JPH04257203A - Plastic magnet composite - Google Patents

Plastic magnet composite

Info

Publication number
JPH04257203A
JPH04257203A JP3039536A JP3953691A JPH04257203A JP H04257203 A JPH04257203 A JP H04257203A JP 3039536 A JP3039536 A JP 3039536A JP 3953691 A JP3953691 A JP 3953691A JP H04257203 A JPH04257203 A JP H04257203A
Authority
JP
Japan
Prior art keywords
magnetic powder
coupling agent
plastic magnet
thermal stability
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3039536A
Other languages
Japanese (ja)
Inventor
Hitoshi Tomita
斉 冨田
Yasuo Kishida
岸田 靖雄
Tetsuo Nishikawa
哲生 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3039536A priority Critical patent/JPH04257203A/en
Publication of JPH04257203A publication Critical patent/JPH04257203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To improve thermal stability and time-sequent melt fluidity by comprising a plastic magnet component containing a predetermined amount of Nd-Fe-B magnetic powder, lubricant, and 12 nylon, where the Nd-Fe-B magnetic powder is coated with an aluminum coupling agent and a titanate coupling agent. CONSTITUTION:It is essential that the blend rate of Nd-Fe-B magnetic powder is 90-95wt.% out of the whole weight of a plastic magnet composite. In case of a blend rate of less than 90wt.%, thermal stability becomes poor, and initial fluidity insufficient. It is necessary that the Nd-Fe-B magnetic powder is precoated with an aluminum coupling agent and a titanate coupling agent. This can provide a magnetic composite of high thermal stability and excellent time-sequent melt-fluidity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、モーター及び磁場発生
装置の部品などに好適に用いることができる高性能を示
す射出用プラスチック磁石組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic magnet composition for injection that exhibits high performance and can be suitably used for parts of motors and magnetic field generators.

【0002】0002

【従来の技術】近年、モーターや磁場発生装置の部品と
して、焼結磁石に代わって、12ナイロンを始めとする
ポリアミド系樹脂と強磁性粉末とを混合混練して得られ
た成形用材料を、射出成形法により成形したプラスチッ
ク磁石が用いられることが多くなった。この射出成形法
により得られたプラスチック磁石は、焼結磁石に比べ、
成形加工性,寸法安定性,機械的物性に優れており、ま
た、押出や圧縮成形法により得られるプラスチック磁石
に比べ、成形加工性が優れている。
[Prior Art] In recent years, molding materials obtained by mixing and kneading polyamide resins such as 12 nylon and ferromagnetic powder have been used as parts of motors and magnetic field generators in place of sintered magnets. Plastic magnets molded by injection molding are increasingly being used. Compared to sintered magnets, the plastic magnets obtained by this injection molding method are
It has excellent moldability, dimensional stability, and mechanical properties, and is also superior to plastic magnets obtained by extrusion or compression molding.

【0003】従来、磁性粉末としては、フェライト系の
磁性粉末が用いられてきたが、最近の磁石体の強力化,
小型・軽量化の要請から、当初のフェライト系に代わっ
てSm−Co系のような極めて優れた磁石性能を発揮す
る磁性粉末が使用されている。しかし、Smは、埋蔵量
が特に少ないことと、精製分離に多大の費用を要するこ
とにより、安定供給に問題がある。この様な背景下、S
m−Co系に比べ、より高磁気性能を有し、かつ資源的
にも豊富なNd−Fe−B系の磁性粉末が開発され、現
在、これを混合したプラスチック磁石が市場を拡大して
いる。
Conventionally, ferrite-based magnetic powder has been used as the magnetic powder, but recently the magnets have become stronger,
Due to the demand for smaller size and lighter weight, magnetic powders such as Sm-Co based which exhibit extremely excellent magnetic performance are being used in place of the original ferrite based powders. However, Sm has problems in stable supply because its reserves are particularly small and purification and separation requires a large amount of cost. Against this background, S.
Nd-Fe-B-based magnetic powder, which has higher magnetic performance than m-Co-based powder and is rich in resources, has been developed, and the market for plastic magnets made with this mixture is currently expanding. .

【0004】プラスチック磁石において、磁性粉末の充
填率は、磁気性能に大きく影響を与え、充填率が高けれ
ば磁気性能も高くなる。しかしながら、充填率を上げれ
ば、成形用材料の溶融流動性が不良となるため、射出成
形加工が困難となる。
[0004] In plastic magnets, the filling rate of magnetic powder has a large effect on magnetic performance, and the higher the filling rate, the higher the magnetic performance. However, if the filling rate is increased, the melt flowability of the molding material becomes poor, making injection molding difficult.

