JPH04324914A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH04324914A
JPH04324914A JP3095676A JP9567691A JPH04324914A JP H04324914 A JPH04324914 A JP H04324914A JP 3095676 A JP3095676 A JP 3095676A JP 9567691 A JP9567691 A JP 9567691A JP H04324914 A JPH04324914 A JP H04324914A
Authority
JP
Japan
Prior art keywords
rare earth
molding
magnet
resin
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095676A
Other languages
Japanese (ja)
Inventor
Takeshi Ikuma
健 井熊
Masaaki Sakata
正昭 坂田
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3095676A priority Critical patent/JPH04324914A/en
Publication of JPH04324914A publication Critical patent/JPH04324914A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To manufacture a highly efficient rare-earth/resin bonded type magnet at low cost and with good productive efficiency. CONSTITUTION:When a rare earth/resin bonding type magnet is extrusion-- molded, the molding operation is conducted at the extrusion pressure of 200kg/cm<2> or higher at the junction part between the cylinder part of an extrusion-molding machine and the metal mold. Also, a ram type extruding machine is adopted as the extrusion machine in the above-mentioned manufacturing method. As a result, a highly efficient rare-earth/resin bonded type magnet can be manufactured at low cost and with good productive efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は希土類樹脂結合型磁石の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing rare earth resin bonded magnets.

【0002】0002

【従来の技術】樹脂結合型磁石の成形方法としては以下
に示したような成形方法が挙げられる。
2. Description of the Related Art Examples of methods for molding resin bonded magnets include the following molding methods.

【0003】1.圧縮成形法 2.射出成形法 圧縮成形法は磁石粉末と熱硬化性樹脂からなる磁石組成
物をプレスの金型中に充填し、これに圧力を加えて圧縮
して成形し、その後、加熱して樹脂を硬化させて成形す
る方法である。この時、磁石組成物中の磁性粉末量は9
5wt%以上含まれる。この圧縮成形法は上記のように
他の成形方法に比べ磁石組成物中の樹脂成分量が少ない
ため、成形された磁石の磁気性能は高いが、磁石の形状
に対する自由度は小さい。
[0003]1. Compression molding method 2. Injection molding method In the compression molding method, a magnetic composition consisting of magnet powder and thermosetting resin is filled into a press mold, compressed and molded by applying pressure, and then heated to harden the resin. This is a method of molding. At this time, the amount of magnetic powder in the magnet composition was 9
Contains 5wt% or more. As mentioned above, in this compression molding method, the amount of resin component in the magnet composition is smaller than in other molding methods, so although the magnetic performance of the molded magnet is high, the degree of freedom regarding the shape of the magnet is small.

【0004】射出成形法は磁石粉末と熱可塑性樹脂から
なる磁石組成物を加熱溶融し、十分な流動性をもたせた
状態で金型内に注入して所定の形状に成形する方法であ
る。射出成形法は磁石組成物に流動性をもたせるために
磁石組成物中の樹脂成分量が圧縮成形に比べて多く、磁
石組成物中の磁石粉末量は90〜95wt%程度となる
ために磁石成形体の磁気性能は低下する。しかし、形状
の自由度は圧縮成形法に比べ大きい。
[0004] The injection molding method is a method in which a magnet composition consisting of magnet powder and a thermoplastic resin is heated and melted, and injected into a mold with sufficient fluidity to be molded into a predetermined shape. In the injection molding method, in order to give fluidity to the magnet composition, the amount of resin component in the magnet composition is larger than that in compression molding, and the amount of magnet powder in the magnet composition is about 90 to 95 wt%, so magnet molding is difficult. The magnetic performance of the body decreases. However, the degree of freedom in shape is greater than in compression molding.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
製造方法には以下に示すような課題を有している。
However, the above manufacturing method has the following problems.

