mainly composed of a rare earth metal and cobalt and a thermosetting resin is oriented in a magnetic field and temporarily molded by a warm compression molding method. By using the method, the anisotropically formed block is obtained. Since this manufacturing method is a simple pressing mechanism, the magnetic circuit for orientation has a simple structure, and the orientation of the magnet composition can be easily performed. Here, since the thermosetting resin has a low melting temperature, the step of binding the magnet powder and the resin by warm compression molding and the extrusion molding step can be carried out in a low temperature process, so that the thermal effect on the magnet powder is small. Furthermore, as magnet powder, S
By using the m-Co system, a magnet that is thermally stable and has high heat resistance can be manufactured. The anisotropically magnetized composition is fed into a ram extruder and extruded in a semi-molten state to extrude the magnetized composition while maintaining the anisotropy of the magnetized composition. It is possible to obtain magnets, and even when multiple magnets with a complicated shape such as straw shape are taken, it is only divided into extruded pieces that are oriented in advance, so there is little variation in performance and there is some variation. It is possible to manufacture a magnet having directionality. (Here, the semi-molten state refers to a state in which the magnet composition that has been temporarily molded is extruded by a plug flow.) Therefore, even if the process of orienting by a magnetic circuit is omitted during extrusion molding, some anisotropy will occur. It is possible to realize the possessed magnet with a simplified manufacturing method without variation in performance.
【0007】[0007]
【実施例】本発明に使用する磁石粉末は基本組成を希土
類金属とコバルトを主体とする遷移金属からなる磁石粉
末である。また熱硬化性樹脂としてはフェノール、エポ
キシ、ポリイミド等がある。これら磁石粉末と熱硬化性
樹脂の混合物を磁場中で配向させて温間圧縮成形法によ
りブロック形状に仮成形する。次にこのブロック形状の
磁石組成物をラム押出機に給材し半溶融状態として押出
しを行いかわら形状の異方性磁石を成形する。EXAMPLES The magnet powder used in the present invention is a magnet powder having a basic composition of a rare earth metal and a transition metal mainly containing cobalt. The thermosetting resin may be phenol, epoxy, polyimide or the like. A mixture of these magnet powders and a thermosetting resin is oriented in a magnetic field and temporarily molded into a block shape by a warm compression molding method. Next, this block-shaped magnet composition is fed to a ram extruder and extruded in a semi-molten state to form a straw-shaped anisotropic magnet.
【0008】以下、更に詳細な実施例を示す。A more detailed embodiment will be described below.
【0009】(実施例1)組成が Sm(Co0.672Cu0.080Fe0.22Zr0.028)8.35 となるような磁石粉末とフェノール樹脂とを磁石粉末60
vol%、樹脂40 vol%となるように秤量し、この混合物
を金型に充填し金型温度を 100℃に保ちフェノール樹脂
が溶融した状態とする。その後15kOe の配向磁場をかけ
て温間圧縮成形を行い異方化させたブロック形状の磁石
組成物に仮成形する。成形圧力は1.5t/cm2である。次に
このブロック形状の磁石組成物を押出成形機に給材し金
型温度を 180℃としてラム押出成形により半溶融状態の
ブロックの異方性を保ったまま押出しを行う。成形は 1
個取り及び 6個の多数個取りを行なった。押出圧力は50
kg/cm2である。成形された磁石は中心角115° 、肉厚1.
2mm 、外径5mm のかわら形状磁石である。(Example 1) A magnet powder and a phenol resin having a composition of Sm (Co 0.672 Cu 0.080 Fe 0.22 Zr 0.028 ) 8.35 were mixed with the magnet powder 60.
Weigh the mixture so that it is 40% by volume of the resin and 40% by volume of the resin. Then, a 15 kOe orienting magnetic field is applied to perform warm compression molding to temporarily form an anisotropic block-shaped magnet composition. The molding pressure is 1.5 t / cm 2 . Next, this block-shaped magnet composition is fed to an extrusion molding machine and extruded by ram extrusion molding while maintaining the anisotropy of the semi-molten block by ram extrusion molding. Molding 1
A single piece and a large number of six pieces were taken. Extrusion pressure is 50
It is kg / cm 2 . The molded magnet has a central angle of 115 ° and a wall thickness of 1.
It is a straw-shaped magnet with an outer diameter of 2 mm and an outer diameter of 5 mm.
【0010】比較例として、上記の異方化させたブロッ
ク形状の磁石組成物をラム押出機に給材し、金型温度を
180℃としてラム押出成形により半溶融状態のブロック
の異方性を保ったまま押出し、さらに成形時に磁気回路
を用いて15kOe の配向磁場を加えることにより再配向さ
せて成形を行なった。成形は同様に 1個取り及び 6個の
多数個取りを行なった。磁石形状については同じとし
た。As a comparative example, the above-mentioned anisotropic block-shaped magnet composition was fed to a ram extruder and the mold temperature was changed.
