JPS59131577A - Silicon carbide material and manufacture - Google Patents

Silicon carbide material and manufacture

Info

Publication number
JPS59131577A
JPS59131577A JP58004243A JP424383A JPS59131577A JP S59131577 A JPS59131577 A JP S59131577A JP 58004243 A JP58004243 A JP 58004243A JP 424383 A JP424383 A JP 424383A JP S59131577 A JPS59131577 A JP S59131577A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
boron
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004243A
Other languages
Japanese (ja)
Inventor
晴裕 長田
誠 小宮
桝谷 裕樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP58004243A priority Critical patent/JPS59131577A/en
Publication of JPS59131577A publication Critical patent/JPS59131577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、メカニカルシール、プレーンベアリンフナど
の摺動部品として特に有用な、炭化ケイ素質材料および
その製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon carbide material particularly useful as sliding parts such as mechanical seals and plain bearing rings, and a method for producing the same.

高温構造材料として、近年、多くのセラミックスが開発
され実用化されるに至ったが、その−っである炭化ケイ
素質のものは、高温における強度が大きく強度劣化も少
ないこと、熱衝撃に強いこと、耐摩耗性にすぐれている
こと、軽量であること、耐食性がすぐれていること、な
ど多くの長所を持ち、製造技術面でも無加圧焼結法が発
明されて容易に高品質のものを製造できるようになった
ため、ガスタービン用部品、自動車エンジン用部品、メ
カニカルシール、各種軸受など、広い範囲での用途開発
が進められている。
In recent years, many ceramics have been developed and put into practical use as high-temperature structural materials, but those made of silicon carbide have high strength at high temperatures and little strength deterioration, and are resistant to thermal shock. It has many advantages such as excellent wear resistance, light weight, and excellent corrosion resistance.In terms of manufacturing technology, the invention of the pressureless sintering method has made it easy to produce high quality products. Now that it can be manufactured, it is being developed for a wide range of applications, including gas turbine parts, automobile engine parts, mechanical seals, and various bearings.

上記無加圧成形法は、特開昭50−78609号公報、
特、開明51〜1.48 V i 2号公報などに開示
されているように、す7:ミクロンの(っまり粒径が1
μI11以下の)炭化ケイ素微粉末中に、焼結助剤とし
て、ホウ素および/またはアルミニウムに換算して0.
2〜2%のホウ素、アルミニウムおよび/またはそれら
の化合物と、炭素に換算して0.2〜4%の炭素および
/または炭化性有機材料とを、いずれもサブミクロンの
微粉末の形で均一に混合してなる易焼結性粉末を、成形
後、無加圧で焼結させる方法である。この製法は、特に
高温における強度、耐熱性、耐酸化性を重視する構造材
料の製造を意図したものであって、その限りにおいては
十分すぐれたものである。しかしながら、この製法によ
る炭化ケイ素質材料は、メカニカルシールやブレーンベ
アリングなどのN動部品として使用した場合、潤滑不十
分な使用条件においては摩擦係数が非常に高くなり、摺
動相手材料を早く摩耗させたり傷っけたりし、また自身
も摩耗やクランクを生じ易いという欠点がある。
The above-mentioned pressureless molding method is disclosed in Japanese Patent Application Laid-Open No. 50-78609,
In particular, as disclosed in JP-A No. 51-1.48 Vi 2, etc.
In terms of boron and/or aluminum, 0.0% is added as a sintering aid to silicon carbide fine powder (with a μI of 11 or less).
2 to 2% of boron, aluminum and/or their compounds, and 0.2 to 4% of carbon and/or carbonizable organic material, both in the form of submicron fine powder, are uniformly mixed. This is a method in which easily sinterable powder, which is a mixture of powders, is molded and then sintered without pressure. This manufacturing method is intended for manufacturing structural materials that place emphasis on strength, heat resistance, and oxidation resistance, especially at high temperatures, and is sufficiently excellent in that respect. However, when silicon carbide materials manufactured using this method are used as N-moving parts such as mechanical seals and brain bearings, under conditions of insufficient lubrication, the coefficient of friction becomes extremely high, causing the sliding material to wear out quickly. It has the disadvantage that it can be damaged or damaged, and it is also prone to wear and crank.