【0006】第一に、圧縮成形法、射出成形法ともに成
形工程が磁石組成物の金型への充填、成形、成形品の取
り出しという一定のサイクルがあり、基本的にバッチ式
生産システムであるため、その生産性には限界がある。 また、最近需要が増えている寸法の長い磁石の成形に対
しても原料の充填や成形品の取り出しが困難であること
や成形磁石の磁気性能が低下する等の理由から、成形品
の長さには限界がある。
First, both the compression molding method and the injection molding method involve a fixed cycle of filling a mold with a magnetic composition, molding, and removing the molded product, and are basically batch-type production systems. Therefore, its productivity is limited. In addition, when molding long magnets, which have been in increasing demand recently, it is difficult to fill the raw materials and take out the molded product, and the magnetic performance of the molded magnet deteriorates. has its limits.

【0007】また、圧縮成形法は形状自由度が低く、ア
−ク形状等の異形状の成形についてはプレス時の成形圧
力を均一に掛けることが困難であり、これによって磁石
成形体内での密度にばらつきが生じ、磁気性能にもばら
つきを生じるという問題点を有している。一方、射出成
形法の場合は形状自由度が高く、ア−ク形状の成形は可
能であるが、スプル−やランナ−が生じるためこれらの
再生利用(リサイクル)を行う必要があるが、希土類磁
石粉末特にR−Fe−B系磁石粉末は高温雰囲気で劣化
しやすいためリサイクル品を使用することで磁石の磁気
性能を低下させるという問題点を有する。
[0007] In addition, the compression molding method has a low degree of freedom in shape, and when molding irregular shapes such as arc shapes, it is difficult to apply molding pressure uniformly during pressing. There is a problem in that variations occur in the magnetic properties, and variations in magnetic performance also occur. On the other hand, in the case of injection molding, there is a high degree of freedom in shape, and arc-shaped molding is possible, but sprues and runners are produced, which must be reused (recycled). Powders, especially R-Fe-B magnet powders, are susceptible to deterioration in high-temperature atmospheres, so the use of recycled products has the problem of degrading the magnetic performance of the magnets.

【0008】そこで、これらの問題を解決する手段とし
て押出成形法が挙げられる。押出成形法は磁石粉末を樹
脂と混練し、この混練物(以後、磁石コンパウンドと称
す)を押出機中で加熱し、溶融状態としたところで金型
内に送り込み金型内で賦形して成形する方法である。こ
の方法の場合には生産工程が連続的であるため、生産性
が良く、また射出成形のようにスプル−やランナ−を生
じることが無いためリサイクル品は生じ難く従ってこれ
による磁気性能の低下は生じない。この様に従来の圧縮
成形や射出成形には無い利点を押出成形は有している。 しかしながら、この押出成形法も以下の課題を有してい
る。
[0008] Therefore, an extrusion molding method can be cited as a means to solve these problems. In the extrusion molding method, magnet powder is kneaded with resin, and this kneaded material (hereinafter referred to as magnet compound) is heated in an extruder, and when it is molten, it is fed into a mold and shaped and molded within the mold. This is the way to do it. In the case of this method, the production process is continuous, so productivity is high, and unlike injection molding, sprues and runners are not produced, so it is difficult to produce recycled products, so there is no deterioration in magnetic performance due to this. Does not occur. In this way, extrusion molding has advantages that conventional compression molding and injection molding do not have. However, this extrusion molding method also has the following problems.

【0009】前述したように押出成形は磁石コンパウン
ドを押出機中で溶融状態とし、これに応力を加えること
によって押出力とするが、溶融磁石コンパウンドは金属
粉末である磁石粉末を含んでいるため、流動性が悪い。 また、磁石粉末は流動時に金型壁面等との摩擦力を増大
させ、これによる流動性の低下が生じる。樹脂結合型磁
石は磁石粉末の充填量が高いほど磁気性能が高くなるこ
とから充填量は磁気性能面からは高い方が望ましい。し
かし、前述の流動性は磁粉の充填量が高いほど低下する
という問題点を有している。
As mentioned above, in extrusion molding, the magnetic compound is melted in an extruder and extrusion force is created by applying stress to it, but since the molten magnetic compound contains magnetic powder, which is metal powder, Poor liquidity. Furthermore, when the magnetic powder flows, it increases the frictional force with the mold wall surface, etc., and this causes a decrease in fluidity. In a resin-bonded magnet, the higher the amount of magnet powder packed, the higher the magnetic performance becomes. Therefore, from the viewpoint of magnetic performance, it is desirable that the amount of filling is higher. However, there is a problem in that the fluidity described above decreases as the filling amount of magnetic powder increases.

