JPH04133355A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH04133355A
JPH04133355A JP25447490A JP25447490A JPH04133355A JP H04133355 A JPH04133355 A JP H04133355A JP 25447490 A JP25447490 A JP 25447490A JP 25447490 A JP25447490 A JP 25447490A JP H04133355 A JPH04133355 A JP H04133355A
Authority
JP
Japan
Prior art keywords
region
layer
resistivity
conductivity type
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25447490A
Other languages
Japanese (ja)
Inventor
Noriyuki Iwamuro
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25447490A priority Critical patent/JPH04133355A/en
Publication of JPH04133355A publication Critical patent/JPH04133355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To realize both low ON voltage and a short switching time by limiting the value of the resistivity of a low impurity concentration layer. CONSTITUTION:An n<+> buffer layer 2 and an n<-> layer 3 are laminated on a p<+> substrate 1 in succession. A silicon oxide film 6 is formed onto the surface of the n<-> layer 3, polycrystalline silicon is deposited on the oxide film 6, and a gate electrode 7 and the gate oxide film 6 are formed through patterning by the same mask. Ions are implanted by utilizing the gate electrode 7 as a mask, and a p<+> layer 4 is shaped through thermal diffusion. An n<+> layer 5 is formed through ion implantation while using the gate electrode 7 and a photo- resist film as masks and thermal diffusion. A source electrode is formed through an insulating film 10 and a drain electrode on a surface on the reverse side, thus completing an element. When the resistivity of the n<-> layer 3 as a third region is increased to high resistivity of 120OMEGA.cm or more at that time, a depletion layer quickly reaches a second region at a turn-OFF time. Accordingly, an insulated gate type bipolar transistor having small turn-OFF loss can be acquired without increasing ON voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力用スイッチング素子として用いられる絶
縁ゲート型バイポーラトランジスタ (以下I GBT
と記す)に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as IGBT) used as a power switching element.
).

〔従来の技術〕[Conventional technology]

近年、電力用スイッチング素子としてI GBTが一般
に使われ始めているが、これは、例えばnチャネル縦型
MOS F ETのドレイン領域のドレイン電極側にp
°層を付は加えた構成を有している。すなわち、第2図
に示すように、p゛シリコン基板1の一面上に低抵抗の
n°層2を形成し、その表面上に高抵抗のn−層3を横
1する。そして、このn−層3の表面部に選択的にp゛
層4形成し、さらにこのp°層4の表面部に選択的にn
゛層5形成する。そしてp゛屡4うちのn−層3とn゛
層5はさまれた表面領域41をチャネル11mとして、
この上にゲート絶縁膜I6を介してゲート端子Gに接読
されたゲート絶縁膜7を形成する。そして、p゛層4n
゛層5共通に接触するソース端子Sに接読されたソース
電極8をwA縁1I110を介して形成し、他方p゛基
板の表面にドレイン端子りに接続されたドレイン電8i
9を配置する。
In recent years, IGBTs have generally begun to be used as power switching elements.
It has a structure with additional layers. That is, as shown in FIG. 2, a low-resistance n-layer 2 is formed on one surface of a p-silicon substrate 1, and a high-resistance n-layer 3 is laterally formed on the surface thereof. Then, a p' layer 4 is selectively formed on the surface of this n-layer 3, and further an n layer is selectively formed on the surface of this p° layer 4.
゛Layer 5 is formed. Then, the surface region 41 sandwiched between the n- layer 3 and the n-layer 5 in the layer 4 is set as a channel 11m,
A gate insulating film 7 is formed on this, which is connected to the gate terminal G via a gate insulating film I6. And p゛ layer 4n
A source electrode 8 connected to the source terminal S commonly in contact with the layers 5 is formed via the wA edge 1I110, and a drain electrode 8i is connected to the surface of the P substrate via the drain terminal.
Place 9.

この素子は、ソース端子Sを接地し、ゲート端子Gとド
レイン端子りに正の電圧を与えると、n゛層2よびn−
層3.p゛層4.n°層5ならびにゲート電極7および
ソース電極8等から構成されるMOS F ETがオン
し、前記チャネル41を介してn−層3に電子が流れ込
む、p″基板1からn−層3には、その電子流入に対応
した正孔の注入がおこり、n−N3では伝導度変調が生
ずることにより、このwIMの抵抗が低くなり、低いオ
ン抵抗で導通する。
In this element, when the source terminal S is grounded and a positive voltage is applied to the gate terminal G and drain terminal, the n' layer 2 and the n-
Layer 3. p layer 4. The MOS FET consisting of the n° layer 5, gate electrode 7, source electrode 8, etc. is turned on, and electrons flow into the n- layer 3 through the channel 41. , holes are injected in response to the inflow of electrons, and conductivity modulation occurs in n-N3, which lowers the resistance of this wIM and makes it conductive with low on-resistance.