そこで本発明者らは、炭化ケイ素質材料における上述の
ような欠点を解消することを目的として研究を重ねた結
果、上記無加圧焼結法における原料中に、焼結助剤の炭
素粉末とは別に、潤滑剤として作用し得る炭素粉末を添
加することにより、炭化ケイ素焼結体の摩擦係数を低下
させる、二とができることを知った。
As a result of repeated research aimed at solving the above-mentioned drawbacks of silicon carbide materials, the present inventors found that carbon powder as a sintering aid was added to the raw materials for the pressureless sintering method. Apart from this, we have found that the coefficient of friction of silicon carbide sintered bodies can be lowered by adding carbon powder that can act as a lubricant.

本発明は上記知見に基づくものであって二発明からなり
、その第一は、ホウ素またはアルミニウムの単体および
化合物からなる群がら選ばれた1種以上の物質を合計量
で0.2〜2重量%(但し化合物の場合はホウ素または
アルミニウムに換算した値)含有し、残部が実質的に炭
化ケイ素および遊離の炭素からなる焼結体である炭化ケ
イ素質材料において、直径5μto以上の炭素相露出面
が焼結体全表面の1.5〜45%を占めていることを特
徴とする低摩擦係数の炭化ケイ素質材料の発明である。
The present invention is based on the above knowledge and consists of two inventions. (However, in the case of compounds, the value converted to boron or aluminum) In a silicon carbide material that is a sintered body with the remainder essentially consisting of silicon carbide and free carbon, the carbon phase exposed surface with a diameter of 5 μto or more This is an invention of a silicon carbide material with a low coefficient of friction, which occupies 1.5 to 45% of the total surface of a sintered body.

また本発明の第二は、上記本発明の第一による炭化ケイ
素質材料の製造法に関するものであって、ホウ素または
アルミニウムの単体または化合物からなるサブミクロン
粉末0.2〜2重量%(但し化合物の場合はホウ素また
はアルミニウムに換算した値)、炭素または炭化性有機
材料からなるサブミクロン粉末0.2〜4重量%(但し
炭化性有機材料の場合は炭素に換算した値)、平均粒径
5〜50μmの炭素粉末1〜31重量%および炭化ケイ
素のす7ミクロン粉末から実質的になる焼結性粉末状混
合物を成形し、得られた成形物を非酸化性雰囲気中で加
熱して焼結させることを特徴とする。
The second aspect of the present invention relates to a method for producing a silicon carbide material according to the first aspect of the present invention, which comprises 0.2 to 2% by weight of submicron powder consisting of boron or aluminum alone or a compound (with the exception that the compound 0.2 to 4% by weight of submicron powder made of carbon or carbonizable organic material (value converted to carbon in the case of carbonizable organic material), average particle size 5 A sinterable powder mixture consisting essentially of 1 to 31% by weight of ~50 μm carbon powder and 7 μm silicon carbide powder is molded, and the resulting molded product is sintered by heating in a non-oxidizing atmosphere. It is characterized by causing

本発明による炭化ケイ素質材料は、従来の炭化ケイ素質
材料が炭化ケイ素単−相のものであるのに対し、炭化ケ
イ素相と炭素相との2相からなるものであって、焼結体
表面に現われた炭素相が潤滑作用を行う。表面のうち炭
化ケイ素からなる部分はもちろん高度の耐摩耗性を備え
ているから、本発明の炭化ケイ素質材料は潤滑性と耐摩
耗性とを兼備し、摺動部品として鯵わめてすぐれたもの
である。焼結体の全表面積に対する炭素相露出面の割合
が高いほど潤滑性はよくなるが、他の物性の低下も無視
できなくなるので、一般的には45%をこえないことが
望ましい。なお、炭素相を共存させた本発明の炭化ケイ
素質材料は、炭化ケイ素相のみからなる従来の製品に比
べると耐熱性および耐酸化性においてやや劣るが、通常
的400°Cをこえることのないメカニカルシール等の
摺動部品の使用条件では十分な耐久性を示すものである
The silicon carbide material according to the present invention consists of two phases, a silicon carbide phase and a carbon phase, whereas conventional silicon carbide materials have a single phase of silicon carbide. The carbon phase that appears on the surface acts as a lubricant. Of course, the part of the surface made of silicon carbide has a high degree of wear resistance, so the silicon carbide material of the present invention has both lubricity and wear resistance, making it extremely suitable for sliding parts. It is something. The higher the ratio of the carbon phase exposed surface to the total surface area of the sintered body, the better the lubricity will be, but since the deterioration of other physical properties cannot be ignored, it is generally desirable that the ratio does not exceed 45%. The silicon carbide material of the present invention in which a carbon phase coexists is slightly inferior in heat resistance and oxidation resistance compared to conventional products consisting only of a silicon carbide phase, but it does not normally exceed 400°C. It exhibits sufficient durability under the conditions of use for sliding parts such as mechanical seals.

