JPH0413315B2 - - Google Patents

Info

Publication number
JPH0413315B2
JPH0413315B2 JP59214719A JP21471984A JPH0413315B2 JP H0413315 B2 JPH0413315 B2 JP H0413315B2 JP 59214719 A JP59214719 A JP 59214719A JP 21471984 A JP21471984 A JP 21471984A JP H0413315 B2 JPH0413315 B2 JP H0413315B2
Authority
JP
Japan
Prior art keywords
sliding member
sliding
amount
density
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59214719A
Other languages
Japanese (ja)
Other versions
JPS6191064A (en
Inventor
Hisashi Kinugasa
Nobuto Koe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP59214719A priority Critical patent/JPS6191064A/en
Publication of JPS6191064A publication Critical patent/JPS6191064A/en
Publication of JPH0413315B2 publication Critical patent/JPH0413315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Sealing (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、油潤滑下で使用する摺動部材に関
し、特に強度および耐摩耗性の向上、摩擦係数の
低減などの摺動性能を改良した炭化珪素焼結体に
よる油潤滑下で使用する高性能摺動部材に係るも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a sliding member used under oil lubrication, and particularly relates to a sliding member that has improved sliding performance such as improved strength and wear resistance, and reduced coefficient of friction. This invention relates to a high-performance sliding member made of silicon carbide sintered body and used under oil lubrication.

〔従来の技術〕[Conventional technology]

炭化珪素の高密度焼結体(以下SiC焼結体と略
す)は、よく知られているように、耐熱性、耐摩
耗性および耐腐食性に優れた特長を有し、例えば
ガスタービン材料などのために非常に期待されて
いるセラミツク材料であり、なかでも最も早く実
用化されたのは、メカニカルシールの摺動部材と
してゞあつて、現在ではその優れた特性の故に最
高の性能を発揮する摺動部材として位置づけられ
ているところである。
As is well known, high-density sintered bodies of silicon carbide (hereinafter abbreviated as SiC sintered bodies) have excellent heat resistance, wear resistance, and corrosion resistance, and are used as materials for gas turbines, etc. Ceramic materials are highly anticipated for this purpose, and the earliest material to be put into practical use was as a sliding member for mechanical seals, and today, due to their excellent properties, they exhibit the highest performance. It is positioned as a sliding member.

また一方、技術の発達に併せて、この種のメカ
ニカルシールとしての使用環境は、日毎に厳格さ
を増してきており、これに伴なつてより一層高度
なシール性能が要求され、摺動部材として使用さ
れるSiC焼結体に対しても、高摺動性能が望まれ
ている現状にある。
On the other hand, along with the development of technology, the environment in which this type of mechanical seal is used is becoming more and more severe day by day. Currently, high sliding performance is desired for the SiC sintered bodies used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こゝで、現在、一般的に使用されているところ
のSiC焼結体は、焼結促進材としての所定量のホ
ウ素系化合物又は、およびアルミ系化合物と、焼
結助材としての所定量のカーボンとを添加、混合
しかつ成形して、望ましくは2000℃以上の高温で
不活性雰囲気下に焼成することによつて得ている
が、その焼結過程でSiC自身の昇華分解反応をも
伴なつて、焼結体の表面はもとより、粒界にもカ
ーボン組織が存在し、この種のメカニカルシール
として使用する高密度SiC焼結体の表面は、ミク
ロ的にSiO結晶粒子とカーボン粒界、また詳細に
は表面の微細な凹部にカーボンが偏析するという
状態になつている。
Therefore, the SiC sintered bodies that are currently in general use contain a predetermined amount of a boron-based compound or an aluminum-based compound as a sintering accelerator, and a predetermined amount of a sintering aid. It is obtained by adding carbon, mixing it, molding it, and sintering it in an inert atmosphere at a high temperature, preferably over 2000℃, but the sintering process involves a sublimation and decomposition reaction of SiC itself. As a result, carbon structures exist not only on the surface of the sintered body but also at the grain boundaries. More specifically, carbon is segregated in minute recesses on the surface.