【0010】そこで本発明はこのような課題を解決する
もので、その目的とするところは、高性能な希土類樹脂
結合型磁石を低コストで生産性よく、提供するところに
ある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its object is to provide a high-performance rare earth resin bonded magnet at low cost and with good productivity.

【0011】[0011]

【課題を解決するための手段】本発明の希土類永久磁石
の製造方法は希土類磁石粉末と樹脂成分(無機添加物を
含む)からなる希土類樹脂結合型磁石の押出成形におい
て、押出機のシリンダ−部と金型の接合部における押出
圧力が200kg/cm2以上であることを特徴とする
[Means for Solving the Problems] The method for producing a rare earth permanent magnet of the present invention involves the extrusion molding of a rare earth resin bonded magnet consisting of rare earth magnet powder and a resin component (including inorganic additives). The extrusion pressure at the joint between the mold and the mold is 200 kg/cm2 or more.

【0012】また、上記製造方法において押出機にラム
式押出機を使用することを特徴とする。
[0012] Furthermore, the above production method is characterized in that a ram type extruder is used as the extruder.

【0013】また、上記希土類磁石粉末がR(RはYを
含む希土類元素)、Feを主体とする遷移金属元素、お
よびほう素を基本成分とする希土類磁石粉末である。
The rare earth magnet powder is a rare earth magnet powder whose basic components are R (R is a rare earth element containing Y), a transition metal element mainly composed of Fe, and boron.

【0014】もしくは上記希土類磁石粉末がRとCoを
主体とする遷移金属元素を基本成分とする希土類磁石粉
末である。
Alternatively, the rare earth magnet powder is a rare earth magnet powder whose basic components are transition metal elements mainly composed of R and Co.

【0015】[0015]

【作用】本発明の製造方法によれば、希土類磁石粉末と
樹脂からなる希土類樹脂結合型磁石の成形方法として押
出成形法を用いることにより、基本的にバッチ処理であ
る圧縮成形法や射出成形法等の従来製法に比べ、連続成
形が可能となり、これによって生産性が上がり、低コス
ト化を図ることが可能となる。
[Function] According to the manufacturing method of the present invention, extrusion molding is used as a molding method for rare earth resin-bonded magnets made of rare earth magnet powder and resin, and compression molding and injection molding, which are basically batch processes, can be used. Compared to conventional manufacturing methods such as the above, continuous molding is possible, which increases productivity and reduces costs.

【0016】押出機のシリンダ−部と金型の接合部にお
ける溶融磁石コンパウンドの押出圧力を200kg/c
m2以上としたのは希土類磁石粉末と樹脂成分からなる
磁石コンパウンドはコンパウンド中に金属粉末である磁
石粉末を含んでいるため溶融時のコンパウンドの粘度が
上昇し、流動性は低下する。樹脂結合型磁石の場合、一
般に磁石粉末の含有量が多いほど磁気性能は向上するこ
とから、高性能な磁石を製造するには磁粉の充填量を増
やす必要がある。磁石粉末の含有量が増えるにつれて溶
融磁石コンパウンドの粘度が上昇することから、高性能
な磁石を製造する場合には一層溶融磁石コンパウンドの
流動性は低下する。この流動性の低下を補うためには磁
石コンパウンドの成形時にかける機械的応力を増やし、
押出圧力を上昇させる必要がある。
[0016] The extrusion pressure of the molten magnetic compound at the joint between the cylinder part and the mold of the extruder was set to 200 kg/c.
The reason why the magnetic compound made of rare earth magnet powder and a resin component is set to be more than m2 is that since the compound contains magnetic powder which is a metal powder, the viscosity of the compound when melted increases and the fluidity decreases. In the case of resin-bonded magnets, the magnetic performance generally improves as the content of magnet powder increases, so it is necessary to increase the amount of magnetic powder packed in order to manufacture a high-performance magnet. Since the viscosity of the molten magnetic compound increases as the content of magnet powder increases, the fluidity of the molten magnetic compound becomes even lower when manufacturing high-performance magnets. In order to compensate for this decrease in fluidity, the mechanical stress applied during molding of the magnetic compound must be increased.
It is necessary to increase the extrusion pressure.

