JP2019067957A - Bond magnet and composition for bond magnet - Google Patents

Bond magnet and composition for bond magnet Download PDF

Info

Publication number
JP2019067957A
JP2019067957A JP2017193002A JP2017193002A JP2019067957A JP 2019067957 A JP2019067957 A JP 2019067957A JP 2017193002 A JP2017193002 A JP 2017193002A JP 2017193002 A JP2017193002 A JP 2017193002A JP 2019067957 A JP2019067957 A JP 2019067957A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
composition
magnet particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017193002A
Other languages
Japanese (ja)
Inventor
夕哉 正鋳
Yuya Masai
夕哉 正鋳
行成 祢宜
Yukinari Negi
行成 祢宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2017193002A priority Critical patent/JP2019067957A/en
Publication of JP2019067957A publication Critical patent/JP2019067957A/en
Pending legal-status Critical Current

Links

Abstract

To provide a composition for a bond magnet, by which a bond magnet superior in both of heat resistance and magnetic characteristic can be obtained while ensuring moldability.SOLUTION: A composition of the present invention comprises one or more kinds of rare earth magnet particles and a binding resin, and is used for manufacturing a bond magnet. The rare earth magnet particles include at least Nd-based magnet particles in which a rare earth element is Nd, and the total amount of the rare earth magnet particles is 90-95 mass% to a whole amount of the composition. The binding resin consists of polyamide 66(PA66) in which a total amount of terminal groups consisting of carboxyl and amino groups is 175 mmol/kg or less to a total amount of the binding resin. Even if PA66 of which the total amount of the terminal groups is adjusted touches the rare earth magnet particles serving to bring about a catalyst effect, the start of the increase in viscosity is delayed. So, the stable moldability can be ensured even if the content of the rare earth magnet particles is large. A bond magnet which can be obtained from the composition like this would be superior in both of magnetic characteristic and heat resistance.SELECTED DRAWING: Figure 2A

Description

本発明は、希土類磁石粒子と結合樹脂からなるボンド磁石用組成物等に関する。   The present invention relates to a bonded magnet composition comprising rare earth magnet particles and a bonding resin.

希土類磁石は、高い磁気特性を発揮するため、省エネルギー化や軽量化が望まれる電化製品や自動車等の各種機器に利用されている。希土類磁石には、希土類磁石粉末(適宜「磁石粉末」という。)の焼結体や熱間成形体からなる緻密磁石と、射出成形、圧縮成形、押出成形等により磁石粉末を結合樹脂(バインダー樹脂)で結着させたボンド磁石とがある。最近は、成形自由度が高く軽薄部品等の製造にも適したボンド磁石が多用される傾向にある。   In order to exhibit high magnetic properties, rare earth magnets are used in various devices such as electric appliances and automobiles for which energy saving and weight reduction are desired. The rare earth magnet is a compact magnet made of a sintered body of a rare earth magnet powder (referred to as “magnet powder” as appropriate) or a hot compact, and the magnet powder is bonded resin (binder resin) by injection molding, compression molding, extrusion molding, etc. And bonded magnets. Recently, bonded magnets having a high degree of freedom in forming and suitable for the production of lightweight parts and the like tend to be used frequently.

ボンド磁石を用いる場合、その磁気特性の向上を図るのみならず、磁石粉末と結合樹脂を加熱混練してコンパウンド等の磁石原料(組成物)を得るときの混練性や、その結合樹脂を溶融させて射出成形等するときの成形性を確保することも重要となる。これに関連する記載が下記の特許文献にある。   When a bonded magnet is used, not only the improvement of its magnetic properties but also the kneadability for obtaining a magnet raw material (composition) such as a compound by heating and kneading the magnet powder and the binder resin, and melting the binder resin It is also important to ensure moldability when injection molding and the like. Descriptions related to this are in the following patent documents.

特開平7−226312号公報Unexamined-Japanese-Patent No. 7-226312 特開平9−162019号公報JP-A-9-162019 特開2003−342468号公報JP 2003-342468 A 特開平9−71721号公報JP-A-9-71721

特許文献1および特許文献2は、脂肪族ポリアミド樹脂の一種である末端調整した12―ナイロン(PA12)と、希土類磁石粉末の一種であるSmFe17粉末(平均粒径約4μm)とからなる組成物を提案している。この組成物を用いることにより、射出成形したボンド磁石のリサイクル性と磁気特性が両立される旨が、それら特許文献には記載されている。 Patent document 1 and patent document 2 are end-adjusted 12-nylon (PA12) which is a kind of aliphatic polyamide resin, and Sm 2 Fe 17 N 3 powder (average particle diameter is about 4 μm) which is a kind of rare earth magnet powder. Proposed a composition consisting of These patent documents disclose that the recyclability and magnetic properties of an injection-molded bonded magnet can be compatible by using this composition.

しかし、融点(軟化点)が低いPA12を結合樹脂としたボンド磁石は、耐熱性が劣り、その用途は限定的である。また、融点(軟化点)が低いPA12を用いる限り、磁石粉末の含有率と成形性の両立は、末端調整するまでもなく可能である。   However, a bonded magnet using PA12 having a low melting point (softening point) as a bonding resin is inferior in heat resistance, and its use is limited. Moreover, as long as PA12 having a low melting point (softening point) is used, coexistence of the content of the magnet powder and the formability can be made without adjusting the end.

特許文献3は、末端調整した芳香族ポリアミド樹脂と、希土類磁石粉末の一種であるNd−Fe−B系磁性粉末とからなる組成物を提案している。この組成物を用いることにより、ボンド磁石の成形性と耐熱性が両立される旨が、その特許文献には記載されている。   Patent Document 3 proposes a composition comprising an end-regulated aromatic polyamide resin and an Nd—Fe—B based magnetic powder which is a kind of rare earth magnet powder. It is described in the patent document that the moldability and heat resistance of a bonded magnet can be compatible by using this composition.

しかし、特許文献3で使用されている芳香族ポリアミド樹脂は、融点がかなり高いため、金型内へ溶融混合物を射出したときの温度低下により金型内で固化し易い。このため特許文献3に係る組成物は、PA12を用いた組成物よりも成形性や配向性等が大きく劣る。特に、磁石粉末の含有率を増加させたとき、特許文献3に係る組成物では、量産に適した成形性を確保することが困難であると考えられる。   However, since the aromatic polyamide resin used in Patent Document 3 has a very high melting point, it tends to solidify in the mold due to the temperature decrease when the molten mixture is injected into the mold. Therefore, the composition according to Patent Document 3 is significantly inferior in formability, orientation, etc. to the composition using PA12. In particular, when the content of the magnet powder is increased, it is considered that it is difficult for the composition according to Patent Document 3 to secure formability suitable for mass production.

特許文献4は、末端調整したポリアミド6樹脂と、希土類酸化物系磁石粉末の一種であるストロンチウムフェライト磁性粉末とからなる組成物を提案している。この組成物を用いることにより、流動性が向上する旨が、その特許文献には記載されている。   Patent Document 4 proposes a composition comprising an end-adjusted polyamide 6 resin and a strontium ferrite magnetic powder which is a kind of rare earth oxide magnet powder. It is described in the patent document that the fluidity is improved by using this composition.