(発明が解決しようとするsin: 上記した従来のIGBTは、オン電圧は小さくなるが、
n−13における電子と正孔の再結合率が低いため、ス
イッチング時間が長く、これによりスイッチング損失が
増大するという問題点がある。
(Sin that the invention seeks to solve: The above-mentioned conventional IGBT has a small on-voltage, but
Since the recombination rate of electrons and holes in n-13 is low, there is a problem that the switching time is long, which increases switching loss.

この問題点を解決するために、電子と正孔の再結合率を
高める目的で、シリコン素体に電子線を照射したり、金
の拡散を行ってライフタイムを落とす方法がある。しか
し、これらの方法を実行すると、逆にI GBTのオン
電圧が大きくなってしまう、すなわち、オン電圧とスイ
ッチング時間はトレードオフの関係にあり、両特性を同
時に改善することは非常に難しい。
To solve this problem, there are methods to reduce the lifetime by irradiating the silicon element with an electron beam or by diffusing gold in order to increase the recombination rate of electrons and holes. However, when these methods are carried out, the on-voltage of the IGBT becomes larger, that is, there is a trade-off relationship between the on-voltage and the switching time, and it is extremely difficult to improve both characteristics at the same time.

本発明の目的は、このようなトレードオフ関係を解消し
て低いオン電圧と短いスイッチング時間の双方を実現す
ることのできるIGETを提供することにある。
An object of the present invention is to provide an IGET that can eliminate such trade-off relationships and realize both low on-voltage and short switching time.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、高不純物濃度
で第一導電型の第−領域、その第一領域上に積層された
高不純物濃度で第二導電型の第二領域、その第二領域上
に積層された低不純物濃度で第二導電型の第三領域、そ
の第三領域の表面部に選択的に形成された第一導電型の
第四領域およびその第四領域の表面部に選択的に形成さ
れた高不純物濃度で第二導電型の第五領域を有する半導
体基板と、その半導体!&板の第四領域の表面部の第三
領域と第五HIMとによってはさまれた部分をチャネル
領域としてその表面上にゲート絶縁膜を介して設けられ
たゲート電極と、第四領域表面および第五領域表面に共
通に接触するソース電極と、第一領域表面に接触するド
レイン電極とを備えたI GBTにおいて、第三領域の
抵抗率が120Ω・1以上であるものとする。また第二
領域の抵抗率がO8旧Ω・1以上、0.05Ω・1以下
であること、さらには、第−MJ1tの抵抗率が0.0
05Ω・1以上、0.02Ω・1以下であることが望ま
しい。
In order to achieve the above object, the present invention provides a first region with a high impurity concentration and a first conductivity type, a second region with a high impurity concentration and a second conductivity type laminated on the first region, and A third region of the second conductivity type with a low impurity concentration laminated on the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and a surface of the fourth region. A semiconductor substrate having a fifth region of a second conductivity type with a high impurity concentration selectively formed in and the semiconductor! The portion of the surface of the fourth region of the board sandwiched between the third region and the fifth HIM is used as a channel region, and a gate electrode is provided on the surface of the fourth region with a gate insulating film interposed therebetween; In an IGBT that includes a source electrode that commonly contacts the surface of the fifth region and a drain electrode that contacts the surface of the first region, the resistivity of the third region is 120Ω·1 or more. Further, the resistivity of the second region is O8 old Ω・1 or more and 0.05Ω・1 or less, and furthermore, the resistivity of the -MJ1t is 0.0
It is desirable that the resistance is 0.05Ω·1 or more and 0.02Ω·1 or less.

〔作用〕[Effect]