【0017】また、樹脂結合型磁石の場合、成形品のパ
ッキング密度を十分に高める必要があり、そのために成
形時に成形圧力を加える必要がある。このことからも成
形時に押出圧力が必要となる。
Furthermore, in the case of resin-bonded magnets, it is necessary to sufficiently increase the packing density of the molded product, and for this purpose it is necessary to apply molding pressure during molding. For this reason as well, extrusion pressure is required during molding.

【0018】この押出圧力の下限を200kg/cm2
としたのはこの圧力以下の場合、金型全面への流動が不
十分となり、所望の形状に賦形する事が困難となる。ま
た、賦形された際にも成形品の密度は低くなるため、成
形品の磁気性能が低下するためである。押出圧力の上限
については圧力が高いほど望ましく、これについては押
出機の仕様もしくは金型材の機械的強度によって制限さ
れる。
[0018] The lower limit of this extrusion pressure is 200 kg/cm2.
The reason for this is that if the pressure is lower than this, the flow to the entire surface of the mold will be insufficient, making it difficult to form into the desired shape. Furthermore, the density of the molded product becomes low even when it is shaped, so that the magnetic performance of the molded product decreases. As for the upper limit of the extrusion pressure, a higher pressure is more desirable, and this is limited by the specifications of the extruder or the mechanical strength of the mold material.

【0019】また、請求範囲の一つに押出機としてラム
式押出機を採用した。ラム式押出機はシリンダ−中に磁
石コンパウンドを投入し、プランジャ−の圧縮力によっ
て押出を行なう機械であるが、スクリュ−押出機に比べ
押出機自体がバッチ処理となるため生産性が低下すると
いう欠点を有するものの押出圧力についてはスクリュ−
式の上限が500kg/cm2程度であるのに対し、3
000kg/cm2以上は十分に掛けられることから成
形可能な範囲を広げることが可能であるという利点を有
するためである。
[0019] Also, in one of the claims, a ram type extruder is adopted as an extruder. A ram extruder is a machine that puts a magnetic compound into a cylinder and extrudes it using the compression force of a plunger, but compared to a screw extruder, the extruder itself performs batch processing, which reduces productivity. Although it has drawbacks, the extrusion pressure is
While the upper limit of the formula is about 500 kg/cm2,
This is because it has the advantage that it is possible to expand the moldable range since it can be applied sufficiently at a weight of 000 kg/cm2 or more.

【0020】使用する磁石粉末についてはR−Co系、
もしくはR−Fe−B系の希土類磁石粉末のどちらでも
よく、必要に応じて金型先端部に磁気回路を設置し、磁
場配向を行なう。
[0020] Regarding the magnet powder used, R-Co type,
Alternatively, it may be R-Fe-B rare earth magnet powder, and if necessary, a magnetic circuit is installed at the tip of the mold to perform magnetic field orientation.

【0021】使用する樹脂としては熱硬化性樹脂、熱可
塑性樹脂どちらも使用可能であり、例えば熱硬化性樹脂
ではエポキシ樹脂、フェノ−ル樹脂等があり、熱可塑性
樹脂としてはポリアミド樹脂、ポリフェニレンサルファ
イド樹脂(PPS)等が挙げられる。ここに挙げた樹脂
は一例であり、これは本発明を限定するものではない。 これらの樹脂をベ−スレジンとし、混合物の粘度を下げ
る際には必要に応じて平均分子量を下げるか可塑剤等の
添加剤を加える等の処理を行ってもよい。
[0021] As the resin to be used, both thermosetting resins and thermoplastic resins can be used. For example, thermosetting resins include epoxy resins and phenol resins, and thermoplastic resins include polyamide resins and polyphenylene sulfide. Examples include resin (PPS). The resins listed here are just examples and do not limit the invention. These resins may be used as base resins, and in order to lower the viscosity of the mixture, treatments such as lowering the average molecular weight or adding additives such as plasticizers may be performed as necessary.