次に、本発明の第二による上記炭化ケイ素質材料の製造
法について説明する。
Next, a method for producing the silicon carbide material according to the second aspect of the present invention will be explained.

原料として用いる炭化ケイ素、ホウ素(またはその化合
物)、アルミニウム(またはその化合物)、炭素または
炭化性有機材料の各サブミクロン粉末としては、従来の
製法におり1て使われてきたものと同じものを使用する
ことかでと、特殊なものは不要である。ホウ素およびア
ルミニウムは単体の形で用いるほか、化合物の形で用い
てもよく、またホウ素およびアルミニウムのいずれか一
方を用いても両者を併用してもよい。
The submicron powders of silicon carbide, boron (or its compounds), aluminum (or its compounds), carbon, or carbonizable organic materials used as raw materials are the same as those used in conventional manufacturing methods. You don't need anything special to use it. In addition to being used alone, boron and aluminum may be used in the form of a compound, and either boron or aluminum may be used alone or both may be used in combination.

適当なホウ素化合物およびアルミニウム化合物の具体例
としては、炭化ホウ素、窒化ホウ素、リン化ホウ素、ホ
ウ化アルミニウムなどがある。炭化性有機材料としては
、各種溶剤に溶解し、高温で分解して炭素を生し、その
場合の炭素収率の大きいものが好ましく、その具体例と
しては、フェノール樹脂、フラン樹脂、ポリフェニレン
樹脂、コールタールピッチなどがある。
Examples of suitable boron and aluminum compounds include boron carbide, boron nitride, boron phosphide, aluminum boride, and the like. The carbonizable organic material is preferably one that dissolves in various solvents and decomposes at high temperatures to produce carbon, with a high carbon yield. Specific examples thereof include phenol resin, furan resin, polyphenylene resin, There is also coal tar pitch.

本発明の製法においては、上記原料のほかに、平均粒径
が5〜50μmnの炭素粉末を用いる。この炭素粉末は
、焼結助剤として用いられるサブミクロンの炭素粉末と
は粒径を異にし、焼結助剤になり得るものではない。そ
の役割は、上記粒径を実質的に保持したまま製品中に均
一に分布して炭素相を形成し、その一部が製品の表面に
おいて露出して潤滑作用を営むことにある。平均粒径を
5〜507zmとすることは、製品の物性を実質的に損
なうことなく潤滑作用を発揮させるために重要な要件で
あって、平均粒径が57zm以下の場合は潤滑作用が十
分でなく、反対に50μmをこえるときは、炭化ケイ素
の焼結を阻害して焼結体を気密性の悪いものにし、特に
メカニカルシール摺動部品として使用できないものにし
てしまう。この炭素粉末として特に好ましいのは、人造
黒鉛および天然黒鉛の球状粒子で、なかでも粒径が10
〜SO7zmのものである。
In the manufacturing method of the present invention, in addition to the above-mentioned raw materials, carbon powder having an average particle size of 5 to 50 μm is used. This carbon powder has a different particle size from the submicron carbon powder used as a sintering aid, and cannot be used as a sintering aid. Its role is to form a carbon phase by uniformly distributing it in the product while substantially maintaining the above particle size, and a part of it is exposed on the surface of the product to perform a lubricating action. Setting the average particle size to 5 to 507 zm is an important requirement in order to exhibit a lubricating effect without substantially impairing the physical properties of the product, and if the average particle size is 57 zm or less, the lubricating effect is insufficient. On the other hand, if it exceeds 50 μm, the sintering of silicon carbide is inhibited and the sintered body has poor airtightness, making it particularly unusable as a mechanical seal sliding part. Particularly preferred as this carbon powder are spherical particles of artificial graphite and natural graphite, especially those with a particle size of 10
~SO7zm.