第三領域の抵抗率が120Ω・0以上と高誕抗率である
と、ターンオフ時に空乏層がいち早く第二領域にN11
達する。そして、第二領域の抵抗率を0.05Ω・1以
下と抵抗率にすると、注入効率が低く、そのためストレ
ージ時間およびティルミ流が小さくなり、ターンオフ時
間およびターンオフ損失を低く抑えることができる。さ
らに0.01Ω・1以上とすることでpnpトランジス
タの注入2h*が低下することによるオン抵抗の上昇を
抑えることができる。また第−fl填の抵抗率を0.0
05Ω・1以上、0.02Ω・1以下の範囲にすること
で第一領域からの注入効率が低下することによるオン抵
抗の上界を仰えることができる。
If the resistivity of the third region is high, such as 120Ω・0 or more, the depletion layer quickly transfers N11 to the second region at turn-off.
reach When the resistivity of the second region is set to 0.05Ω·1 or less, the injection efficiency is low, so the storage time and the Tilmi flow are reduced, and the turn-off time and turn-off loss can be suppressed. Further, by setting the resistance to 0.01Ω·1 or more, it is possible to suppress an increase in the on-resistance due to a decrease in the implantation 2h* of the pnp transistor. Also, the resistivity of the -fl filling is 0.0
By setting it in the range of 0.05 Ω·1 or more and 0.02 Ω·1 or less, it is possible to determine the upper limit of the on-resistance due to the decrease in injection efficiency from the first region.

〔実施例〕〔Example〕

第2図に示した構造をもつI GBTを次の方法で製造
した。まず、p″基板1の上にエピタキシ中ル法でn゛
バフフ1層2よびn”層3を順次積層する0次にn−層
3の表面上にシリコン駿化膜6を形成し、その上に多結
晶シリコンを堆積し、間−マスクでバターニングしてゲ
ート電極7およびゲート酸化膜6を形成する。そしてこ
のゲート電極7をマスクとして利用してイオン注入を行
い、熱拡散によりp゛層4形成する。さらに、ゲート電
極7およびフォトレジスト膜をマスクとしてのイオン注
入と熱拡散によりn゛層5形成する。
An IGBT having the structure shown in FIG. 2 was manufactured by the following method. First, an n'buff 1 layer 2 and an n' layer 3 are sequentially laminated on a p'' substrate 1 by an epitaxy method, and a silicon nitride film 6 is formed on the surface of the n-layer 3. Polycrystalline silicon is deposited thereon and patterned using a mask to form gate electrode 7 and gate oxide film 6. Then, using this gate electrode 7 as a mask, ion implantation is performed, and a p' layer 4 is formed by thermal diffusion. Furthermore, the n' layer 5 is formed by ion implantation and thermal diffusion using the gate electrode 7 and the photoresist film as a mask.

つづいて、絶縁膜10を介してソース電極を、また反対
側の面にドレイン電極を形成して素子が完成する。なお
、この素子には、再結合率を高める目的で電子線照射や
金拡散は行わなかった。
Subsequently, a source electrode is formed via the insulating film 10, and a drain electrode is formed on the opposite surface to complete the device. Note that this element was not subjected to electron beam irradiation or gold diffusion for the purpose of increasing the recombination rate.

このようなIGBTのp゛基板1に抵抗率0.01Ω・
個のシリコン基板を用い、n2バッファ層2を抵抗率0
.01Ω・1.厚さ5−に固定し、5Oflの厚さのn
−層3の抵抗率を20Ω・国から300Ω・国の範囲で
変化させて製作したときの電流密度IQOA/−におけ
るオン電圧V、。1(v)とターンオフ損失E、ff(
■J)の変化を第1図に示す、オン電圧はn−層3の抵
抗率によらず一定であり、ターンオフ損失はρ−120
Ω・1を境として低抵抗率側で急激に増加していること
がわかる。
The p-substrate 1 of such an IGBT has a resistivity of 0.01Ω.
N2 buffer layer 2 has a resistivity of 0.
.. 01Ω・1. The thickness is fixed at 5−, and the thickness n of 5Ofl is
- On-voltage V at current density IQOA/- when fabricated with resistivity of layer 3 varied in the range from 20Ω to 300Ω. 1(v) and turn-off loss E, ff(
■ Figure 1 shows the change in J). The on-voltage is constant regardless of the resistivity of the n-layer 3, and the turn-off loss is ρ-120.
It can be seen that the resistivity increases rapidly on the low resistivity side with Ω·1 as the boundary.

次に、抵抗率0,01Ω・国のp″基板1の上に抵抗率
200Ω・1で50ttmの厚さのn−層3との間にn
”バッフ1層2を0.009Ω・艶から0.IQ−ca
の間に抵抗率を変えて5Bの厚さに形成したときのI 
GBTの電′/jL密1tloOA/−におけるオン電
圧V Damおよびターンオフ損失Eaffのバッファ
層抵抗率依存性を第3図に示す、オン電圧は0.01Ω
9国を境にして低抵抗率側になると上昇し、またターン
オフ損失は0.05Ω・1を境にしてより高抵抗率にな
ると増大していることがわかる。
Next, an n
``Buff 1 layer 2 is 0.009Ω・Gloss to 0.IQ-ca
I when formed to a thickness of 5B by changing the resistivity during
Figure 3 shows the dependence of the on-voltage V Dam and the turn-off loss Eaff on the buffer layer resistivity at a voltage of GBT'/jL density of 1tloOA/-.The on-voltage is 0.01Ω.
It can be seen that the turn-off loss increases as the resistivity reaches the lower resistivity side after reaching 9 countries, and the turn-off loss increases as the resistivity reaches higher resistivity beyond 0.05Ω·1.