しかし、特許文献4で記載されているポリアミド、特にポリアミド66を用いたボンド磁石では、加工温度域で一定時間以上経過すると組成物の増粘が起こり成形性が著しく低下するという滞留安定性に課題があった。そのため、特許文献4に係る組成物では、量産時に滞留による増粘の可能性があり、量産に適した成形性を確保することが困難であった。   However, in the case of a bonded magnet using polyamide described in Patent Document 4, particularly polyamide 66, there is a problem in retention stability that thickening of the composition occurs and formability is significantly reduced when a given time or more passes in a processing temperature range. was there. Therefore, the composition according to Patent Document 4 has a possibility of thickening due to retention at the time of mass production, and it has been difficult to secure formability suitable for mass production.

ちなみに、現状市販(量産)されているボンド磁石の多くは、PA12またはポリフェニレンサルファイド(PPS)のいずれかを結合樹脂として用いている。PA12は、上述したように耐熱性が劣る。PPSは、融点が高くて耐熱性に優れるが、その融点からある程度以上昇温すると、希土類磁石粉末が急激に酸化してその磁気特性が劣化してしまう。このため、注入温度をPPSの融点よりもあまり上げることができず、PPSからなる溶融混合物は金型内へ射出されたときに固化し易くなり、成形性が劣る。また、PPSを用いたときの注入温度は、PA12を用いたときの注入温度のように、融点よりも50〜100℃も高くできないため、PPSからなる溶融混合物を金型内へ射出成形したとき、樹脂温度の低下によって流動性(粘度)も低下する。その結果、PPSを用いたボンド磁石は、その密度や配向度を十分に確保することも困難となる。   Incidentally, most of the bond magnets currently marketed (mass-produced) use either PA12 or polyphenylene sulfide (PPS) as a bonding resin. As described above, PA12 is poor in heat resistance. Although PPS has a high melting point and is excellent in heat resistance, when the temperature is raised from the melting point to a certain degree or more, the rare earth magnet powder is rapidly oxidized and its magnetic characteristics are degraded. For this reason, the injection temperature can not be raised much higher than the melting point of PPS, and the molten mixture of PPS becomes easy to solidify when injected into the mold, and the formability is inferior. In addition, the injection temperature when PPS is used can not be as high as 50 to 100 ° C. higher than the melting point, as in the case of injection temperature when PA 12 is used, so when a molten mixture consisting of PPS is injection molded into a mold The fluidity (viscosity) also decreases due to the decrease of the resin temperature. As a result, it is also difficult for a bond magnet using PPS to secure its density and degree of orientation sufficiently.

この傾向は、ボンド磁石の磁気特性を高めるために磁石粉末の含有率(充填率)を増加させたときに顕著となる。このため、耐熱性よりも磁気特性を優先するときはPA12が結合樹脂として用いられ、磁気特性よりも耐熱性を優先するときはPPSが結合樹脂として用いられているのが実情である。なお、PA12とPPSは共に熱可塑性樹脂であり、それら自体は熱履歴とは関係なく、融点以上の温度域で安定した高い流動性(低い粘度)を示す。この傾向は、PA12またはPPSが希土類磁石粒子と共存するときでも同様である。このため、PA12やPPSは、磁石粉末と混練等される際に増粘を生じることもない。   This tendency is remarkable when the content (filling ratio) of the magnet powder is increased to enhance the magnetic properties of the bonded magnet. For this reason, when priority is given to magnetic properties over heat resistance, PA12 is used as a bonding resin, and when heat resistance is prioritized over magnetic properties, PPS is used as a bonding resin. Both PA12 and PPS are thermoplastic resins, and they themselves exhibit stable high fluidity (low viscosity) in the temperature range above the melting point regardless of the heat history. This tendency is the same even when PA12 or PPS coexists with rare earth magnet particles. For this reason, PA12 and PPS do not cause thickening when they are kneaded with a magnet powder.

本発明はこのような事情に鑑みて為されたものであり、成形性を確保しつつ、磁気特性および耐熱性に優れたボンド磁石を得ることができるボンド磁石用組成物等を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a bond magnet composition and the like which can obtain a bond magnet having excellent magnetic properties and heat resistance while securing formability. To aim.

本発明者はこの課題を解決すべく鋭意研究した結果、PA12よりも融点の高いPA66は、PA12やPPSと同じ熱可塑性樹脂でありながら、高含有率の希土類磁石粒子と共存したとき、PA12やPPSでは実質的に生じない特有な増粘現象を生じることを見出した。この新たな知見に基づいて本発明者は以降に述べる本発明を完成するに至った。   As a result of intensive studies to solve this problem, the present inventor found that PA66, which has a melting point higher than that of PA12, is the same thermoplastic resin as PA12 and PPS, but when it coexists with high content rare earth magnet particles, It has been found that PPS produces a unique thickening phenomenon that does not occur substantially. Based on this new finding, the inventor has completed the present invention described below.

《ボンド磁石用組成物》
本発明のボンド磁石用組成物は、一種以上の希土類磁石粒子と結合樹脂からなり、ボンド磁石の製造に用いられる組成物であって、前記希土類磁石粒子は、希土類元素がNdであるNd系磁石粒子を少なくとも含み、該希土類磁石粒子の総量は、前記組成物全体に対して90〜95質量%であり、前記結合樹脂は、カルボキシル基とアミノ基からなる末端基の総量が該結合樹脂全体に対して175mmol/kg以下のポリアミド66(PA66)からなる。
<< Composition for Bonded Magnets >>
The composition for a bonded magnet according to the present invention is a composition comprising one or more rare earth magnet particles and a bonding resin and used for producing a bonded magnet, wherein the rare earth magnet particles are Nd-based magnets wherein the rare earth element is Nd. The total amount of the rare earth magnet particles is 90 to 95% by mass with respect to the whole composition, and the total amount of terminal groups consisting of carboxyl groups and amino groups is the whole of the combined resin. It consists of polyamide 66 (PA66) below 175 mmol / kg.

本発明のボンド磁石用組成物(単に「組成物」ともいう。)を用いると、安定した成形性を確保しつつ、希土類磁石粉末の高含有率化による磁気特性の向上と耐熱性の向上とを高次元で両立させたボンド磁石を得ることができる。   When the composition for a bonded magnet of the present invention (also referred to simply as a "composition") is used, the magnetic properties and heat resistance are improved by increasing the content of rare earth magnet powder while securing stable formability. It is possible to obtain a bonded magnet in which the

《ボンド磁石》
本発明は、上述した組成物を用いたボンド磁石としても把握できる。例えば、本発明は、ボンド磁石用組成物の射出成形体からなるボンド磁石でもよい。
Bond magnet
The present invention can also be grasped as a bonded magnet using the composition described above. For example, the present invention may be a bonded magnet made of an injection molded body of a composition for a bonded magnet.

《製造方法》
(1)本発明は、上述した組成物の製造方法としても把握できる。例えば、本発明は、一種以上の希土類磁石粉末と結合樹脂を混練する混練工程を備える組成物の製造方法であって、前記希土類磁石粉末は、希土類元素がNdであるNd系磁石粒子を少なくとも含み、該希土類磁石粉末の総量は、前記組成物全体に対して90〜95質量%であり、前記結合樹脂は、カルボキシル基とアミノ基からなる末端基の総量が該結合樹脂全体に対して175mmol/kg以下のポリアミド66(PA66)からなるボンド磁石用組成物の製造方法でもよい。
"Production method"
(1) The present invention can also be grasped as a method for producing the composition described above. For example, the present invention is a method for producing a composition comprising a kneading step of kneading one or more rare earth magnet powders and a binding resin, wherein the rare earth magnet powder contains at least Nd-based magnet particles whose rare earth element is Nd. The total amount of the rare earth magnet powder is 90 to 95% by mass with respect to the whole composition, and the total amount of terminal groups consisting of carboxyl groups and amino groups is 175 mmol / m to the whole of the composition. It may be a method for producing a bonded magnet composition consisting of polyamide 66 (PA 66) of not more than kg.