しかしてよく知られているように、本来、カー
ボンは親油性であつて、表面、換言するとこゝで
は摺動面にミクロ的なカーボン組織を有する高密
度SiC焼結体は、油潤滑下で油をシールするメカ
ニカルシールの摺動部材としても高性能を発揮し
得るのであるが、シール対象であるところの油の
高温化とか高粘性化などに伴なつて、この種の高
密度SiC焼結体を用いた摺動部材の場合には、摺
動面での油潤滑膜の安定化が困難になつてきてお
り、その摺動面における異常摩耗とか摩擦係数の
増加などを生じ、シール性能についても限界に達
している。
However, as is well known, carbon is originally oleophilic, and a high-density SiC sintered body with a microscopic carbon structure on its surface, in other words, on the sliding surface, cannot be heated under oil lubrication. This type of high-density SiC sintered material can also exhibit high performance as a sliding member for mechanical seals that seal oil, but as the oil to be sealed becomes hotter and more viscous, this type of high-density SiC sintered In the case of sliding members that use a body, it is becoming difficult to stabilize the oil lubricant film on the sliding surface, which causes abnormal wear and an increase in the coefficient of friction on the sliding surface, causing problems with sealing performance. has also reached its limit.

従つて前記のような現状から、この種の高密度
SiC焼結体を用いた摺動部材では、摺動面での油
潤滑膜の安定化を一層促進させるために、摺動面
におけるカーボン組織をより増加させることが望
まれるが、高密度SiC焼結体では、焼結体内のフ
リーカーボン量、いわゆるfc量を過剰に増加させ
ると、焼結体自身の緻密化が妨げられ、その結
果、粒界の結合強度が低下して、摺動部材として
の耐摩耗性が著るしく損なわれるという問題点が
あつた。
Therefore, due to the current situation mentioned above, this kind of high-density
In sliding members using SiC sintered bodies, it is desirable to increase the carbon structure on the sliding surfaces in order to further stabilize the oil lubricating film on the sliding surfaces. In a compact, if the amount of free carbon in the sintered compact, the so-called FC amount, is increased excessively, the densification of the sintered compact itself is hindered, and as a result, the bonding strength of the grain boundaries decreases, making it difficult to use as a sliding member. There was a problem in that the wear resistance of the material was significantly impaired.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記のような実情に鑑みてなされた
もので、焼結体内のフリーカーボン量を増加させ
て摺動面での油潤滑膜の安定化を促進しつつ、
SiC粒界の結合強度および耐摩耗性を高めて、油
潤滑下において極めて優れた摺動特性を発揮させ
ることができる油潤滑下用の摺動部材を提供する
ことを目的としている。
This invention was made in view of the above-mentioned circumstances, and increases the amount of free carbon in the sintered body to promote stabilization of the oil lubricant film on the sliding surface.
The object of the present invention is to provide a sliding member for use under oil lubrication, which can exhibit extremely excellent sliding characteristics under oil lubrication by increasing the bonding strength and wear resistance of SiC grain boundaries.

すなわち、この発明の係る油潤滑下用の摺動部
材は、焼結促進剤としてのホウ素(B)とアルミ
(Al)が配合比率として、原子比;0.15≦B/Al
<2の範囲であつて、その総量が0.2〜0.6重量%
であり、焼結助剤として作用する炭化可能なフエ
ノールレジンを炭素化することによつて構成させ
たフリーカーボンを、炭素含有率にて3〜4重量
%含む相対密度95%以上の高密度炭化珪素焼結体
から構成したものである。
That is, in the oil-lubricated sliding member according to the present invention, boron (B) and aluminum (Al) as sintering accelerators have an atomic ratio of 0.15≦B/Al.
<2 and the total amount is 0.2 to 0.6% by weight
High-density carbonization with a relative density of 95% or more, containing 3 to 4% by weight of free carbon, which is made by carbonizing a carbonizable phenol resin that acts as a sintering aid. It is constructed from a silicon sintered body.

〔実施例〕〔Example〕

以下この発明に係る油潤滑下で使用する摺動部
材の一実施例につき、第1図a,bを参照して詳
細に説明する。
An embodiment of a sliding member according to the present invention used under oil lubrication will be described in detail below with reference to FIGS. 1a and 1b.