It was extruded by ram extrusion molding while maintaining the anisotropy of the semi-molten block at 180 ° C, and was further re-oriented by applying an orientation magnetic field of 15 kOe using a magnetic circuit at the time of shaping to perform shaping. As for molding, 1 piece and 6 pieces were taken in the same way. The magnet shapes were the same.
【0011】表1は 1個取り及び 6個の多数個取りを行
なった場合の異方性磁石の性能と配向のための設備の簡
易性を示したものである。Table 1 shows the performance of anisotropic magnets and the facility of equipment for orientation when a single piece and a large number of six pieces are taken.
【0012】[0012]
【表1】 [Table 1]
【0013】表1から明らかなように本発明に用いた工
程によれば、最終形状に成形する際に配向させていない
ので性能的には従来の方法と比べて劣るが、その分配向
のための機構は簡略化でき、特に 6個の多数個取りを行
なった場合には従来の製造方法で成形した磁石の性能に
近い値が得られている。比較とした従来の製造方法によ
る異方性磁石では金型の配向部の形状の影響により磁束
の流れを一方向に均一に制御する事が難しく、特に多数
個取りを行なった場合は十分に配向磁場を得ることも困
難であり、各々の異方性磁石の性能は低下しばらつきも
生じる。この様に、本発明の製造方法を用いることによ
り、多数個取りの成形を行なう場合従来の製造方法によ
る異方性磁石と同程度の性能でしかも位置によるばらつ
きの少ない異方性押出磁石を簡略化した製造方法で実現
することができる。As is clear from Table 1, according to the steps used in the present invention, since the orientation is not performed at the time of molding into the final shape, the performance is inferior to that of the conventional method, but due to the orientation, The mechanism can be simplified, and in particular, when a large number of 6 pieces are taken, a value close to the performance of the magnet formed by the conventional manufacturing method is obtained. It is difficult to control the flow of the magnetic flux uniformly in one direction due to the influence of the shape of the orientation part of the mold with anisotropic magnets by the conventional manufacturing method used for comparison. It is also difficult to obtain a magnetic field, and the performance of each anisotropic magnet deteriorates and variations occur. As described above, by using the manufacturing method of the present invention, when performing multi-cavity molding, it is possible to simplify an anisotropic extruded magnet that has the same level of performance as the anisotropic magnet manufactured by the conventional manufacturing method and has little variation in position. It can be realized by a simplified manufacturing method.
【0014】(実施例2)組成が Sm(Co0.672Cu0.080Fe0.22Zr0.028)8.35 となるような磁石粉末とフェノール樹脂とを磁石粉末60
vol%、樹脂40 vol%となるように秤量し、この混合物
を金型に充填し金型温度を 100℃に保ちフェノール樹脂
が溶融した状態とする。その後15kOe の配向磁場をかけ
て温間圧縮成形を行い異方化させたブロック形状の磁石
組成物に仮成形する。成形圧力は1.5t/cm2である。比較
例として、熱可塑性のポリアミド樹脂を用いて同様の成
形を行なった。成形温度はポリアミド樹脂が溶融状態と
なる 180℃とした。また別の比較例として組成が Nd14(Fe0.95Co0.05)80.5B5.5 となるような磁石粉末とフェノール樹脂あるいはポリア
ミド樹脂とを磁石粉末60vol%、樹脂40 vol%となるよ
うに秤量し、この混合物を用いて同様の成形を行なっ
た。成形温度は各々樹脂に依存する温度であり、上記条
件と同じである。次にこれらのブロック形状の磁石組成
物をラム押出機に給材し金型温度をフェノール樹脂を用
いた磁石組成物で 180℃、ポリアミド樹脂を用いた磁石
組成物で 200℃として半溶融状態のブロックの異方性を
保ったまま押出しを行う。押出圧力は50kg/cm2である。
成形された磁石は中心角115° 、肉厚1.2mm 、外径5mm
のかわら形状磁石であり、 6個の多数個取りを行なっ
た。(Example 2) A magnet powder and a phenol resin having a composition of Sm (Co 0.672 Cu 0.080 Fe 0.22 Zr 0.028 ) 8.35 were used as the magnet powder 60.