(2)本発明は、上述したボンド磁石の製造方法としても把握できる。例えば、本発明は、上述した組成物を加熱して溶融した結合樹脂と希土類磁石粉末の混合物である溶融混合物をキャビティへ充填する射出工程を備えるボンド磁石の製造方法でもよい。なお、希土類磁石粉末が希土類異方性磁石粉末であるとき、射出工程は、配向磁場中のキャビティへ溶融混合物を充填する工程とするとよい。 (2) The present invention can also be grasped as a method of manufacturing the bonded magnet described above. For example, the present invention may be a manufacturing method of a bonded magnet including an injection step of filling a cavity with a molten mixture which is a mixture of a bonding resin and rare earth magnet powder which is heated to heat the composition described above. When the rare earth magnet powder is a rare earth anisotropic magnet powder, the injection step may be a step of filling the molten mixture into the cavity in the orienting magnetic field.

《その他》
(1)本明細書でいうPA66には、末端調整していないPA66、末端調整したPA66、およびPA66の分子同士が縮重合や架橋反応等して変質したPA66も含まれる。それらを区別するときは、順に、適宜、「未改質PA66」、「改質PA66」、「変質PA66」という。
<< Others >>
(1) The PA 66 referred to in the present specification also includes PA 66 which has not been terminally adjusted, PA 66 which has been terminally adjusted, and PA 66 which has been modified by condensation polymerization or crosslinking reaction. In order to distinguish them, they are referred to as “unmodified PA 66”, “modified PA 66”, and “deteriorated PA 66” as appropriate.

(2)PA66は希土類磁石粒子と接触して、組成物さらにはボンド磁石となるにつれて、その末端基の総量が減少する。換言すれば、PA66は、希土類磁石粒子と接触する前の原料段階において、末端基の総量が最大となっている。そこで本発明では、原料段階で求めたPA66の末端基の総量を上限値として、組成物またはボンド磁石を構成するPA66の末端基の総量を規定している。 (2) PA 66 comes in contact with rare earth magnet particles, and the total amount of its end groups decreases as it becomes a composition and even a bonded magnet. In other words, PA 66 maximizes the total amount of end groups in the raw material stage before contacting with the rare earth magnet particles. Therefore, in the present invention, the total amount of the end groups of PA 66 constituting the composition or the bonded magnet is defined with the total amount of the end groups of PA 66 obtained in the raw material stage as the upper limit.

なお、本明細書でいう「mmol/kg」は、1kgのPA66中に存在する末端基の量(mmol)を意味する。   The term "mmol / kg" as used herein means the amount (mmol) of end groups present in 1 kg of PA66.

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (3) Unless otherwise specified, "x to y" in the present specification includes the lower limit x and the upper limit y. Ranges such as “a to b” may be newly established as new lower limit values or upper limit values for arbitrary numerical values included in various numerical values or numerical ranges described in the present specification.

未改質PA66の分子同士が希土類磁石粒子と接触して、分子量の大きな変質PA66となる様子を示す説明図である。It is an explanatory view showing signs that molecules of non-modified PA66 contact with rare earth magnet particles and it becomes a denatured PA 66 with a large molecular weight. 末端調整により、PA66の末端にある官能基が非反応性の置換基となる様子を示す説明図である。It is explanatory drawing which shows a mode that the functional group in the terminal of PA66 becomes a non-reactive substituent by terminal adjustment. PA66と希土類磁石粉末の混練に要するトルクの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the torque required for kneading | mixing of PA66 and rare earth magnet powder. PA66の末端基の総量と、増粘開始時間または固化時間との関係を示す散布図である。It is a scatter diagram which shows the relationship between the total amount of the terminal group of PA66, and the thickening start time or solidification time.

本発明の構成要素には、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の組成物やボンド磁石のみならず、それらの製造方法にも適宜該当し得る。方法的な構成要素でも物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   To the components of the present invention, one or more components arbitrarily selected from the specification can be added. The contents described in the present specification can be appropriately applied not only to the composition and the bonded magnet of the present invention but also to a method of manufacturing them. Even a methodical component can be an entity-related component. Whether or not which embodiment is the best depends on the target, required performance, and the like.

《希土類磁石粒子(粉末)》
(1)希土類磁石粒子は、少なくともNd系磁石粒子を含み、他の希土類磁石粒子を一種以上含んでもよい。さらにいえば、本発明の組成物は、希土類磁石粒子以外の磁石粒子(例えばフェライト粒子)を少量含んでもよい。
<< Rare Earth Magnet Particles (Powder) >>
(1) The rare earth magnet particles may contain at least Nd magnet particles, and may contain one or more other rare earth magnet particles. Furthermore, the composition of the present invention may contain a small amount of magnet particles (for example, ferrite particles) other than rare earth magnet particles.

Nd系磁石粒子は、希土類元素をNdとすればよいが、通常は、Nd―TM―B系磁石粒子、さらにいえば、NdTM14(TM:遷移金属元素、特にFe)を主相とする磁石粒子である。但し、Nd系磁石粒子は、その磁気特性を高める種々の改質元素を含み得る。改質元素は、主相に固溶する元素でも、粒界相を構成する元素でもよい。このような元素は、例えば、Co、Ni、Al、Cu、Ga、Nb、Ti、V、Zr、Cr、Mn、Hf、W、Ta、Zn、Sn等の一種以上である。 Nd-based magnet particles may be rare earth element Nd, but usually, Nd-TM-B magnet particles, more specifically, Nd 2 TM 14 B 1 (TM: transition metal element, particularly Fe) is mainly used It is a magnet particle to be a phase. However, the Nd-based magnet particles may contain various modifying elements that enhance their magnetic properties. The modifying element may be an element dissolved in the main phase or an element constituting the grain boundary phase. Such an element is, for example, one or more of Co, Ni, Al, Cu, Ga, Nb, Ti, V, Zr, Cr, Mn, Hf, W, Ta, Zn, Sn and the like.

Nd系磁石粒子以外の希土類磁石粒子として、Sm系磁石粒子等がある。Sm系磁石粒子は、Sm―TM―N系磁石粒子、Sm―TM系磁石粒子等である。Sm―TM―N系磁石粒子は、例えば、SmFe17Nを主相とする磁石粒子であり、Sm―TM系磁石粒子は、例えば、SmCoやSmCo17を主相とする磁石粒子である。 Examples of rare earth magnet particles other than Nd magnet particles include Sm magnet particles and the like. Sm-based magnet particles are Sm-TM-N-based magnet particles, Sm-TM-based magnet particles, and the like. Sm-TM-N based magnet particles are, for example, magnet particles having Sm 2 Fe 17 N as a main phase, and Sm-TM based magnet particles are, for example, magnets having SmCo 5 or Sm 2 Co 17 as a main phase. It is a particle.

(2)希土類磁石粒子は、平均粒径が1〜300μmさらには5〜250μmであると好ましい。平均粒径が過小になると、粒子の総表面積が増加してPA66が増粘し易くなる。平均粒径が過大になると、粒子が割れ易くなり、粒子の微細化や新生面の出現により、やはり、粒子の総表面積が増加してPA66が増粘し易くなる。 (2) The rare earth magnet particles preferably have an average particle diameter of 1 to 300 μm, and more preferably 5 to 250 μm. If the average particle size is too small, the total surface area of the particles will increase and PA 66 will tend to thicken. When the average particle size is too large, the particles are likely to be broken, and due to the miniaturization of the particles and the appearance of a new surface, the total surface area of the particles also increases and the PA 66 tends to be thickened.