【0005】Nd−Fe−B系磁性粉末を90重量%以
上含む12ナイロンをベースとする成形用材料の場合、
少量の成形用材料でもシリンダーに残っている状態で成
形作業を中断すれば、シリンダー中に残っていた成形用
材料の溶融流動性は、時間と共に著しく低下し、数分後
には成形作業の再開が不可能となり、非常に熱安定性が
悪い。
[0005] In the case of a molding material based on nylon 12 containing 90% by weight or more of Nd-Fe-B magnetic powder,
If the molding operation is interrupted while even a small amount of molding material remains in the cylinder, the melt fluidity of the molding material remaining in the cylinder will decrease significantly over time, and the molding operation will be restarted after a few minutes. impossible, and the thermal stability is very poor.

【0006】また、Sm−Co系やNd−Fe−B系の
希土類元素を含む磁性粉末は高価なため、射出成形時に
廃棄物として生じるスプルー及びランナーを再び使用す
る、いわゆるリサイクルする必要がある。一般には、ス
プルー及びランナーを粉砕して、新しく混合された成形
用材料と適当な割合で混合して成形に供し、廃棄物とし
て生じたスプルー及びランナーを再び粉砕して成形に供
す方法が行われる。
[0006] Furthermore, since magnetic powders containing rare earth elements such as Sm--Co and Nd--Fe-- B are expensive, it is necessary to reuse sprues and runners produced as waste during injection molding, ie, recycling. Generally, sprue and runners are crushed, mixed with newly mixed molding material in an appropriate ratio and used for molding, and the sprue and runners generated as waste are crushed again and used for molding. .

【0007】しかしながら、上記Nd−Fe−B系磁性
粉末を90重量%以上含む12ナイロンをベースとする
成形用材料の場合、熱履歴を受けたリサイクル品の溶融
流動性は、熱安定性が不良のため、混合されたばかりの
成形用材料に比べ著しく劣り、成形不可能であった。
However, in the case of a molding material based on nylon 12 containing 90% by weight or more of Nd-Fe-B magnetic powder, the melt fluidity of the recycled product that has undergone thermal history is poor in thermal stability. Therefore, it was significantly inferior to the freshly mixed molding material and could not be molded.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みなされたものであって、その目的とするとこ
ろは、熱安定性が良好で、経時の溶融流動性に優れたプ
ラスチック磁石組成物を提供するにある。
[Problems to be Solved by the Invention] The present invention was made in view of the above circumstances, and its object is to provide a plastic magnet that has good thermal stability and excellent melt flowability over time. To provide a composition.

【0009】[0009]

【課題を解決するための手段】上記の目的は、Nd−F
e−B系磁性粉末90〜95重量%、滑剤及び12ナイ
ロンを含有するプラスチック磁石組成物であって、該N
d−Fe−B系磁性粉末がアルミニウム系カップリング
剤及びチタネート系カップリング剤で被覆されているこ
とを特徴とするプラスチック磁石組成物によって達成さ
れる。
[Means for solving the problem] The above purpose is to
A plastic magnet composition containing 90 to 95% by weight of e-B magnetic powder, a lubricant, and 12 nylon, the N
This is achieved by a plastic magnet composition characterized in that d-Fe-B magnetic powder is coated with an aluminum coupling agent and a titanate coupling agent.

【0010】すなわち、本発明者らは、Nd−Fe−B
系磁性粉末を、予めアルミニウム系カップリング剤とチ
タネート系カップリング剤とで被覆処理したものを使用
することにより、磁性粉末が90重量%以上の高充填組
成の場合でも、良好な熱安定性を有するプラスチック磁
石組成物が得られることを確認し、本発明を完成した。
[0010] That is, the present inventors discovered that Nd-Fe-B
By using a magnetic powder that has been coated with an aluminum coupling agent and a titanate coupling agent, good thermal stability can be achieved even when the magnetic powder has a highly filled composition of 90% by weight or more. The present invention was completed by confirming that a plastic magnet composition having the following properties could be obtained.