Weigh the mixture so that it is 40% by volume of the resin and 40% by volume of the resin. Then, a 15 kOe orienting magnetic field is applied to perform warm compression molding to temporarily form an anisotropic block-shaped magnet composition. The molding pressure is 1.5 t / cm 2 . As a comparative example, the same molding was performed using a thermoplastic polyamide resin. The molding temperature was 180 ° C at which the polyamide resin was in a molten state. As another comparative example, a magnet powder having a composition of Nd 14 (Fe 0.95 Co 0.05 ) 80.5 B 5.5 and a phenol resin or a polyamide resin were weighed so that the magnet powder was 60 vol% and the resin was 40 vol%. Similar molding was performed using the mixture. The molding temperature is a temperature that depends on each resin and is the same as the above conditions. Next, these block-shaped magnet compositions were fed to a ram extruder, and the mold temperature was 180 ° C. for the magnet composition using the phenol resin, and 200 ° C. for the magnet composition using the polyamide resin to obtain a semi-molten state. Extrusion is performed while maintaining the block anisotropy. The extrusion pressure is 50 kg / cm 2 .
The molded magnet has a central angle of 115 °, a wall thickness of 1.2 mm, and an outer diameter of 5 mm.
This is a straw-shaped magnet, and 6 pieces were taken.
【0015】表2は各磁石の成形過程における磁気性能
の熱的劣化を示したものである。Table 2 shows the thermal deterioration of the magnetic performance during the molding process of each magnet.
【0016】[0016]
【表2】 [Table 2]
【0017】磁気性能の熱的劣化は成形した磁石の保磁
力 (iHc)pmと磁石粉末の保磁力(iHc)mとの比で表わし
た。表2から明らかなように本発明の Sm-Co系磁石粉末
と熱硬化性樹脂を用いて製造した異方性押出磁石は成形
過程における磁気性能の熱的劣化をほとんど生じない。
比較に用いた熱可塑性樹脂を用いた押出成形磁石は成形
過程が高温となるため熱的影響により磁気性能の劣化を
生じる。また Nd-Fe-B系磁石粉末を用いた押出成形磁石
は磁石粉末自体が熱的影響を受けやすいことから、磁気
性能の劣化を生じる。この様に、本発明の製造方法によ
り磁気性能の劣化を抑えた異方性押出磁石を製造するこ
とができる。The thermal deterioration of the magnetic performance was expressed by the ratio of the coercive force (iHc) pm of the molded magnet and the coercive force (iHc) m of the magnet powder. As is clear from Table 2, the anisotropic extruded magnet produced by using the Sm-Co based magnet powder of the present invention and the thermosetting resin hardly causes thermal deterioration of the magnetic performance in the molding process.
The extruded magnet using the thermoplastic resin used for comparison has a high temperature in the molding process, so that the magnetic performance is deteriorated due to thermal influence. In addition, extruded magnets using Nd-Fe-B system magnet powder are susceptible to thermal effects on the magnet powder itself, resulting in deterioration of magnetic performance. As described above, the anisotropic extruded magnet with suppressed deterioration of magnetic performance can be manufactured by the manufacturing method of the present invention.
【0018】[0018]
【発明の効果】以上述べたように本発明の製造方法を用
いることにより、簡略化した製造方法で磁気性能の低下
を抑えた異方性の樹脂結合型磁石を製造することができ
る。これらは、小型精密でかつ高性能が要求されるステ
ッピングモータ、DCモータ、センサー等に広く利用で
きる。As described above, by using the manufacturing method of the present invention, it is possible to manufacture an anisotropic resin-bonded magnet in which deterioration of magnetic performance is suppressed by a simplified manufacturing method. These can be widely used for stepping motors, DC motors, sensors, etc., which are required to be small and precise and have high performance.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 7/02 B 7135−5E (72)発明者 坂田 正昭 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 池田 俊男 神奈川県相模原市東大沼1−20−8 (72)発明者 南条 尚志 神奈川県相模原市東林間1−9−24 (72)発明者 一条 俊宏 神奈川県相模原市相模大野5−25−19ゆり ハイツ101号 (72)発明者 池尻 広隆 神奈川県相模原市大野台4−13−30─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number in the agency FI Technical indication location H01F 7/02 B 7135-5E (72) Inventor Masaaki Sakata 3-3-5 Yamato, Suwa City, Nagano Prefecture No. Seiko Epson Co., Ltd. (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa City, Nagano Prefecture No. 3 Seiko Epson Co., Ltd. (72) Inventor Toshio Ikeda 1-20-8 Higashionuma, Sagamihara City, Kanagawa Prefecture (72) Invention Person Naoshi Nanjo 1-9-24 Higashibayashi Sagamihara City, Kanagawa Prefecture (72) Inventor Toshihiro Ichijo 5-25-19 Sagami Ohno Sagamihara City, Kanagawa Prefecture Yuri Heights 101 (72) Inventor Hirotaka Ikejiri 4-13 Ohnodai, Sagamihara City, Kanagawa Prefecture −30