Nd系磁石粒子の平均粒径は、例えば、40〜250μm、60〜200μmさらには80〜150μmである。このようなNd系磁石粒子は、例えば、水素処理(HDDR等)により製造される。   The average particle diameter of the Nd-based magnet particles is, for example, 40 to 250 μm, 60 to 200 μm, or 80 to 150 μm. Such Nd-based magnet particles are produced, for example, by hydrogen treatment (HDDR or the like).

Sm系磁石粒子は、通常、Nd系磁石粒子よりも平均粒径が小さい。その平均粒径は、例えば、1〜20μmさらには3〜15μmである。Nd系磁石粒子からなる粗粉末とSm系磁石粒子からなる微粉末との混合粉末を用いることにより、磁石粉末の高含有率化が図れると共に、混練時や成形時における流動性が却って改善し得る。   Sm-based magnet particles usually have a smaller average particle size than Nd-based magnet particles. The average particle diameter is, for example, 1 to 20 μm, and further 3 to 15 μm. By using a mixed powder of coarse powder composed of Nd-based magnet particles and fine powder composed of Sm-based magnet particles, higher content of magnet powder can be achieved, and fluidity during kneading or molding can be rather improved. .

なお、本明細書でいう「平均粒径」は、レーザ回折式粒度分布測定器(マイクロトラック・ベル社製 NanotracWaveII)による測定により特定される。   The “average particle diameter” as referred to in the present specification is specified by measurement using a laser diffraction type particle size distribution measuring device (Nanotrac Wave II manufactured by Microtrac Bell Inc.).

(3)PA66の増粘は、希土類磁石粒子(特に活性な希土類元素)が触媒的に作用してPA66の縮重合反応や架橋反応が促進され、その分子量が増大するためと考えられる。この観点からすると、希土類磁石粒子は、等方性磁石粒子でも異方性磁石粒子でもよい。 (3) It is considered that thickening of PA 66 is caused by the catalytic action of rare earth magnet particles (particularly, active rare earth elements) to promote condensation polymerization reaction or crosslinking reaction of PA 66 and increase of its molecular weight. From this point of view, the rare earth magnet particles may be isotropic magnet particles or anisotropic magnet particles.

但し、希土類異方性磁石粒子と溶融した結合樹脂とからなる溶融混合物を磁場中成形したボンド磁石は、希土類異方性磁石粒子の配向により、一層高い磁気特性を発揮する。そして本発明の組成物を用いると、その磁場中成形時もPA66の増粘が抑制されて溶融混合物の流動性が確保されるため、希土類異方性磁石粒子は姿勢を変化させ易く、より高配向で高磁気特性なボンド磁石が得られる。   However, a bonded magnet obtained by molding a molten mixture of rare earth anisotropic magnet particles and a molten bonding resin in a magnetic field exhibits higher magnetic properties due to the orientation of the rare earth anisotropic magnet particles. When the composition of the present invention is used, thickening of PA 66 is suppressed even during molding in a magnetic field, and the fluidity of the molten mixture is secured. A bonded magnet with high magnetic properties in orientation is obtained.

《結合樹脂》
(1)増粘
一般的に、末端調整されていないPA66(未改質PA66)の分子式はHO[CO(CHCONH(CHNH]Hまたは(C1222(n:整数)等であり、その各分子(ポリマー)の末端はカルボキシル基(COOH)若しくはアミノ基(NH)となっている。PA66自体は、熱可塑性樹脂であり、単独で加熱、混練等しても増粘や固化を生じない。
Bonding resin
(1) Thickening Generally, the molecular formula of unregulated PA66 (unmodified PA66) is HO [CO (CH 2 ) 4 CONH (CH 2 ) 6 NH] n H or (C 12 H 22 N 2) O 2 ) n (n is an integer) or the like, and the terminal of each molecule (polymer) is a carboxyl group (COOH) or an amino group (NH 2 ). The PA 66 itself is a thermoplastic resin and does not cause thickening or solidification even by heating, kneading, etc. alone.

ところが、未改質PA66の各分子が遷移金属元素や希土類元素等を含む磁石粒子と接触すると、例えば、一例として図1Aに示すように、カルボキシル基とアミノ基の間で脱水(縮重合)反応や架橋反応等を生じて、さらに高分子化した変質PA66になり得る。このような分子量の増加により、単独では生じない増粘や固化が、希土類磁石粒子との共存下で生じるようになったと考えられる。   However, when each molecule of unmodified PA 66 comes into contact with magnet particles containing transition metal elements, rare earth elements, etc., for example, as shown in FIG. 1A as an example, a dehydration (condensation) reaction between a carboxyl group and an amino group And cross-linking reaction, etc., and it can be converted to a polymerised modified PA 66. It is considered that, due to the increase in molecular weight, thickening and solidification that do not occur alone occur in the coexistence with the rare earth magnet particles.

本発明の結合樹脂は末端調整されたPA66(改質PA66)からなる。改質PA66は、図1Bに示すように、未改質PA66の末端にあったカルボキシル基および/またはアミノ基の少なくとも一部が、非反応性または低反応性の末端基で置換された状態にあると考えられる。この結果、本発明に係る改質PA66は、触媒的作用をする希土類磁石粒子と接触しても、急激な増粘現象を示さなくなったと推察される。   The binding resin of the invention consists of end-regulated PA66 (modified PA66). As shown in FIG. 1B, at least a portion of the carboxyl group and / or amino group at the end of the unmodified PA66 is substituted with a non-reactive or low-reactive end group, as shown in FIG. 1B. It is believed that there is. As a result, it is inferred that the modified PA 66 according to the present invention does not show a sharp thickening phenomenon even when in contact with the catalytic rare earth magnet particles.

実際に、未改質PA66または改質PA66とNd−Fe−B系磁石粉末との混合物をそれぞれ加熱混練したときの混練トルクが時間的に変化する様子を図2Aに示した。なお、本実験は後述するラボプラストミルを用いて行ったものであり、未改質PA66と改質PA66に係るデータは、表1に示す試料20と試料22にそれぞれ対応している。   FIG. 2A actually shows how the kneading torque changes with time when each of the unmodified PA 66 or the mixture of the modified PA 66 and the Nd—Fe—B based magnet powder is heat-kneaded. In addition, this experiment was performed using the laboplast mill mentioned later, and the data which concerns on unmodified | non-modified PA66 and modified PA66 respond | correspond to the sample 20 shown in Table 1, and the sample 22, respectively.

図2Aから明らかなように、いずれのPA66も増粘現象を示すものの、未改質PA66は、混練開始後約1200秒(約20分)経過した付近から増粘を開始している。これに対して改質PA66の場合、その増粘の開始が大幅に遅延されて、混練開始後から2400秒(40分)位までの間、PA66本来の低粘度が維持されている。   As is clear from FIG. 2A, although any of the PAs 66 exhibits a thickening phenomenon, the unmodified PA 66 starts thickening at about 1200 seconds (about 20 minutes) after the start of kneading. On the other hand, in the case of the modified PA 66, the start of the thickening is greatly delayed, and the inherent low viscosity of the PA 66 is maintained for approximately 2400 seconds (40 minutes) from the start of the kneading.