【0011】以下、本発明を詳細に説明する。まず、本
発明に使用するNd−Fe−B系磁性粉末は、ネオジム
・鉄・ホウ素の溶融合金から超急冷薄帯法で作られたも
のが挙げられ、通常、当業界において、一般に射出成形
用プラスチック磁石に使用されているものでよい。かか
るNd−Fe−B系磁性粉末としては、例えば、米国G
M社が製造している“MQパウダー”が好ましい。
The present invention will be explained in detail below. First, the Nd-Fe-B magnetic powder used in the present invention is made from a molten alloy of neodymium, iron, and boron by the ultra-quenched ribbon method, and is generally used in the industry for injection molding. Anything used in plastic magnets may be used. Such Nd-Fe-B magnetic powders include, for example, US G.
"MQ Powder" manufactured by M Company is preferred.

【0012】この本発明に使用するNd−Fe−B系磁
性粉末の配合量は、プラスチック磁石組成物全体重量中
90〜95重量%にすることが肝要である。Nd−Fe
−B系磁性粉末の配合量が90重量%未満の場合、磁気
性能が不充分である。一方、95重量%を超える場合、
熱安定性が不良となると共に、初期流動性が不充分とな
る。
It is important that the amount of the Nd-Fe-B magnetic powder used in the present invention is 90 to 95% by weight based on the total weight of the plastic magnet composition. Nd-Fe
If the blending amount of the -B magnetic powder is less than 90% by weight, the magnetic performance is insufficient. On the other hand, if it exceeds 95% by weight,
The thermal stability becomes poor and the initial fluidity becomes insufficient.

【0013】本発明に使用するNd−Fe−B系磁性粉
末は、予め、アルミニウム系カップリング剤及びチタネ
ート系カップリング剤で被覆されていることが必要であ
る。このような磁性粉末を使用することにより、熱安定
性が良好で、経時の溶融流動性に優れたプラスチック磁
石組成物が得られる。
The Nd-Fe-B magnetic powder used in the present invention must be coated with an aluminum coupling agent and a titanate coupling agent in advance. By using such magnetic powder, a plastic magnet composition with good thermal stability and excellent melt flowability over time can be obtained.

【0014】本発明に使用するアルミニウム系カップリ
ング剤としては、通常、フィラーの表面処理に用いられ
るものを使用すればよく、アセトアルコキシアルミニウ
ムジイソプロピレート、アルミニウムエチルアセトアセ
テートジイソプロピレート、アルミニウムトリス(エチ
ルアセトアセテート)等が挙げられ、特に、アセトアル
コキシアルミニウムジイソプロピレートが好ましい。本
発明に使用するアルミニウム系カップリング剤の配合量
は、Nd−Fe−B系磁性粉末100重量部に対して、
0.5重量部以上とすることが好ましい。
As the aluminum coupling agent used in the present invention, those normally used for surface treatment of fillers may be used, such as acetalkoxyaluminum diisopropylate, aluminum ethyl acetoacetate diisopropylate, aluminum tris( ethylacetoacetate), and acetalkoxyaluminum diisopropylate is particularly preferred. The amount of the aluminum coupling agent used in the present invention is based on 100 parts by weight of the Nd-Fe-B magnetic powder.
The amount is preferably 0.5 parts by weight or more.

【0015】また、本発明に使用するチタネート系カッ
プリング剤も、通常、フィラーの表面処理に用いられる
ものを使用すればよく、例えば、イソプロピルトリイソ
ステアロイルチタネート、イソプロピルトリデシルベン
ゼンスルホニルチタネート、テトライソプロピルビス(
ジオクチルホスファイト)チタネート、ビス(ジオクチ
ルパイロホスフェート)オキシアセテートチタネート、
イソプロピルトリオクタノイルチタネート、イソプロピ
ルジメタクリルイソステアロイルチタネート、イソプロ
ピルトリクミルフェニルチタネート、イソプロピルトリ
(N−アミノエチル−アミノエチル)チタネート等が挙
げられる。
[0015] Furthermore, the titanate coupling agent used in the present invention may be one that is normally used for surface treatment of fillers, such as isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, tetraisopropyl Screw(
dioctyl phosphite) titanate, bis(dioctyl pyrophosphate) oxyacetate titanate,
Isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate, isopropyltricumylphenyltitanate, isopropyltri(N-aminoethyl-aminoethyl)titanate, and the like.

【0016】これらの中でも、イソプロピルトリイソス
テアロイルチタネート、イソプロピルトリ(N−アミノ
エチル−アミノエチル)チタネートを用いることが好ま
しい。本発明に使用するチタネート系カップリング剤の
配合量は、Nd−Fe−B系磁性粉末100重量部に対
して、1重量部以上とすることが好ましい。
Among these, it is preferable to use isopropyl triisostearoyl titanate and isopropyl tri(N-aminoethyl-aminoethyl) titanate. The amount of the titanate coupling agent used in the present invention is preferably 1 part by weight or more per 100 parts by weight of the Nd-Fe-B magnetic powder.