【0022】以下、実施例に従い詳細に説明を行う。[0022] Hereinafter, a detailed explanation will be given according to examples.

【0023】[0023]

【実施例】図1は本発明の希土類樹脂結合型磁石の製造
工程を示している。希土類磁性粉末と樹脂と添加剤を所
望の混合比に秤量した後にロ−ルミル、押出機等の混合
機で混合し、コンパウンドを作成する。このコンパウン
ドを成形機に投入しやすい大きさに粉砕し、押出成形機
に投入する。ここで押出機には一軸のスクリュ−式押出
機もしくはラム式押出機を使用した。押出機中でコンパ
ウンドは加熱され、樹脂が溶融状態となり、この状態で
押出機に接続された金型に送り込まれる。金型中でコン
パウンドは最終形状に賦形され、金型から磁石成形体が
が押し出される。押し出された磁石は引き取られ、切断
機によって切断される。この後熱硬化性樹脂を使用した
場合にはキュアリングを行い、希土類樹脂結合型磁石を
成形した。また、磁場配向成形を行った時には切断前に
脱磁を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the manufacturing process of a rare earth resin bonded magnet according to the present invention. After weighing the rare earth magnetic powder, resin, and additives to a desired mixing ratio, they are mixed in a mixer such as a roll mill or extruder to create a compound. This compound is crushed into a size that can be easily fed into a molding machine, and then fed into an extrusion molding machine. Here, a single screw type extruder or a ram type extruder was used as the extruder. The compound is heated in the extruder to melt the resin, which is then fed into a mold connected to the extruder. The compound is shaped into the final shape in the mold, and the molded magnet is extruded from the mold. The extruded magnet is taken out and cut by a cutting machine. After this, when a thermosetting resin was used, curing was performed to form a rare earth resin bonded magnet. Furthermore, when magnetic field orientation molding was performed, demagnetization was performed before cutting.

【0024】以下、更に詳細な実施例を示す。More detailed examples will be shown below.

【0025】(実施例1)表1に磁石粉末の充填量を変
えたコンパウンドを各押出圧力で成形したときの成形の
可否を示す。ここで使用した磁石粉末はNd−Fe−B
系の急冷粉末であり、樹脂としては熱可塑性のポリアミ
ド樹脂(ナイロン12)を使用した。押出機としてはシ
リンダ−径40mmの1軸押出機を使用した。成形温度
はそれぞれのコンパウンドの最適成形温度で成形を行な
った。成形した形状は外径20mm、内径18mmのパ
イプ状磁石であった。
(Example 1) Table 1 shows the feasibility of molding when compounds containing different amounts of magnet powder were molded at various extrusion pressures. The magnet powder used here is Nd-Fe-B
The resin used was a thermoplastic polyamide resin (nylon 12). A single screw extruder with a cylinder diameter of 40 mm was used as the extruder. Molding was performed at the optimum molding temperature for each compound. The molded shape was a pipe-shaped magnet with an outer diameter of 20 mm and an inner diameter of 18 mm.

【0026】[0026]

【表1】[Table 1]

【0027】押出圧力が200kg/cm2未満のとき
には磁粉充填量が60vol%以下のときには成形を行
なうことは可能であるが60vol%以上のときには成
形を行なうことが出来なかった。また充填量が高くなる
と押出圧力を低くすると成形を行なうことが困難であっ
た。 表中で押出圧力600kg/cm2以上のときの結果が
示されていないのはここで使用したスクリュ−式押出機
の場合は600kg/cm2  の圧力を掛けることが
出来なかった為である。
When the extrusion pressure was less than 200 kg/cm 2 , it was possible to perform molding when the magnetic powder filling amount was 60 vol % or less, but it was not possible to perform molding when it was 60 vol % or more. Moreover, when the filling amount becomes high, it is difficult to perform molding when the extrusion pressure is lowered. The table does not show results for extrusion pressures of 600 kg/cm2 or more because the screw extruder used here could not apply a pressure of 600 kg/cm2.