さらに、p゛基板lに抵抗率を0.004Ω・値から0
.05Ω・(至)の範囲で変えたものを用い、その上に
抵抗率0、旧Ω・国、厚さ5−のn°バフファ層2を介
して抵抗率200Ω・値、厚さ50nのn−層3を積層
して製作したT GBTにおけるオン電圧V 1111
@およびターンオフ損失E*ttのp″基板抵抗率依存
性を第4図に示す、ターンオフ損失はp・基板の抵抗率
にあまり依存しない、一方、オン電圧はo、oosΩ・
1から0.02Ω・口の範囲では平らであるが、この範
囲をはずれると急激に増大している。
Furthermore, the resistivity of the p゛substrate l is changed from 0.004Ω・value to 0.
.. A resistivity of 200Ω and a thickness of 50n is applied through an n° buffer layer 2 with a resistivity of 0, an old Ω and a thickness of 5-. - On-voltage V in TGBT manufactured by laminating layer 3 1111
Figure 4 shows the dependence of the turn-off loss E*tt on the p″ substrate resistivity.The turn-off loss does not depend much on the p″ substrate resistivity, while the on-voltage is
It is flat in the range of 1 to 0.02Ω, but increases rapidly outside this range.

〔発明の効果〕〔Effect of the invention〕

以上の説明かられかるように、本発明によれば、低率A
吻1s度1の抵抗率、さろにシよそれに接するバノフプ
屡の抵抗率あるいはその下層の逆導電型の高不連#!J
2屡度1の抵抗率の(f−t−限定することによりオン
電圧が上界しないでターンオフ損失の小さいI GBT
を得ることができた。
As can be seen from the above explanation, according to the present invention, the low rate A
The resistivity of the base is 1s, the resistivity of the base layer adjacent to it, or the high discontinuity of the reverse conductivity type below it! J
IGBT with a resistivity of 2 degrees and 1 (f-t) has no upper limit on the on-voltage and has small turn-off loss.
was able to obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、IGBTのオン電圧、ターンオフ損失とn−
層抵抗率との関係線図、第2図はIGBTの構造を示す
断面図、第3図、第4図はrGBTのオン電圧、ターン
オフ損失とn゛層抵抗率およびp゛基板抵抗率それぞれ
との関係線図である。 案1閃 膜、7:ゲート電極、8:ソース電極、9ニドレイン電
極、10:絶縁膜。
Figure 1 shows the on-voltage, turn-off loss and n-
Figure 2 is a cross-sectional diagram showing the structure of an IGBT, and Figures 3 and 4 are diagrams showing the relationship between the rGBT's on-voltage, turn-off loss, n'layer resistivity, and p'substrate resistivity, respectively. FIG. Plan 1 flash film, 7: gate electrode, 8: source electrode, 9 nitrogen electrode, 10: insulating film.

Claims (1)