以」二の焼結原料の配合比は下記のとおりにする。The mixing ratio of the following sintering raw materials is as follows.

■ ホウ素またはアルミニウムの単体または化合物から
なるサブミクロン粉末20.2〜2重量%(但し化合物
の場合はホウ素またはアルミニウムに換算した値)。2
様態」二のものを91用する場合は合計量で上記範囲に
入るようにする。
(2) 20.2 to 2% by weight of submicron powder consisting of boron or aluminum alone or a compound (however, in the case of a compound, the value is converted to boron or aluminum). 2
When using 91 of the second aspect, the total amount should be within the above range.

配合率が0.2%未満のと外は焼結が充分に進行せず、
気密性の悪い焼結体となる。また2%をこえて配合して
も、直ちに不都合を生じるわけではないが、増量による
効果はない。待に好ま17い配合率は1.0〜2.0%
である。
If the blending ratio is less than 0.2%, sintering will not proceed sufficiently.
This results in a sintered body with poor airtightness. Further, even if the amount exceeds 2%, no problems will immediately occur, but there will be no effect by increasing the amount. The most preferred blending ratio is 1.0-2.0%
It is.

■ 炭素または炭化性有機材料からなるす7ミクロン粉
末二0.2〜4重景%(但し炭化性有機材料の場合は炭
素換算値)。配合率が0.2%未満のときは焼結が充分
に進行せず、気密性の悪い焼結体となる。また4%をこ
えて配合しても、直ちに不都合を生じるわけではないが
、増量による効果はない。特に好ましい配合率は1.5
〜3.0%である。
■ 7 micron powder consisting of carbon or carbonizable organic material 20.2 to 4% (carbon equivalent value in case of carbonizable organic material). When the blending ratio is less than 0.2%, sintering does not proceed sufficiently, resulting in a sintered body with poor airtightness. Further, even if the amount exceeds 4%, no problems will occur immediately, but there will be no effect by increasing the amount. Particularly preferred blending ratio is 1.5
~3.0%.

■ 平均粒径5〜50μmの炭素粉末:1〜31重量%
。好ましくは2〜20重量%。多すぎるときは粒径が大
きすぎる場合と同様に焼結を阻害腰 1%未満では必要
量の炭素相露出面を形成することができない。
■ Carbon powder with an average particle size of 5 to 50 μm: 1 to 31% by weight
. Preferably 2 to 20% by weight. When the amount is too large, sintering is inhibited as in the case where the particle size is too large.When it is less than 1%, the required amount of carbon phase exposed surface cannot be formed.

■ 炭化ケイ素のサブミクロン粉末:上記諸成分の残部
とする。
■Silicon carbide submicron powder: The remainder of the above ingredients.

なお上記焼結原料のほかに、成形を容易にし焼結前の成
形体に取扱いに必要な強度を与えるために、バイングー
、例えばステアリン酸、ポリビニルアルコール、フェノ
ール樹脂、アクリル樹脂などを用いることかできる。
In addition to the above-mentioned sintering raw materials, binders such as stearic acid, polyvinyl alcohol, phenolic resin, acrylic resin, etc. can be used to facilitate molding and give the molded body before sintering the strength necessary for handling. .

■〜■の各原料はボールミル等を用いて均一に混合し、
更に炭化ケイ素および成形用バイングーを添加し混合し
てから、所望の形に成形する。成形は、常温におけるプ
レス成形やラバープレスによるほか、成形用バイングー
をやや多量に添加して熱間押出成形または射出成形する
など、成形形状に応し種々の成形方法を採用して行うこ
とができる。
Each of the raw materials from ■ to ■ is mixed uniformly using a ball mill, etc.
Further, silicon carbide and molding binder are added and mixed, and then molded into a desired shape. Molding can be done by using various molding methods depending on the molded shape, such as press molding or rubber press at room temperature, hot extrusion molding or injection molding by adding a slightly large amount of molding bindu. .