【0017】本発明に於いて、Nd−Fe−B系磁性粉
末の被覆処理方法は、アルミニウム系カップリング剤で
磁性粉末を被覆処理した後、チタネート系カップリング
剤で被覆処理してもよいし、チタネート系カップリング
剤で磁性粉末を被覆処理した後、アルミニウム系カップ
リング剤で被覆処理してもよい。また、両者を同時に用
いて被覆処理を行ってもよい。
In the present invention, the method for coating the Nd-Fe-B magnetic powder may include coating the magnetic powder with an aluminum coupling agent and then coating it with a titanate coupling agent. After the magnetic powder is coated with a titanate coupling agent, the magnetic powder may be coated with an aluminum coupling agent. Further, the coating treatment may be performed using both at the same time.

【0018】本発明に使用する滑剤としては、特に制限
は無く、一般にポリアミドの流動性を改良するために使
用されているものであればよい。例えば、脂肪酸,脂肪
酸金属塩,脂肪酸アミド等が挙げられる。この本発明に
使用する滑剤の配合量は、プラスチック磁石組成物全体
重量中0.1〜0.5重量%とすればよい。
The lubricant used in the present invention is not particularly limited, and any lubricant that is generally used to improve the fluidity of polyamides may be used. Examples include fatty acids, fatty acid metal salts, fatty acid amides, and the like. The amount of the lubricant used in the present invention may be 0.1 to 0.5% by weight based on the total weight of the plastic magnet composition.

【0019】また、本発明に使用する12ナイロンは、
ω−ラウロラクタムの開環重合、又は12−アミノドデ
カン酸の重縮合で得られるものである。この本発明に使
用する12ナイロンの配合量は、プラスチック磁石組成
物全体重量中1.7〜9.5重量%とすればよい。
[0019] Furthermore, the 12 nylon used in the present invention is
It is obtained by ring-opening polymerization of ω-laurolactam or polycondensation of 12-aminododecanoic acid. The amount of nylon 12 used in the present invention may be 1.7 to 9.5% by weight based on the total weight of the plastic magnet composition.

【0020】本発明のプラスチック磁石組成物は、最終
成形品となるまで充分に混練,分散されていることが重
要である。このための方法としては、例えば、12ナイ
ロンとして粉末樹脂を用い、異方向回転2軸混練押出機
を用いてペレット状の樹脂を作ればよい。
It is important that the plastic magnet composition of the present invention is sufficiently kneaded and dispersed until it becomes a final molded product. As a method for this purpose, for example, a powdered resin may be used as 12 nylon, and a pellet-shaped resin may be made using a twin-screw kneading extruder rotating in different directions.

【0021】[0021]

【発明の効果】本発明のプラスチック磁石組成物は、N
d−Fe−B系磁性粉末の表面がアルミニウム系カップ
リング剤及びチタネート系カップリング剤で被覆された
ものを用いることにより、溶融時の熱安定性が良好で、
経時による溶融流動性に優れ、射出成形加工を良好に行
うことができる。
Effects of the Invention The plastic magnet composition of the present invention has N
By using a d-Fe-B magnetic powder whose surface is coated with an aluminum coupling agent and a titanate coupling agent, it has good thermal stability during melting.
It has excellent melt flowability over time and can be easily processed by injection molding.

【0022】以下、実施例を挙げて本発明を具体的に説
明する。尚、熱安定性の評価は下記の方法に従った。す
なわち、290℃に於いて滞溜させた時の溶融流動性の
経時変化(5分,15分,60分)をフローテスター法
(荷重160kgf)で測定した。
The present invention will be specifically explained below with reference to Examples. The thermal stability was evaluated according to the following method. That is, the change in melt fluidity over time (5 minutes, 15 minutes, 60 minutes) during retention at 290° C. was measured using a flow tester method (load: 160 kgf).