組成物(コンパウンド等)を製造する際の混練時間(加熱時間)は約600〜1500秒(10〜25分)である。未改質PA66では、混練途中に急激な増粘が起こり得るが、改質PA66を用いれば、増粘が起こる前に混練を終えることができ、安定した混練ができる。   The kneading time (heating time) for producing the composition (compound or the like) is about 600 to 1,500 seconds (10 to 25 minutes). In the unmodified PA 66, rapid thickening may occur during kneading, but if the modified PA 66 is used, kneading can be completed before thickening occurs, and stable kneading can be performed.

また、ボンド磁石を射出成形する場合、加熱開始された原料(組成物)が溶融状態となって金型(電磁部品)のキャビティへ充填完了されるまでの所要時間が、通常30〜300秒程度である。混練と成形の熱履歴を併せても、改質PA66を用いれば、その増粘開始時間内に十分に射出成形を終えることができ、安定した成形性の確保が可能になるといえる。   In addition, when injection molding of a bonded magnet, the time required for the heating-started raw material (composition) to be melted and to be completely filled in the cavity of the mold (electromagnetic part) is usually about 30 to 300 seconds. It is. Even if the heat histories of kneading and molding are combined, injection molding can be completed sufficiently within the thickening start time by using the modified PA 66, and it can be said that stable moldability can be secured.

なお、本明細書では、混練開始後に混練トルクが最低トルクの1.2倍を示した時間を増粘開始時間といい、混練開始後に混練トルクが極大(ピーク)となるとき(一次微分係数が次に零となるとき)を固化時間という。   In this specification, the time when the kneading torque shows 1.2 times the minimum torque after the start of kneading is referred to as the thickening start time, and when the kneading torque becomes maximal (peak) after the start of kneading (the first derivative The next time it becomes zero) is called solidification time.

(2)末端基の総量
化学修飾剤(末端調整剤、封止剤)を用いて末端基の総量(カルボキシル基とアミノ基の合計量)が異なる複数の改質PA66を調製した。これら改質PA66または未改質PA66と希土類磁石粉末とを上述したように加熱混練して、末端基の総量と増粘開始時間または固化時間との関係を求めた。こうして得られた結果を図2Bに示した。なお、未改質PA66は末端基の総量が224mmol/kgであった。図2Bから明らかなように、末端基の総量が175mmol/kg以下、150mmol/kg以下、125mmol/kg以下、さらには100mmol/kg以下となる範囲において、増粘開始時間および固化時間が急激に延長されることがわかる。
(2) Total Amount of End Groups A plurality of modified PA66s having different total amounts of end groups (total amount of carboxyl group and amino group) were prepared using chemical modifiers (end modifiers, capping agents). The modified PA 66 or unmodified PA 66 and the rare earth magnet powder were heated and kneaded as described above to determine the relationship between the total amount of terminal groups and the thickening start time or solidification time. The results thus obtained are shown in FIG. 2B. In addition, unmodified PA66 had a total amount of terminal groups of 224 mmol / kg. As apparent from FIG. 2B, the thickening start time and the solidification time are rapidly extended in the range in which the total amount of terminal groups is 175 mmol / kg or less, 150 mmol / kg or less, 125 mmol / kg or less, and 100 mmol / kg or less. It is understood that

(3)化学修飾剤
PA66の末端調整は、例えば、未改質PA66に化学修飾剤を添加して反応させることにより行える。これにより、末端官能基であるカルボキシル基および/またはアミノ基が異なる他の非反応性官能基に置換される。化学修飾剤として、種々のカルボジイミド化合物、カルボン酸類、アミン類等を利用できる。中でもカルボジイミド化合物はボンド磁石組成物とした際、成形時のガスの発生が少なく、成形性が安定し、ボンド磁石強度も得られるため好適である。
(3) Chemical Modifier The terminal adjustment of PA66 can be performed, for example, by reacting unmodified PA66 with a chemical modifier. As a result, the terminal functional group, the carboxyl group and / or the amino group, is replaced by another non-reactive functional group. As the chemical modifier, various carbodiimide compounds, carboxylic acids, amines and the like can be used. Among them, when a carbodiimide compound is used as a bonded magnet composition, it is preferable because generation of a gas during molding is small, moldability is stable, and bonded magnet strength is obtained.

(4)希土類磁石粒子
PA66の増粘(分子量増大)は希土類磁石粒子との接触により生じ得るが、その程度(増粘開始時間)は希土類磁石粒子の含有率、サイズ(比表面積)、種類(構成元素や成分組成)等により変化する。
(4) Thickening (molecular weight increase) of rare earth magnet particles PA66 can occur by contact with rare earth magnet particles, but the degree (thickening start time) is the content, size (specific surface area), type of rare earth magnet particles It changes with constituent elements, component composition etc.

例えば、希土類磁石粒子の含有率が高くなるほど、また、そのサイズ(平均粒径)が小さくなるほど、PA66の末端基が希土類磁石粒子と接触する確率が高くなって、PA66は増粘し易くなる。このため、微細な希土類磁石粒子(例えばSmFeN系磁石粒子)の含有率を大幅に高めると(例えば50質量%以上にすると)、改質PA66を用いたとしても、増粘開始の大幅な遅延はない。   For example, the higher the content of the rare earth magnet particles and the smaller the size (average particle diameter) of the PA 66, the higher the probability that the end groups of the PA 66 contact the rare earth magnet particles, and the PA 66 tends to be thickened. For this reason, when the content of fine rare earth magnet particles (for example, SmFeN magnet particles) is greatly increased (for example, 50 mass% or more), even if the modified PA 66 is used, the significant delay in the start of thickening is Absent.

その一方で、粗い希土類磁石粒子(例えばNdFeB系磁石粒子)のみよりも、微細な希土類磁石粒子が多少混在している方が、溶融混合物の流動性が向上し、かえって、成形性のみならず希土類磁石粒子の配向度ひいてはボンド磁石の磁気特性が高まることもある。また、粗い希土類磁石粒子のみでは、含有率の向上に限界があると共に、割れ等による粒子微細化も生じ得る。   On the other hand, the fluidity of the molten mixture is improved when some fine rare earth magnet particles are mixed, rather than only coarse rare earth magnet particles (for example, NdFeB magnet particles), and rather, not only formability but also rare earth The degree of orientation of the magnet particles and thus the magnetic properties of the bonded magnet may be enhanced. In addition, with only coarse rare earth magnet particles, there is a limit to improvement in the content, and particle refinement due to cracking or the like may also occur.

このような事情を踏まえて、例えば、粗いNd系磁石粒子が組成物全体に対して90質量%以上、91質量%以上さらには92質量%以上含まれる場合、PA66の末端基の総量は100mmol/kg以下、85mmol/kg以下さらには75mmol/kg以下とすると好ましい。   Based on such circumstances, for example, when coarse Nd-based magnet particles are contained in an amount of 90% by mass or more, 91% by mass or more, further 92% by mass or more with respect to the entire composition, the total amount of PA66 end groups is 100 mmol / It is preferable to set it as kg or less, 85 mmol / kg or less, and further 75 mmol / kg or less.

また、粗いNd系磁石粒子と細かいSm系磁石粒子が混在しており、全体(合計)として希土類磁石粒子が90質量%以上となっている場合であれば、PA66の末端基の総量は150mmol/kg以下、125mmol/kg以下さらには100mmol/kg以下としてもよい。このとき、Sm系磁石粒子は、組成物全体に対して1〜40質量%、5〜35質量%さらには15〜30質量%とするとよい。   In the case where coarse Nd-based magnet particles and fine Sm-based magnet particles are mixed and the total (total) of rare earth magnet particles is 90% by mass or more, the total amount of terminal groups of PA66 is 150 mmol / It may be not more than kg, not more than 125 mmol / kg, and further not more than 100 mmol / kg. At this time, it is preferable that the Sm based magnet particles be 1 to 40% by mass, 5 to 35% by mass, and further 15 to 30% by mass with respect to the entire composition.