前記した通り、焼結促進材としての所定量のホ
ウ素系化合物又は、およびアルミ系化合物と、焼
結助材としての所定量のカーボンとを添加混合
し、かつ成形して、2000℃以上の高温で不活性雰
囲気下に焼成して得る高密度SiC焼結体において
は、過剰なfc量の増加により緻密化が妨げられ、
摺動部材として用いた場合の耐摩耗性が著るしく
低下するという問題点がある。したがつて、これ
を改善するために、発明者は、種々の実験を重ね
鋭意検討を加えた結果、高純度に精製されたサブ
ミクロン級の炭化珪素の微粉末原料に、その総量
が0.2〜0.6重量%であり、ホウ素(B)とアルミ
(Al)との配合比率が、原子比;0.15≦B/Al<
2の範囲の焼結促進剤と、焼結助剤として作用し
それの炭素化によつてフリーカーボンを、炭素含
有率にて3〜4重量%含むように炭化可能なフエ
ノールレジンと、異常粒子成長防止剤としての
0.01〜0.3重量%のTiC、TiB2、TiO2などのチタ
ン系化合物とを添加し、これらを充分に混合す
る。特に炭化可能なフエノールレジンについて
は、これを可及的均等に分散させることが良く、
仮に不均一な分散であると、SiC焼結体としての
強度低下が見られるだけでなく、摺動部材として
の耐摩耗性も低下する。その後、摺動部材として
の所望の部材形状に成形させ、ついで2000〜2200
℃、望ましくは2000℃以上の温度、不活性雰囲気
下で所定時間焼成して、SiC−C複合焼結体から
なるところの、摺動面にカーボン組織を有する相
対密度が95%以上の高密度SiC焼結体を得るよう
にした。
As mentioned above, a predetermined amount of a boron-based compound or an aluminum-based compound as a sintering accelerator and a predetermined amount of carbon as a sintering aid are added and mixed, molded, and heated at a high temperature of 2000°C or more. In high-density SiC sintered bodies obtained by firing in an inert atmosphere, densification is hindered due to an excessive increase in the amount of fc.
There is a problem in that the wear resistance when used as a sliding member is significantly reduced. Therefore, in order to improve this, the inventor conducted various experiments and made extensive studies.As a result, the inventors added a fine powder raw material of highly purified submicron silicon carbide with a total amount of 0.2~ 0.6% by weight, and the blending ratio of boron (B) and aluminum (Al) is an atomic ratio; 0.15≦B/Al<
2, a phenolic resin that acts as a sintering aid and can be carbonized to contain 3 to 4% by weight of free carbon at a carbon content; and abnormal particles. As a growth inhibitor
0.01 to 0.3% by weight of a titanium compound such as TiC, TiB 2 or TiO 2 is added and mixed thoroughly. Especially for carbonizable phenol resin, it is good to disperse it as evenly as possible.
If the dispersion is non-uniform, not only will the strength of the SiC sintered body decrease, but also the wear resistance of the sliding member will decrease. After that, it is molded into the desired shape as a sliding member, and then
℃, preferably at a temperature of 2000℃ or higher under an inert atmosphere for a predetermined period of time to produce a high-density SiC-C composite sintered body with a relative density of 95% or higher and a carbon structure on the sliding surface. A SiC sintered body was obtained.

こゝでこのようにして得られた高密度SiC焼結
体を材料とする摺動部材を用い、この摺動部材を
メカニカルシールの回転側および固定側に用いて
タービン油中で試験したところ次のような結果を
得た。
Using a sliding member made of the high-density SiC sintered body obtained in this way, tests were conducted in turbine oil using this sliding member on the rotating side and stationary side of a mechanical seal, and the following results were obtained. I got a result like this.