【0023】〔実施例1〜5、比較例1〕Nd−Fe−
B系磁性粉末をヘンシェルミキサーに仕込み、アルミニ
ウム系カップリング剤としてアセトアルコキシアルミニ
ウムジイソプロピレート(味の素社製,AL−M)を表
1に示す組成で配合し、攪拌して被覆処理を行った。次
に、チタネート系カップリング剤としてイソプロピルト
リ(N−アミノエチル−アミノエチル)チタネート(味
の素社製,KR−44)を表1に示す組成で配合し、攪
拌して被覆処理を行った。
[Examples 1 to 5, Comparative Example 1] Nd-Fe-
B-based magnetic powder was placed in a Henschel mixer, and acetalkoxyaluminum diisopropylate (AL-M, manufactured by Ajinomoto Co., Ltd.) was blended as an aluminum-based coupling agent in the composition shown in Table 1, and coated by stirring. Next, isopropyl tri(N-aminoethyl-aminoethyl) titanate (manufactured by Ajinomoto Co., Ltd., KR-44) was blended as a titanate-based coupling agent in the composition shown in Table 1, and the mixture was stirred for coating.

【0024】次に、上述のアルミニウム系カップリング
剤及びチタネート系カップリング剤で被覆されたNd−
Fe−B系磁性粉末、ステアリン酸マグネシウム及び粉
体化した12ナイロン(ダイセル・ビルス社製,L−1
640)を表1,表2に示す組成で配合し、30mm径
の2軸異方向回転混練押出機を用いてペレット化し、溶
融流動性の測定に供した。その結果を表1,表2にあわ
せて示す。
Next, Nd-coated with the above-mentioned aluminum coupling agent and titanate coupling agent
Fe-B magnetic powder, magnesium stearate, and powdered 12 nylon (manufactured by Daicel Bils, L-1
640) was blended with the compositions shown in Tables 1 and 2, pelletized using a 30 mm diameter twin-shaft, counterrotating kneading extruder, and subjected to measurement of melt fluidity. The results are shown in Tables 1 and 2.

【0025】〔比較例2〜4〕Nd−Fe−B系磁性粉
末にいずれかの被覆処理のみ、または、いずれの被覆処
理も行わなかったものを使用したことを除いては、実施
例1と同様に表1に示す組成で配合し、ペレット化後、
溶融流動性の測定に供した。その結果を表1,表2にあ
わせて示す。
[Comparative Examples 2 to 4] Example 1 except that the Nd-Fe-B magnetic powder was subjected to one of the coating treatments or not to any coating treatment. Similarly, after blending with the composition shown in Table 1 and pelletizing,
It was used to measure melt fluidity. The results are shown in Tables 1 and 2.

【0026】[0026]

【表1】[Table 1]

【0027】[0027]

【表2】[Table 2]

【0028】以上の結果より、実施例に係るプラスチッ
ク磁石組成物は、いずれも熱安定性が良好で、経時によ
る溶融流動性に優れていた。一方、比較例に係るプラス
チック磁石組成物は、経時により溶融流動性は低下し、
溶融流動値が測定不能となった。
From the above results, all of the plastic magnet compositions of Examples had good thermal stability and excellent melt flowability over time. On the other hand, in the plastic magnet composition according to the comparative example, the melt fluidity decreases over time,
Melt flow value became unmeasurable.

【0029】〔実施例6、7〕チタネート系カップリン
グ剤としてイソプロピルトリイソステアロイルチタネー
ト(味の素社製,KR−TTS)を表3に示す組成で配
合し、その他は実施例1と同様にしてペレットを得、溶
融流動性の測定に供した。その結果を表3,表4にあわ
せて示す。
[Examples 6 and 7] Isopropyl triisostearoyl titanate (manufactured by Ajinomoto Co., Ltd., KR-TTS) was blended as a titanate coupling agent in the composition shown in Table 3, and pellets were made in the same manner as in Example 1. was obtained and subjected to measurement of melt fluidity. The results are also shown in Tables 3 and 4.

【0030】[0030]

【表3】[Table 3]

【0031】[0031]

【表4】[Table 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Nd−Fe−B系磁性粉末90〜95
重量%、滑剤及び12ナイロンを含有するプラスチック
磁石組成物であって、該Nd−Fe−B系磁性粉末が、
アルミニウム系カップリング剤及びチタネート系カップ
リング剤で被覆されていることを特徴とするプラスチッ
ク磁石組成物。
[Claim 1] Nd-Fe-B magnetic powder 90-95
% by weight, a lubricant and 12 nylon, the Nd-Fe-B magnetic powder comprising:
A plastic magnet composition coated with an aluminum coupling agent and a titanate coupling agent.
JP3039536A 1991-02-08 1991-02-08 Plastic magnet composite Pending JPH04257203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039536A JPH04257203A (en) 1991-02-08 1991-02-08 Plastic magnet composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039536A JPH04257203A (en) 1991-02-08 1991-02-08 Plastic magnet composite