具体的にいうと、例えば、Nd系磁石粒子は平均粒径が40〜150μmであると共に組成物全体に対して65〜89質量%含まれ、Sm系磁石粒子は平均粒径が1〜20μmであると共に組成物全体に対して1〜30質量%含まれ、PA66の末端基の総量は150mmol/kg以下としてもよい。   Specifically, for example, Nd magnet particles have an average particle diameter of 40 to 150 μm and are contained at 65 to 89% by mass with respect to the whole composition, and Sm magnet particles have an average particle diameter of 1 to 20 μm. The total amount of the end groups of PA66 may be 150 mmol / kg or less.

(5)その他
改質PA66は、重量平均分子量(Mw)が12000〜40000さらには13000〜30000であると好ましい。Mwが過小ではボンド磁石の強度が低くなってしまい、Mwが過大になると、増粘した場合と同様に、混練性や成形性、磁石粒子の含有率や配向度等が低下し得る。
(5) Others The modified PA 66 preferably has a weight average molecular weight (Mw) of 12,000 to 40,000 and more preferably 13,000 to 30,000. If the Mw is too small, the strength of the bonded magnet will be low, and if the Mw is too large, the kneadability and formability, the content of magnet particles, the degree of orientation, etc. may be reduced as in the case of thickening.

本明細書でいう末端基の総量は、H−NMR(核磁気共鳴分光法)により測定されたピーク強度から算出される。また、本明細書でいうMwは、ゲル浸透クロマトグラフィー(GPC)で測定することにより特定される。なお、特に断らない限り、本明細書でいう分子量は重量平均分子量を意味する。 The total amount of terminal groups as referred to herein is calculated from the peak intensities measured by 1 H-NMR (nuclear magnetic resonance spectroscopy). Moreover, Mw as referred to herein is specified by measurement by gel permeation chromatography (GPC). In addition, unless otherwise indicated, the molecular weight as used in this specification means a weight average molecular weight.

本発明の組成物またはボンド磁石は、改質PA66および希土類磁石粒子の他に、カップリング剤や滑剤、さらにはPA66以外の樹脂を少量含有してもよい。また、磁石粒子は、カップリング剤により予め表面処理されていてもよい。   The composition or bonded magnet of the present invention may contain, in addition to the modified PA 66 and the rare earth magnet particles, a coupling agent, a lubricant and a small amount of resin other than PA 66. Also, the magnet particles may be surface-treated in advance with a coupling agent.

《用途》
本発明のボンド磁石は耐熱性に優れるため、常温域で使用される電磁機器は勿論、高温域で使用される電磁機器、使用中に高温となる電磁機器等に好適である。例えば、150℃以上さらには200℃以上の耐熱性が要求される車載用電磁機器(電動機、発電機等)の界磁源として、本発明のボンド磁石は好適である。
<< Application >>
Since the bonded magnet of the present invention is excellent in heat resistance, it is suitable not only for electromagnetic devices used in a normal temperature range, but also for electromagnetic devices used in a high temperature range and electromagnetic devices that become hot during use. For example, the bonded magnet of the present invention is suitable as a field source of a vehicle-mounted electromagnetic device (motor, generator, etc.) that is required to have heat resistance of 150 ° C. or more, and further 200 ° C. or more.

末端基の総量が異なるPA66を用いてボンド磁石の原料となる種々のコンパウンド(ボンド磁石用組成物)を製造した。また、各コンパウンドを用いた射出成形によりボンド磁石も製造した。各製造時の成形性と、各ボンド磁石の磁気特性を評価した。このような具体例に基づいて本発明をさらに詳しく説明する。   Various compounds (compositions for bonded magnets) as raw materials of bonded magnets were manufactured using PA 66 having different total amounts of end groups. In addition, bonded magnets were also manufactured by injection molding using each compound. The formability at each production and the magnetic properties of each bonded magnet were evaluated. The present invention will be described in more detail based on such specific examples.

《試料の製造》
(1)原料
末端調整されていない市販のPA66(ユニチカ社製)と、PA66の末端調整剤となるカルボジイミド化合物(ラインケミー社製 スタバックゾールI)を用意した。
<< Production of samples >>
(1) Raw Material A commercially available PA66 (manufactured by Unitika), which had not been terminally adjusted, and a carbodiimide compound (stabucksol I, manufactured by Line Chemie, Inc.) to be a terminal regulator of PA66, were prepared.

また、Nd系磁石粉末(粗粉末)として市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製MF18Pと、Sm系磁石粉末(微粉末)として市販のSmFeN系異方性磁石粉末(住友金属鉱山社製 SmFeN合金微粉C)を用意した。   In addition, NdFeB anisotropic magnet powder (MF18P manufactured by Aichi Steel Co., Ltd.) as Nd magnet powder (coarse powder) and SmFeN anisotropic magnet powder (Sumitomo Metal Co., Ltd.) as Sm magnet powder (fine powder) A Minebek's SmFeN alloy fine powder C) was prepared.

(2)末端調整
PA66の末端調整は、未改質のPA66と所定量のカルボジイミド化合物をドライブレンドした混合物を二軸押出機(東芝機械社製 TEM26SS、スクリュー径26mm)の主ホッパーへ供給し、280℃で溶融混練し、ストランド状に押出して冷却固化した後、それをペレタイザーでカッティングして得た。こうして末端基の総量が異なる2種類の改質PA66を得た。これら改質PA66と、末端調整していないPA66(未改質PA66)を、以下に示す試料の製造に供した。
(2) End Adjustment The end adjustment of PA66 is carried out by supplying a mixture obtained by dry blending unmodified PA66 and a predetermined amount of carbodiimide compound to the main hopper of a twin-screw extruder (TEM26SS manufactured by Toshiba Machine Co., Ltd., screw diameter 26 mm), After melt-kneading at 280 ° C., extruding in the form of a strand and cooling and solidifying it, it was obtained by cutting with a pelletizer. In this way, two types of modified PA66 in which the total amount of end groups differs were obtained. The modified PA66 and the unterminated PA66 (unmodified PA66) were subjected to the production of the samples shown below.

(3)コンパウンドの製造
各試料毎に、表1に示す質量割合に秤量した各希土類磁石粉末と各PA66との混合物を、二軸混練機(東芝機械社製 TEM−26SS)を用いて、280℃に加熱しつつ混練した。こうして得られた混練物をペレタイザーでカッティングして樹脂組成物のペレット(φ3mm×3mm)を得た。
(3) Production of Compound For each sample, a mixture of each rare earth magnet powder and each PA 66 weighed to a mass ratio shown in Table 1 is subjected to 280 using a biaxial kneader (TEM-26SS manufactured by Toshiba Machine Co., Ltd.). It knead | mixed, heating at ° C. The kneaded material thus obtained was cut with a pelletizer to obtain pellets (φ 3 mm × 3 mm) of the resin composition.