【0028】また成形磁石の密度についてみてみると押
出圧力が200kg/cm2以上のときには理論密度の
97%以上の値が得られたのに対し、200kg/cm
2未満で成形したものについては理論密度の95%以下
の値しか得られなかった。
Furthermore, when looking at the density of the molded magnet, when the extrusion pressure was 200 kg/cm2 or more, a value of 97% or more of the theoretical density was obtained;
For those molded with less than 2, a value of 95% or less of the theoretical density was obtained.

【0029】(実施例2)次に実施例1と同様に表2に
磁石粉末の充填量を変えたコンパウンドを各押出圧力で
成形したときの成形の可否を示す。但し、ここで使用し
た磁石粉末はSm−Co系の磁石粉末であり、樹脂とし
ては熱硬化性のエポキシ樹脂を使用した。このエポキシ
樹脂は室温では固体の樹脂であり、100℃以上で粘度
が急激に低下する特性のものであり、硬化条件は200
℃で1時間であった。押出機としてはシリンダ−径30
mmのラム式押出機を使用した。成形温度はそれぞれの
コンパウンドの最適成形温度で行なった。成形した形状
は幅15mm、肉厚1mmの板状磁石であった。
(Example 2) Next, in the same way as in Example 1, Table 2 shows the feasibility of molding when compounds with different filling amounts of magnet powder were molded at various extrusion pressures. However, the magnet powder used here was an Sm-Co based magnet powder, and the resin used was a thermosetting epoxy resin. This epoxy resin is a solid resin at room temperature, and its viscosity decreases rapidly at temperatures above 100°C, and the curing conditions are 200°C and above.
℃ for 1 hour. As an extruder, the cylinder diameter is 30
A mm ram extruder was used. The molding temperature was set to the optimum molding temperature for each compound. The molded shape was a plate magnet with a width of 15 mm and a wall thickness of 1 mm.

【0030】[0030]

【表2】[Table 2]

【0031】実施例1と同様、押出圧力が200kg/
cm2未満のときには十分に成形を行なうことが出来ず
、また成形されたものについてもその密度は理論密度の
95%以下と十分な充填がなされなかった。一方、成形
圧力が200kg/cm2以上のときには理論密度の9
7%以上の成形ができ、十分な結果が得られた。ラム式
押出機を使用した場合にはスクリュ−押出機に比べ、押
出圧力をあげることが可能となり、これによってさらに
高性能な磁石を得ることが可能になった。
[0031] As in Example 1, the extrusion pressure was 200 kg/
When it was less than cm2, sufficient molding could not be carried out, and even when molded, the density was less than 95% of the theoretical density, and sufficient filling was not achieved. On the other hand, when the molding pressure is 200 kg/cm2 or more, the theoretical density is 9
Molding of 7% or more was achieved and satisfactory results were obtained. When a ram extruder is used, it is possible to increase the extrusion pressure compared to a screw extruder, which makes it possible to obtain magnets with even higher performance.

【0032】[0032]