Publications (1)

Publication Number Publication Date
JPH04257203A true JPH04257203A (en) 1992-09-11

Family

ID=12555775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039536A Pending JPH04257203A (en) 1991-02-08 1991-02-08 Plastic magnet composite

Country Status (1)

Country Link
JP (1) JPH04257203A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853599A2 (en) * 1995-09-07 1998-07-22 Thermat Precision Technologies Inc. Powder and binder systems for use in powder molding
US7390579B2 (en) 2003-11-25 2008-06-24 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
US20170100862A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Injection-Molded Physical Unclonable Function
US10410779B2 (en) 2015-10-09 2019-09-10 Lexmark International, Inc. Methods of making physical unclonable functions having magnetic and non-magnetic particles
US10566296B2 (en) 2017-11-09 2020-02-18 Lexmark International, Inc. Physical unclonable functions in bank cards or identification cards for security
CN114479430A (en) * 2022-01-11 2022-05-13 滁州杰事杰新材料有限公司 Polyurethane composition and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853599A2 (en) * 1995-09-07 1998-07-22 Thermat Precision Technologies Inc. Powder and binder systems for use in powder molding
EP0853599A4 (en) * 1995-09-07 1999-09-22 Thermat Precision Technology I Powder and binder systems for use in powder molding
US7390579B2 (en) 2003-11-25 2008-06-24 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
US8313801B2 (en) 2003-11-25 2012-11-20 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
EP2653302A2 (en) 2003-11-25 2013-10-23 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
US20170100862A1 (en) * 2015-10-09 2017-04-13 Lexmark International, Inc. Injection-Molded Physical Unclonable Function
US20190143569A1 (en) * 2015-10-09 2019-05-16 Lexmark International, Inc. Injection-Molded Physical Unclonable Function
US10410779B2 (en) 2015-10-09 2019-09-10 Lexmark International, Inc. Methods of making physical unclonable functions having magnetic and non-magnetic particles
US11356287B2 (en) 2015-10-09 2022-06-07 Lexmark International, Inc. Injection-molded physical unclonable function
US10566296B2 (en) 2017-11-09 2020-02-18 Lexmark International, Inc. Physical unclonable functions in bank cards or identification cards for security
CN114479430A (en) * 2022-01-11 2022-05-13 滁州杰事杰新材料有限公司 Polyurethane composition and preparation method thereof
CN114479430B (en) * 2022-01-11 2023-08-15 滁州杰事杰新材料有限公司 Polyurethane composition and preparation method thereof

Similar Documents

Publication Publication Date Title
US5888416A (en) Rare-earth bonded magnet composition, rare-earth bonded magnet and process for producing said rare-earth bonded magnet
US6387293B1 (en) Composition for rare earth bonded magnet use, rare earth bonded magnet and method for manufacturing rare earth bonded magnet
JP2020205455A (en) Method of producing bonded magnet and compound for bonded magnet
WO2021014837A1 (en) Additive for bonded magnet and method for manufacturing compound for bonded magnet
JPH04257203A (en) Plastic magnet composite
US20040144960A1 (en) Resin-magnet composition
JPS5923445B2 (en) permanent magnet
JPH06287445A (en) Polyamide plastic material for magnet
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
US6652767B2 (en) Composition for plastic magnet
JP2003342468A (en) Resin composition for bonded magnet and bonded magnet
JP7453512B2 (en) Manufacturing method of bonded magnets and compounds
JPH09129427A (en) Rare earth bond magnet, composite for rare earth bond magnet and manufacture of rare earth bond magnet
JPH03165504A (en) Plastic magnet composition
JP3312255B2 (en) Manufacturing method of bonded magnet
JP2756860B2 (en) Materials for polyamide plastic magnets
JP2002008913A (en) Rare earth magnet and its molding material
JPH0817614A (en) Polylactic acid plastic magnet molding material and manufacture of magnet product
JP2023137392A (en) Composition for bonded magnet, method for manufacturing the same, and bonded magnet
JPH05109516A (en) Composition for formation of bonded magnet, and bonded magnet
JP2019067957A (en) Bond magnet and composition for bond magnet
JP2023081517A (en) Composition for bond magnet and the bond magnet
JPH1154312A (en) Resin-bonded magnet composition and resin-bonded magnet using the same
JP2000021615A (en) Composition for bond magnet and bond magnet
JPS63233504A (en) Resin magnet molding material