成形体の焼結は、真空あるいは窒素ガス等の非酸化性雰
囲気中で行う。焼結温度としては、通常1900〜23
00℃が必要である。焼結処理は、焼結体の理論密度比
が95%以上になるまで行うことが望ましく、95%未
満では気密性が不充分であり、強度も低く且つバラツキ
か大とい。
The compact is sintered in a vacuum or in a non-oxidizing atmosphere such as nitrogen gas. The sintering temperature is usually 1900 to 23
00°C is required. It is desirable that the sintering treatment be carried out until the theoretical density ratio of the sintered body reaches 95% or more; if it is less than 95%, the airtightness will be insufficient, and the strength will be low and highly variable.

以上のように、本発明の製法によれば、従来の無加圧焼
結法による炭化ケイ素質材料の製造技術をそのまま利用
し、平均粒径5〜50μmの炭素粉末を原料に添加する
だけで、容易に潤滑性のよい炭化ケイ素質材料を製造す
ることができる。
As described above, according to the manufacturing method of the present invention, the conventional pressureless sintering method for manufacturing silicon carbide materials can be used as is, and carbon powder with an average particle size of 5 to 50 μm can be added to the raw material. , it is possible to easily produce a silicon carbide material with good lubricity.

以下実施例を示して本発明を説明す、る。なお理論密度
比は焼結体の理論密度に対する実測密度の比率な%で表
わしたもので、理論密度は焼結体を粉砕し空気比較法に
より測定した。
The present invention will be explained below with reference to Examples. The theoretical density ratio is expressed as a percentage of the measured density to the theoretical density of the sintered body, and the theoretical density was measured by crushing the sintered body and using an air comparison method.

また炭素相露出面面積比とは、焼結体の表面において直
径5/J、 lf1以上の炭素相露出面が占める割合(
%)を意味し、日本レギュレーター社製画像解析装置・
ルーゼックス450を用いて測定した値である。
In addition, the carbon phase exposed surface area ratio is the ratio of the carbon phase exposed surface with a diameter of 5/J, lf1 or more on the surface of the sintered body (
%) means an image analysis device manufactured by Nihon Regulator Co., Ltd.
This is a value measured using Luzex 450.

実施例 1 平均粒径0.4 )ノInの炭化ホウ素微粉末1.5重
量%、ノボラック型7エ7−ル樹脂5.6重量%、ステ
アリン酸1重量%、残部が平均粒径0.3μmの炭化ケ
イ素粉末からなる原料混合物を、アセトンを分散媒とし
て湿式ボールミルで混合し、そのあと平均粒径15μ「
aの炭素粉末を上記原料混合物の重量当り5%添加して
再び混合してから、乾燥し、粉砕した。
Example 1 1.5% by weight of fine boron carbide powder with an average particle size of 0.4), 5.6% by weight of novolac type 7-el resin, 1% by weight of stearic acid, and the remainder having an average particle size of 0.4% by weight. A raw material mixture consisting of 3 μm silicon carbide powder is mixed in a wet ball mill using acetone as a dispersion medium, and then the average particle size is 15 μm.
The carbon powder of a was added in an amount of 5% based on the weight of the raw material mixture and mixed again, then dried and pulverized.

相られた粉末は、1 、5 ton/am”の圧力で内
径44τnmXタト径66mmX厚さ10mmのリング
に成形し、真空中2100℃に加熱して焼結させた。
The combined powder was formed into a ring having an inner diameter of 44 τnm, a top diameter of 66 mm, and a thickness of 10 mm under a pressure of 1.5 ton/am'', and was sintered by heating to 2100° C. in vacuum.

得られた焼結体は、理論密度比が95%で、炭素相露出
面面積比が約7%のものであった。
The obtained sintered body had a theoretical density ratio of 95% and a carbon phase exposed surface area ratio of about 7%.

一方、平均粒径15μm1の炭素粉末を添加しないほが
は上記と同様にして製造した対照品は、理論密度比が9
8%で、実質的に炭化ケイ素からなる単−相のものであ
った。
On the other hand, a control product manufactured in the same manner as above without the addition of carbon powder with an average particle size of 15 μm1 had a theoretical density ratio of 9.
8%, and was a single-phase substance consisting essentially of silicon carbide.