Claims (1)
した樹脂結合型磁石の製造方法において、希土類金属と
コバルトを主体とする遷移金属からなる磁石粉末と熱硬
化性樹脂の混合物を磁場中で配向させて温間圧縮成形法
により仮成形した後、さらにラム押出機を用いて成形を
行なって異方性磁石とする事を特徴とする樹脂結合型磁
石の製造方法。1. A method for producing a resin-bonded magnet in which rare earth magnet powder is bonded by an organic resin, wherein a mixture of magnet powder made of a transition metal mainly containing rare earth metal and cobalt and a thermosetting resin is oriented in a magnetic field. A method for producing a resin-bonded magnet, comprising temporarily forming by a warm compression molding method, and then forming the anisotropic magnet by using a ram extruder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335249A JPH05166655A (en) | 1991-12-18 | 1991-12-18 | Manufacture of resin-bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3335249A JPH05166655A (en) | 1991-12-18 | 1991-12-18 | Manufacture of resin-bonded magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05166655A true JPH05166655A (en) | 1993-07-02 |
Family
ID=18286410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3335249A Pending JPH05166655A (en) | 1991-12-18 | 1991-12-18 | Manufacture of resin-bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05166655A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2314799A (en) * | 1996-07-04 | 1998-01-14 | Aichi Steel Works Ltd | Production of anisotropic resin-bonded magnets |
CN103421339A (en) * | 2012-05-17 | 2013-12-04 | 铃木株式会社 | Resin molded body and method of manufacturing same |
WO2014065188A1 (en) * | 2012-10-23 | 2014-05-01 | トヨタ自動車株式会社 | Rare-earth-magnet production method |
-
1991
- 1991-12-18 JP JP3335249A patent/JPH05166655A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2314799A (en) * | 1996-07-04 | 1998-01-14 | Aichi Steel Works Ltd | Production of anisotropic resin-bonded magnets |
GB2314799B (en) * | 1996-07-04 | 1998-08-12 | Aichi Steel Works Ltd | Production method for anisotropic resin-bonded magnets |
US5886070A (en) * | 1996-07-04 | 1999-03-23 | Aichi Steel Works, Ltd. | Production method for anisotropic resin-bonded magnets |
CN103421339A (en) * | 2012-05-17 | 2013-12-04 | 铃木株式会社 | Resin molded body and method of manufacturing same |
WO2014065188A1 (en) * | 2012-10-23 | 2014-05-01 | トヨタ自動車株式会社 | Rare-earth-magnet production method |
JP2014103386A (en) * | 2012-10-23 | 2014-06-05 | Toyota Motor Corp | Manufacturing method of rare-earth magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1061162C (en) | Hot-pressed magnets formed from anisotropic powders | |
US5464670A (en) | Resin bound magnet and its production process | |
US5091022A (en) | Manufacturing process for sintered fe-p alloy product having soft magnetic characteristics | |
JPH0257662A (en) | Rapidly cooled thin strip alloy for bond magnet | |
CN103782352A (en) | R-T-B rare earth magnet powder, method of producing R-T-B rare earth magnet powder and bond magnet | |
US5733580A (en) | Dies for extrusion moulding | |
JPH05166655A (en) | Manufacture of resin-bonded magnet | |
US6605162B2 (en) | Anisotropic magnet and process of producing the same | |
JPH0569907B2 (en) | ||
JP6596061B2 (en) | Rare earth permanent magnet material and manufacturing method thereof | |
JP3391704B2 (en) | Rare earth magnet | |
JPH05166656A (en) | Manufacture of resin-bonded magnet | |
JPH09148166A (en) | Manufacture of resin-bonded magnet | |
JPH0555017A (en) | Manufacture of rare-earth resin-bonded magnet | |
JP2920638B2 (en) | Method for manufacturing resin-bonded magnet | |
JPH0845719A (en) | Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof | |
JPH04134807A (en) | Manufacture of rare earth-resin bonded magnet | |
JPS60224757A (en) | Permanent magnet alloy | |
JPH0620818A (en) | Rare earth cobalt magnet | |
JP2573865B2 (en) | Manufacturing method of permanent magnet | |
JP3182979B2 (en) | Anisotropic magnet, manufacturing method and manufacturing apparatus | |
JP3212307B2 (en) | Rare earth bonded magnet alloy | |
JPH0256904A (en) | Manufacture of resin-bound rare-earth magnet | |
JPS6211213A (en) | Manufacture of resin-bonded type permanent magnet | |
JPH0626162B2 (en) | Method for manufacturing C-type anisotropic resin bonded magnet |