試料A−fc量1.5% 摺動面の脱落摩耗が著し
い 試料B−fc量2.0% 摺動面に一部脱落摩耗発
生 試料C−fc量3.0% 摺動面に変化なく良好 試料D−fc量4.0% 〃 〃 試料E−fc量6.0% 摺動面に一部脱落摩耗発
生 試料F−fc量6.5% 摺動面の脱落摩耗が著し
い また同様に、fc重量%に対する焼結体密度およ
び曲げ強度との関係を第1図aおよびbに表わし
ており、これらの図中、 ●印はB=0.2%、Al=0.15%、TiO2
0.1%として前記所定量のfcを加えたこ
の発明の場合 ×印はB=0.2%、Al=0.15%としての
従来例の場合 を示し、また符号1はこの発明の場合の特性、2
は従来例の場合の特性、3は理論密度をそれぞれ
に示す。
Sample A-fc amount 1.5% Sample B-fc amount 2.0% with significant wear and falling off of the sliding surface Sample C-fc amount 3.0% with some wear and tear falling off on the sliding surface Sample D-fc amount good with no change on the sliding surface 4.0% 〃 〃 Sample E-fc amount 6.0% Partial wear on the sliding surface Sample F-fc amount 6.5% Separation wear on the sliding surface is significant Similarly, sintered compact density and bending strength relative to fc weight% The relationships between the two are shown in Figure 1 a and b. In these figures, the ● marks indicate B = 0.2%, Al = 0.15%, TiO 2 =
In the case of the present invention in which the predetermined amount of fc is added as 0.1%, the x mark indicates the conventional case in which B=0.2% and Al=0.15%, and the symbol 1 indicates the characteristic of the present invention, and 2
3 shows the characteristics of the conventional example, and 3 shows the theoretical density, respectively.

以上の結果から明らかなように、マトリツクス
としてのSiC焼結体内でのフリーカーボン量を炭
素含有率にて3〜4重量%とすることにより、摺
動面での油潤滑膜の安定化を促進しつつ、そのよ
うなフリーカーボン量の増加にともなつて低下す
るSiC粒界の結合力が、焼結促進剤として添加さ
れる(B/Al)により補われる。すなわち、焼
結促進剤としての(B/Al)を添加するで、曲
げ強度などの機械的強度のみならず、強度が一定
以上になると、耐摩耗性の支配的要素となるSiC
粒界の結合力が高められ、フリーカーボン量の増
加による油潤滑膜の安定化と相まつて、油潤滑下
にける摺動特性を極めて優れたものにできること
が判つた。また、前記焼結助剤としてのフエノー
ルレジンおよび焼結促進剤としての(B/Al)
のほかに、異常粒子成長防止剤としてのチタン系
化合物を、0.01〜0.3重量%添加するときは、マ
トリツクスとしてのSiC焼結体の高密度緻密化を
図り、摺動部材としての耐摩耗性の一層の向上が
図り得ることも判つた。
As is clear from the above results, stabilization of the oil lubricant film on the sliding surface is promoted by setting the amount of free carbon in the SiC sintered body as a matrix to 3 to 4% by weight in terms of carbon content. However, the bonding strength of SiC grain boundaries, which decreases as the amount of free carbon increases, is compensated for by (B/Al) added as a sintering accelerator. In other words, the addition of (B/Al) as a sintering accelerator not only improves mechanical strength such as bending strength, but also improves SiC, which becomes a dominant factor in wear resistance when the strength exceeds a certain level.
It was found that the bonding strength of the grain boundaries was increased, and together with the stabilization of the oil lubricant film due to the increase in the amount of free carbon, the sliding properties under oil lubrication could be made extremely excellent. In addition, the phenol resin as the sintering aid and (B/Al) as the sintering accelerator
In addition, when adding 0.01 to 0.3% by weight of a titanium-based compound as an abnormal particle growth inhibitor, the SiC sintered body as a matrix is made denser, and the wear resistance as a sliding member is improved. It was also found that further improvements could be made.