【発明の効果】以上説明したように、本発明の希土類永
久磁石の製造方法を用いることにより、高性能な希土類
樹脂結合型磁石を生産性よく、低コストで提供すること
が可能となる。また、従来の成形方法では成形が困難で
あった長尺もしくは薄肉の磁石を提供することが可能と
なる。
As explained above, by using the method for producing a rare earth permanent magnet of the present invention, it is possible to provide a high performance rare earth resin bonded magnet with high productivity and at low cost. Furthermore, it is possible to provide long or thin magnets that are difficult to mold using conventional molding methods.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の希土類樹脂結合型磁石の製造工程を示
す図。
FIG. 1 is a diagram showing the manufacturing process of a rare earth resin bonded magnet of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  希土類磁石粉末と樹脂成分(無機添加
物を含む)からなる希土類樹脂結合型磁石の押出成形に
おいて、押出機のシリンダ−部と金型の接合部における
押出圧力が200kg/cm2以上であることを特徴と
する希土類永久磁石の製造方法。
Claim 1: In extrusion molding of a rare earth resin-bonded magnet made of rare earth magnet powder and a resin component (including inorganic additives), the extrusion pressure at the joint between the cylinder part of the extruder and the mold is 200 kg/cm2 or more. A method for producing a rare earth permanent magnet, characterized in that:
【請求項2】  上記製造方法において押出機にラム式
押出機を使用することを特徴とする請求項1記載の希土
類永久磁石の製造方法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein a ram extruder is used as the extruder.
【請求項3】  上記希土類磁石粉末がR(RはYを含
む希土類元素)、Feを主体とする遷移金属元素、およ
びほう素を基本成分とする希土類磁石粉末である請求項
1記載の希土類永久磁石の製造方法。
3. The rare earth permanent magnet powder according to claim 1, wherein the rare earth magnet powder is a rare earth magnet powder whose basic components are R (R is a rare earth element containing Y), a transition metal element mainly composed of Fe, and boron. How to manufacture magnets.
【請求項4】  上記希土類磁石粉末がRとCoを主体
とする遷移金属元素を基本成分とする希土類磁石粉末で
ある請求項1記載の希土類永久磁石の製造方法。
4. The method for producing a rare earth permanent magnet according to claim 1, wherein the rare earth magnet powder is a rare earth magnet powder whose basic component is a transition metal element mainly composed of R and Co.
JP3095676A 1991-04-25 1991-04-25 Manufacture of rare earth permanent magnet Pending JPH04324914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095676A JPH04324914A (en) 1991-04-25 1991-04-25 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095676A JPH04324914A (en) 1991-04-25 1991-04-25 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04324914A true JPH04324914A (en) 1992-11-13

Family

ID=14144108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095676A Pending JPH04324914A (en) 1991-04-25 1991-04-25 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH04324914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888417A (en) * 1995-10-18 1999-03-30 Seiko Epson Corporation Rare earth bonded magnet and composition therefor
US6143193A (en) * 1995-11-06 2000-11-07 Seiko Epson Corporation Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888417A (en) * 1995-10-18 1999-03-30 Seiko Epson Corporation Rare earth bonded magnet and composition therefor
US6143193A (en) * 1995-11-06 2000-11-07 Seiko Epson Corporation Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet

Similar Documents

Publication Publication Date Title
KR100435610B1 (en) METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET
EP0772211A1 (en) Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
CN103332936B (en) Method of preparing permanent magnetic ferrite radial rings by injection and extrusion moulding and sintering
TW341707B (en) Process for producing rare earth bond magnet
JPS585241A (en) Method of powder molding
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
JPH05315174A (en) Rare earth/resin-bound type magnet and manufacture thereof
JPH04324914A (en) Manufacture of rare earth permanent magnet
JPH04134807A (en) Manufacture of rare earth-resin bonded magnet
US5645787A (en) Process for producing semiconductor devices using resin tablets
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH0418710A (en) Manufacture of rare-earth resin coupled type magnet
JPH0555017A (en) Manufacture of rare-earth resin-bonded magnet
JPH03274712A (en) Manufacture of rare earth resin bonded magnet
CN1595555A (en) A rare-earth bonded magnet and method for manufacturing same
CN1449006A (en) Method for manufacturing molded resin piece having surface distributed metal
KR102487771B1 (en) Anisotropic bonded magnet and preparation method thereof
JPH04324918A (en) Manufacture of resin-bonded type magnet
JP3417633B2 (en) Extrusion molding method in a magnetic field and its molding machine
JP3112993B2 (en) Manufacturing method of composite material of nylon and ceramics
CN112679820A (en) Polyvinyl injection molding magnetic composite material for inductor and preparation method thereof
JPH04324917A (en) Manufacture of resin-bonded type magnet
JPH05166656A (en) Manufacture of resin-bonded magnet
JPH06302448A (en) Method and apparatus for manufacture of resin-bonded magnet
KR20240038557A (en) High-compactness bonded rare earth permanent magnet and preparation method thereof