【特許請求の範囲】 1)高不純物濃度で第一導電型の第一領域、その第一領
域上に積層された高不純物濃度で第二導電型の第二領域
、その第二領域上に積層された低不純物濃度で第二導電
型の第三領域、その第三領域の表面部に選択的に形成さ
れた第一導電型の第四領域およびその第四領域の表面部
に選択的に形成された高不純物濃度で第二導電型の第五
領域を有する半導体基板と、その半導体基板の第四領域
の表面部の第三領域と第五領域とによってはさまれた部
分をチャネル領域としてその表面上にゲート絶縁膜を介
して設けられたゲート電極と、第四領域表面および第五
領域表面に共通に接触するソース電極と、第一領域表面
に接触するドレイン電極とを備えたものにおいて、第三
領域の抵抗率が120Ω・cm以上であることを特徴と
する絶縁ゲート型バイポーラトランジスタ。 2)請求項1記載のトランジスタにおいて、第二領域の
抵抗率が0.01Ω・cm以上、0.05Ω・cm以下
である絶縁ゲート型バイポーラトランジスタ。 3)請求項1あるいは2記載のトランジスタにおいて、
第一領域の抵抗率が0.005Ω・cm以上、0.02
Ω・cm以下である絶縁ゲート型バイポーラトランジス
タ。
[Claims] 1) A first region of a first conductivity type with a high impurity concentration, a second region of a second conductivity type with a high impurity concentration laminated on the first region, and a second region of a second conductivity type with a high impurity concentration laminated on the second region. a third region of the second conductivity type with a low impurity concentration; a fourth region of the first conductivity type selectively formed on the surface of the third region; and a fourth region of the first conductivity type selectively formed on the surface of the fourth region. A semiconductor substrate having a fifth region of the second conductivity type with a high impurity concentration and a portion sandwiched between the third region and the fifth region on the surface of the fourth region of the semiconductor substrate is used as a channel region. A gate electrode provided on the surface via a gate insulating film, a source electrode commonly in contact with the fourth region surface and the fifth region surface, and a drain electrode in contact with the first region surface, An insulated gate bipolar transistor characterized in that the resistivity of the third region is 120 Ω·cm or more. 2) An insulated gate bipolar transistor according to claim 1, wherein the second region has a resistivity of 0.01 Ω·cm or more and 0.05 Ω·cm or less. 3) In the transistor according to claim 1 or 2,
The resistivity of the first region is 0.005Ω・cm or more, 0.02
An insulated gate bipolar transistor with a resistance of Ω・cm or less.
JP25447490A 1990-09-25 1990-09-25 Insulated gate type bipolar transistor Pending JPH04133355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25447490A JPH04133355A (en) 1990-09-25 1990-09-25 Insulated gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25447490A JPH04133355A (en) 1990-09-25 1990-09-25 Insulated gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH04133355A true JPH04133355A (en) 1992-05-07

Family

ID=17265549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25447490A Pending JPH04133355A (en) 1990-09-25 1990-09-25 Insulated gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH04133355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670603A1 (en) * 1994-02-18 1995-09-06 Hitachi, Ltd. Semiconductor device comprising at least one IGBT and a diode
US5559348A (en) * 1994-11-11 1996-09-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having insulated gate bipolar transistor
JP2007116160A (en) * 2005-10-18 2007-05-10 Internatl Rectifier Corp Trench igbt for large capacity load
JPWO2018135147A1 (en) * 2017-01-17 2019-06-27 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373670A (en) * 1986-09-17 1988-04-04 Toshiba Corp Conductive modulation type mosfet
JPH02148767A (en) * 1988-11-29 1990-06-07 Fuji Electric Co Ltd Conductivity modulation type mosfet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373670A (en) * 1986-09-17 1988-04-04 Toshiba Corp Conductive modulation type mosfet
JPH02148767A (en) * 1988-11-29 1990-06-07 Fuji Electric Co Ltd Conductivity modulation type mosfet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670603A1 (en) * 1994-02-18 1995-09-06 Hitachi, Ltd. Semiconductor device comprising at least one IGBT and a diode
EP0840379A2 (en) * 1994-02-18 1998-05-06 Hitachi, Ltd. Semiconductor device comprising at least an IGBT and a diode
EP0840379A3 (en) * 1994-02-18 1998-05-27 Hitachi, Ltd. Semiconductor device comprising at least an IGBT and a diode
US5559348A (en) * 1994-11-11 1996-09-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having insulated gate bipolar transistor
JP2007116160A (en) * 2005-10-18 2007-05-10 Internatl Rectifier Corp Trench igbt for large capacity load
JPWO2018135147A1 (en) * 2017-01-17 2019-06-27 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7863678B2 (en) Insulated-gate field-effect transistor
JPH0467343B2 (en)
JPH06204481A (en) Insulated-gate semiconductor device and manufacture thereof
JP2553723B2 (en) Compound semiconductor integrated circuit device
JPH04274368A (en) Insulated gate type bipolar transistor and manufacture thereof
JPH04133355A (en) Insulated gate type bipolar transistor
JPH06112494A (en) Insulated gate bipolar transistor
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH0555594A (en) Vertical field-effect transistor
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP2561963B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP2808882B2 (en) Insulated gate bipolar transistor
JPH0227822B2 (en)
JP4017763B2 (en) Static induction transistor
JPH01111378A (en) Vertical mosfet
JPH0368173A (en) Semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH0136711B2 (en)
JPH01243591A (en) Semiconductor device
KR20000002262A (en) Semiconductor apparatus for electric power and manufacturing method thereof
JPH0254968A (en) Conductivity modulation type mos-fet
JPH07226503A (en) Lateral insulated gate bipolar transistor
JPH02267969A (en) Horizontal type conductivity modulation type mosfet
JPS59117264A (en) Semiconductor device