なお、前記実施例においては、摺動部材をメカ
ニカルシールの油シールに適用する場合について
述べたが、軸受やその他の油潤滑下で使用する場
合についても適用できることは勿論である。
In the above embodiment, the case where the sliding member is applied to an oil seal of a mechanical seal has been described, but it goes without saying that it can also be applied to a case where the sliding member is used under oil lubrication such as a bearing.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明によれば、SiC
焼結体内に焼結助剤としてのフエノールレジンを
添加してフリーカーボンを3〜4重量%含有させ
マトリツクス全体でのフリーカーボン量の相対的
増加により、摺動面での油潤滑膜の安定化を促進
しつつ、焼結促進剤として(B/Al)を添加す
ることで粒界の結合力を高めて、フリーカーボン
量の増加にともなう強度の低下を十分に補うこと
ができる。したがつて、フリーカーボン量の増加
による油潤滑膜の安定化と、耐摩耗性の支配的要
素となるSiC粒界の結合力の強化とが相まつて、
油潤滑下における摺動特性、ひいてはシール特性
を著しく向上することができるという格別の効果
を奏する。
As detailed above, according to the present invention, SiC
By adding phenol resin as a sintering aid into the sintered body and containing 3 to 4% free carbon by weight, the relative increase in the amount of free carbon in the entire matrix stabilizes the oil lubricant film on the sliding surface. By adding (B/Al) as a sintering accelerator while promoting the sintering process, it is possible to increase the bonding force of the grain boundaries and sufficiently compensate for the decrease in strength due to the increase in the amount of free carbon. Therefore, the stabilization of the oil lubricant film due to the increase in the amount of free carbon and the strengthening of the bonding force of SiC grain boundaries, which are the dominant factors for wear resistance, combine to
It has the extraordinary effect of significantly improving the sliding properties under oil lubrication and, by extension, the sealing properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbはこの発明に係る摺動部材の
一実施例でのフリーカーボン(fc)の重量%に対
する焼結体密度および曲げ強度との関係を示すそ
れぞれ特性図である。
FIGS. 1a and 1b are characteristic diagrams showing the relationship between the weight percent of free carbon (fc) and the sintered body density and bending strength in an embodiment of the sliding member according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結促進剤としてのホウ素(B)とアルミ
(Al)が配合比率として、原子比;0.15≦B/Al
<2の範囲であつて、その総量が0.2〜0.6重量%
であり、焼結助剤として作用する炭化可能なフエ
ノールレジンを炭素化することによつて構成させ
たフリーカーボンを、炭素含有率にて3〜4重量
%含む相対密度95%以上の高密度炭化珪素焼結体
からなる油潤滑下用の摺動部材。
1 The atomic ratio of boron (B) and aluminum (Al) as sintering accelerators is 0.15≦B/Al.
<2 and the total amount is 0.2 to 0.6% by weight
High-density carbonization with a relative density of 95% or more, containing 3 to 4% by weight of free carbon, which is made by carbonizing a carbonizable phenol resin that acts as a sintering aid. A sliding member made of sintered silicon for oil lubrication.
JP59214719A 1984-10-12 1984-10-12 Sliding member Granted JPS6191064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214719A JPS6191064A (en) 1984-10-12 1984-10-12 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214719A JPS6191064A (en) 1984-10-12 1984-10-12 Sliding member

Publications (2)

Publication Number Publication Date
JPS6191064A JPS6191064A (en) 1986-05-09
JPH0413315B2 true JPH0413315B2 (en) 1992-03-09

Family

ID=16660487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214719A Granted JPS6191064A (en) 1984-10-12 1984-10-12 Sliding member

Country Status (1)

Country Link
JP (1) JPS6191064A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215257A (en) * 1985-03-19 1986-09-25 株式会社 リケン Sliding member
CN108017409B (en) * 2016-11-04 2020-09-15 云南菲尔特环保科技股份有限公司 Low-temperature sintered silicon carbide honeycomb ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPS6191064A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US7799250B2 (en) Ceramic materials for friction linings
US6398991B1 (en) Processes for making a silicon carbide composition
EP0497345B1 (en) Composite ceramic sintered material, process for producing the same, and slider member using the same
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
Shobu et al. Frictional Properties of Sintered TiN‐TiB2 and Ti (CN)‐TiB2 Ceramics at High Temperature
US4720349A (en) Sliding member of graphite-metal borides
JPH0413315B2 (en)
JPH0251864B2 (en)
US5075264A (en) Slider composed of high-density silicon carbide sintered compact
JPH1143372A (en) Silicon nitride-based ceramic and its production
JPS59131577A (en) Silicon carbide material and manufacture
US4987103A (en) Slider composed of a high-density silicon carbide sintered compact
JPH07247167A (en) Graphite-based composite sliding member
JPS61221254A (en) Material for sliding part
JP2851717B2 (en) Sliding member
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH0781587B2 (en) Carbon-based sliding material
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
JP2543093B2 (en) Sliding parts for seals
JPS60112670A (en) Silicon carbide material and manufacture
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JPS6396316A (en) Carbonaceous sliding material
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP3367165B2 (en) Ceramic sliding member
JPS6183692A (en) High efficiency sliding member using under water-containing lubrication