(4)ボンド磁石の製造
各試料毎に、コンパウンドを射出成形機(東芝機械社製 EC−100)のホッパーへ投入して加熱し、溶融混合物を金型のキャビティへ充填した。こうして長さ127mm×幅12mm×厚み3mmのボンド磁石を得た。射出成形は、金型のキャビティに配向磁場を印加しつつ、金型温度:120℃、ノズル温度:280℃として行った。
(4) Production of Bonded Magnet For each sample, the compound was charged into the hopper of an injection molding machine (EC-100 manufactured by Toshiba Machine Co., Ltd.) and heated, and the molten mixture was filled into the cavity of the mold. In this way, a bonded magnet of length 127 mm × width 12 mm × thickness 3 mm was obtained. Injection molding was performed with a mold temperature of 120 ° C. and a nozzle temperature of 280 ° C. while applying an orienting magnetic field to the mold cavity.

《測定》
(1)末端基の総量
各PA66の末端官能基であるカルボキシル基とアミノ基の各濃度を次のようにして求めた。試料をトリフルオロ酢酸‐d(CFCOOD)と重水(DO)の混合溶液に溶解し、H−NMR測定を行った。得られたスペクトルのピーク強度に基づいて、−NH末端および−COOH末端の総量を算出した。各PA66のカルボキシル基濃度、アミノ基濃度およびそれらの合計濃度(総量)を表1に併せて示した。
<< Measurement >>
(1) Total Amount of Terminal Groups The concentrations of the carboxyl group and the amino group which are terminal functional groups of each PA 66 were determined as follows. The sample was dissolved in a mixed solution of trifluoroacetic acid-d (CF 3 COOD) and heavy water (D 2 O), and 1 H-NMR measurement was performed. Based on the peak intensity of the obtained spectrum, the total amount of —NH 2 end and —COOH end was calculated. The carboxyl group concentration, amino group concentration and their total concentration (total amount) of each PA 66 are shown together in Table 1.

(2)磁気特性
各試料毎に、ボンド磁石の磁気特性(残留磁束密度:Br、保磁力:iHc、最大エネルギー積:BHmax)を、直流磁化特性自動記録装置(理研電子社製 Model BHU−20)を用いて常温で測定した。得られた結果を表1に併せて示した。
(2) Magnetic properties For each sample, the magnetic properties (residual magnetic flux density: Br, coercivity: iHc, maximum energy product: BHmax) of the bond magnet are recorded in a direct current magnetization characteristic automatic recording apparatus (Riken Electronics Co., Ltd. Model BHU-20) ) At room temperature. The obtained results are shown together in Table 1.

(3)成形性(混練トルク)
各試料毎に、表1に示す質量割合に秤量した希土類磁石粉末と各PA66との混合物を、ラボプラストミル(東洋精機社製 R−60)を用いて加熱混練し、混練中に要するトルク(混練トルク)の経時変化を測定した。この際、加熱温度:280℃、スクリュー回転数:50rpm(一定)とした。
(3) Formability (kneading torque)
For each sample, a mixture of rare earth magnet powder weighed to the mass ratio shown in Table 1 and each PA 66 is heat-kneaded using Labo Plastomill (R-60 manufactured by Toyo Seiki Co., Ltd.), and torque required during kneading ( The change over time of the kneading torque was measured. At this time, heating temperature: 280 ° C., screw rotation speed: 50 rpm (constant).

混練開始時から起算して、混練トルクが最小値に対して1.2倍となった時までの時間を増粘開始時間とした。増粘開始時間が1500秒超のとき:○、増粘開始時間が1200〜1500秒のとき:△、増粘開始時間が1200秒未満のとき:×として、表1に併せて示した。   The time from the start of kneading to the time when the kneading torque became 1.2 times the minimum value as the viscosity increase start time. When the thickening start time is more than 1500 seconds: ○, when the thickening start time is 1200 to 1500 seconds: Δ, and when the thickening start time is less than 1200 seconds: as ×, it is shown together in Table 1.

《評価》
(1)表1に示した試料10と試料C1の比較から次のことがわかる。希土類磁石粉末がNd系磁石粉末のみで、結合樹脂が未改質PA66である場合、Nd系磁石粉末の含有率が90質量%未満であれば成形性が確保される。しかし、磁気特性を十分に確保するためにNd系磁石粉末の含有率を90質量以上にすると、高磁気特性は確保されるものの、成形性の確保が困難となった。
"Evaluation"
(1) The comparison of the sample 10 and the sample C1 shown in Table 1 reveals the following. When the rare earth magnet powder is only Nd magnet powder and the binder resin is unmodified PA 66, the formability is secured if the content of the Nd magnet powder is less than 90% by mass. However, if the content of the Nd-based magnet powder is 90 mass or more in order to secure sufficient magnetic properties, high magnetic properties are secured but it becomes difficult to secure formability.

(2)試料C3と試料C4から明らかなように、希土類磁石粉末が微細なSm系磁石粉末のみである場合、その含有率が90質量%未満であっても、結合樹脂の末端調整の有無に拘わらず、成形性の確保が困難であった。 (2) As apparent from the samples C3 and C4, when the rare earth magnet powder is only a fine Sm-based magnet powder, even if the content is less than 90% by mass, whether or not the terminal resin of the binding resin is adjusted Regardless, it has been difficult to ensure formability.

(3)試料11と試料12から、Nd系磁石粉末の含有率を90質量%以上にしても、改質PA66を用いることにより、ボンド磁石の磁気特性を十分に確保しつつ、成形性も確保できることもわかった。特に、改質PA66の末端基の総量が100mmol/kg以下であると、成形性とボンド磁石の磁気特性がより高次元で両立することもわかった。 (3) From the samples 11 and 12, even if the content of the Nd-based magnet powder is 90% by mass or more, by using the modified PA 66, the magnetic properties of the bonded magnet are sufficiently secured while the formability is also secured. I also knew that I could do it. In particular, it was also found that when the total amount of end groups of the modified PA 66 is 100 mmol / kg or less, the formability and the magnetic properties of the bonded magnet are compatible with each other at a higher level.

(4)試料20〜22から、希土類磁石粉末全体の含有率を90質量%以上にする場合でも、Nd系磁石粉末(粗粉末)とSm系磁石粉末(微粉末)の混合粉末を用いることにより、成形性を確保しつつ、ボンド磁石の磁気特性を向上させ得ることがわかった。特に、末端基の総量が175mmol/kg以下さらには150mmol/kg以下である改質PA66を用いることにより、成形性とボンド磁石の磁気特性をより高次元で両立させ得ることもわかった。 (4) From Samples 20 to 22, even when the content of the whole rare earth magnet powder is made 90 mass% or more, by using a mixed powder of Nd magnet powder (coarse powder) and Sm magnet powder (fine powder) It has been found that the magnetic properties of the bonded magnet can be improved while securing the formability. In particular, it has also been found that by using the modified PA 66 in which the total amount of terminal groups is 175 mmol / kg or less, and further 150 mmol / kg or less, the moldability and the magnetic properties of the bonded magnet can be compatible in higher dimensions.

以上から、本発明の組成物を用いれば、混練性や成形性を確保しつつ、耐熱性と磁気特性の両方に優れたボンド磁石が得られることが明らかとなった。   From the above, it has become clear that, by using the composition of the present invention, a bonded magnet excellent in both heat resistance and magnetic properties can be obtained while securing kneadability and moldability.


Claims (8)

一種以上の希土類磁石粒子と結合樹脂からなり、ボンド磁石の製造に用いられる組成物であって、
前記希土類磁石粒子は、希土類元素がNdであるNd系磁石粒子を少なくとも含み、
該希土類磁石粒子の総量は、前記組成物全体に対して90〜95質量%であり、
前記結合樹脂は、カルボキシル基とアミノ基からなる末端基の総量が該結合樹脂全体に対して175mmol/kg以下のポリアミド66(PA66)からなるボンド磁石用組成物。
A composition comprising one or more rare earth magnet particles and a binding resin and used for producing a bonded magnet,
The rare earth magnet particles at least include Nd magnet particles in which the rare earth element is Nd,
The total amount of the rare earth magnet particles is 90 to 95% by mass with respect to the entire composition,
The composition for a bonded magnet, wherein the binding resin is a polyamide 66 (PA66) in which the total amount of terminal groups consisting of a carboxyl group and an amino group is 175 mmol / kg or less based on the entire binding resin.
前記Nd系磁石粒子は、前記組成物全体に対して90質量%以上含まれ、
前記PA66の末端基の総量は、100mmol/kg以下である請求項1に記載のボンド磁石用組成物。
The Nd-based magnet particles are contained in an amount of 90% by mass or more based on the entire composition,
The bonded magnet composition according to claim 1, wherein the total amount of end groups of the PA 66 is 100 mmol / kg or less.
前記Nd系磁石粒子は、平均粒径が40〜250μmである請求項1または2に記載のボンド磁石用組成物。   The composition for a bonded magnet according to claim 1, wherein the Nd-based magnet particles have an average particle diameter of 40 to 250 μm. 前記希土類磁石粒子は、さらに希土類元素がSmであるSm系磁石粒子を含み、
該Sm系磁石粒子は、平均粒径が1〜20μmである請求項1〜3のいずれかに記載のボンド磁石用組成物。
The rare earth magnet particles further include Sm based magnet particles in which the rare earth element is Sm,
The composition for a bonded magnet according to any one of claims 1 to 3, wherein the Sm-based magnet particles have an average particle diameter of 1 to 20 m.
前記Nd系磁石粒子は、平均粒径が40〜150μmであると共に前記組成物全体に対して65〜89質量%含まれ、
前記希土類磁石粒子は、さらに希土類元素がSmであるSm系磁石粒子を含み、
該Sm系磁石粒子は、平均粒径が1〜20μmであると共に該組成物全体に対して1〜30質量%含まれ、
前記PA66の末端基の総量は、150mmol/kg以下である請求項1に記載のボンド磁石用組成物。
The Nd-based magnet particles have an average particle diameter of 40 to 150 μm and are contained in an amount of 65 to 89% by mass based on the whole composition,
The rare earth magnet particles further include Sm based magnet particles in which the rare earth element is Sm,
The Sm-based magnet particles have an average particle size of 1 to 20 μm and are contained in an amount of 1 to 30% by mass with respect to the entire composition,
The bonded magnet composition according to claim 1, wherein the total amount of end groups of the PA 66 is 150 mmol / kg or less.
前記希土類磁石粒子は、希土類異方性磁石粒子である請求項1〜5のいずれかに記載のボンド磁石用組成物。   The bonded magnet composition according to any one of claims 1 to 5, wherein the rare earth magnet particles are rare earth anisotropic magnet particles. 前記PA66は、重量平均分子量(Mw)が12000〜40000である請求項1〜6のいずれかに記載のボンド磁石用組成物。   The composition for a bonded magnet according to any one of claims 1 to 6, wherein the PA 66 has a weight average molecular weight (Mw) of 12000 to 40000. 請求項1〜7のいずれかに記載のボンド磁石用組成物の射出成形体からなるボンド磁石。   The bonded magnet which consists of an injection molded body of the composition for bonded magnets in any one of Claims 1-7.
JP2017193002A 2017-10-02 2017-10-02 Bond magnet and composition for bond magnet Pending JP2019067957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193002A JP2019067957A (en) 2017-10-02 2017-10-02 Bond magnet and composition for bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193002A JP2019067957A (en) 2017-10-02 2017-10-02 Bond magnet and composition for bond magnet

Publications (1)

Publication Number Publication Date
JP2019067957A true JP2019067957A (en) 2019-04-25

Family

ID=66339879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193002A Pending JP2019067957A (en) 2017-10-02 2017-10-02 Bond magnet and composition for bond magnet

Country Status (1)

Country Link
JP (1) JP2019067957A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049204A (en) * 2001-02-07 2003-02-21 Sumitomo Special Metals Co Ltd Iron based rare earth alloy powder, compound containing iron based rare earth alloy powder and permanent magnet using the same
JP2007335676A (en) * 2006-06-15 2007-12-27 Daido Electronics Co Ltd Rare earth bond magnet
JP2013098254A (en) * 2011-10-28 2013-05-20 Nichia Chem Ind Ltd Compound for bonded magnet
JP2013253219A (en) * 2012-05-08 2013-12-19 Sumitomo Metal Mining Co Ltd Composition for bond magnet and bond magnet using the same
JP2015199874A (en) * 2014-04-09 2015-11-12 旭化成ケミカルズ株式会社 Material for molding of high-molecular-weight polyamide
WO2015182693A1 (en) * 2014-05-30 2015-12-03 東レ株式会社 Terminal-modified polyamide resin, method for producing same, and method for producing molded articles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049204A (en) * 2001-02-07 2003-02-21 Sumitomo Special Metals Co Ltd Iron based rare earth alloy powder, compound containing iron based rare earth alloy powder and permanent magnet using the same
JP2007335676A (en) * 2006-06-15 2007-12-27 Daido Electronics Co Ltd Rare earth bond magnet
JP2013098254A (en) * 2011-10-28 2013-05-20 Nichia Chem Ind Ltd Compound for bonded magnet
JP2013253219A (en) * 2012-05-08 2013-12-19 Sumitomo Metal Mining Co Ltd Composition for bond magnet and bond magnet using the same
JP2015199874A (en) * 2014-04-09 2015-11-12 旭化成ケミカルズ株式会社 Material for molding of high-molecular-weight polyamide
WO2015182693A1 (en) * 2014-05-30 2015-12-03 東レ株式会社 Terminal-modified polyamide resin, method for producing same, and method for producing molded articles

Similar Documents

Publication Publication Date Title
KR100241982B1 (en) Rare earth bonded magnet and composition therefor
JP5910467B2 (en) Bonded magnet composition and bonded magnet using the same
JP2020205455A (en) Method of producing bonded magnet and compound for bonded magnet
WO2021014837A1 (en) Additive for bonded magnet and method for manufacturing compound for bonded magnet
JP2019067957A (en) Bond magnet and composition for bond magnet
JP4821768B2 (en) COMPOSITION FOR INJECTION MOLDING, PROCESS FOR PRODUCING THE SAME, AND OBTAINED INJECTION MOLDED BODY
JP2004111515A (en) Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
EP1347471A2 (en) Resin composition for bond magnet and bond magnet using the same
US10510471B2 (en) Composition for bonded magnets, bonded magnet and integrally molded component
JP4305628B2 (en) Resin composition for bonded magnet and bonded magnet
JP2011049404A (en) Method of manufacturing bond magnet, and bond magnet
JP4702396B2 (en) Bonded magnet composition and bonded magnet using the same
JP6471724B2 (en) Method for producing magnet alloy powder for bonded magnet
JP4433068B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH04257203A (en) Plastic magnet composite
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP2003217916A (en) High heat resistance magnetic powder, its manufacturing method and bonded magnet using the same
JP7201905B2 (en) Manufacturing method of compound for recycled bonded magnet
JP2023137392A (en) Composition for bonded magnet, method for manufacturing the same, and bonded magnet
KR102154588B1 (en) A magnet of Nd-Fe-B system comprising organic binder
JPH09129427A (en) Rare earth bond magnet, composite for rare earth bond magnet and manufacture of rare earth bond magnet
JP2023081517A (en) Composition for bond magnet and the bond magnet
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301