次に上記2種類の焼結体について、100℃の熱水中に
だける摺動試験を行なった。試験条件は、液圧1. O
KB/cm2(:、回転数3600rpm、 PV値(
面圧×周速) 78KB/c+o”−m/sec、試験
時間100時間とし、相手材料にはフェ/−ル樹脂を含
浸したカーボンを用いた。試験結果を表1に示す。
Next, the above two types of sintered bodies were subjected to a sliding test in hot water at 100°C. The test conditions were: hydraulic pressure 1. O
KB/cm2 (:, rotation speed 3600 rpm, PV value (
Surface pressure x circumferential speed) 78 KB/c+o''-m/sec, test time was 100 hours, and carbon impregnated with Fe/Fel resin was used as the mating material. The test results are shown in Table 1.

表  1 試 料  平均摩擦係数 試料摩耗量 相手材摩耗量本
発明品   0,08   0,1μm    0.3
ノJ11゜対照品  0.18. 1.1μmo13μ
m。
Table 1 Sample Average coefficient of friction Sample wear Amount Wear of mating material Invention product 0.08 0.1μm 0.3
NoJ11° control product 0.18. 1.1μmo13μ
m.

代理人 弁理士 板井−朧Agent Patent Attorney Oboro Itai

Claims (2)

【特許請求の範囲】[Claims] (1)ホウ素またはアルミニウムの単体および化合物か
らなる群から選ばれた1種以」二の物質を合計量で0.
2〜2重量%(但し化合物の場合はホウ素またはアルミ
ニウムに換算した値)含有し、残部が実質的に炭化ケイ
素および遊離の炭素からなる焼結体である炭化ケイ素質
材料において、直径5/Jln以上の炭素相露出面か焼
結体全表面の1.5〜45%を占めていることを特徴と
する炭化ケイ素質材料。
(1) One or more substances selected from the group consisting of simple substances and compounds of boron or aluminum in a total amount of 0.
In a silicon carbide material that is a sintered body containing 2 to 2% by weight (value calculated as boron or aluminum in the case of a compound), with the remainder consisting essentially of silicon carbide and free carbon, the diameter is 5/Jln. A silicon carbide material characterized in that the carbon phase exposed surface occupies 1.5 to 45% of the total surface of the sintered body.
(2) ホウ素またはアルミニウムの単体または化合物
からなる号7ミクロン粉末0.2〜2重量%(但し化合
物の場合はホウ素またはアルミニウムに換算した値)、
炭素または炭化性有+i +、+料からなるサブミクロ
ン粉末0.2〜4重量%(但し炭化性有(幾何科の場合
は炭素に換算した値)、平均粒径5〜S 01ihIの
炭素粉末1〜31重量%および炭化ケイ素のサブミクロ
ン粉末から実質的になる焼結性粉末状混合物を成形し、
得られた成形物を非酸化性雰囲気中で加熱して焼結させ
ることを特徴とする炭化ケイ素質材料の製造法。
(2) 0.2 to 2% by weight of No. 7 micron powder consisting of boron or aluminum alone or a compound (however, in the case of a compound, the value is converted to boron or aluminum),
0.2 to 4% by weight of submicron powder consisting of carbon or carbonizable materials (however, carbonizable (in the case of geometry, the value converted to carbon), carbon powder with an average particle size of 5 to S01ihI forming a sinterable powder mixture consisting essentially of 1 to 31% by weight and submicron powder of silicon carbide;
A method for producing a silicon carbide material, which comprises heating and sintering the obtained molded product in a non-oxidizing atmosphere.
JP58004243A 1983-01-17 1983-01-17 Silicon carbide material and manufacture Pending JPS59131577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004243A JPS59131577A (en) 1983-01-17 1983-01-17 Silicon carbide material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004243A JPS59131577A (en) 1983-01-17 1983-01-17 Silicon carbide material and manufacture

Publications (1)

Publication Number Publication Date
JPS59131577A true JPS59131577A (en) 1984-07-28

Family

ID=11579102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004243A Pending JPS59131577A (en) 1983-01-17 1983-01-17 Silicon carbide material and manufacture

Country Status (1)

Country Link
JP (1) JPS59131577A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145496A2 (en) * 1983-12-14 1985-06-19 The Carborundum Company Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
JPS62260773A (en) * 1986-05-06 1987-11-13 科学技術庁無機材質研究所長 High density silicon carbide sintered body and manufacture
US4987103A (en) * 1986-04-09 1991-01-22 Nippon Pillar Packing Co., Ltd. Slider composed of a high-density silicon carbide sintered compact
US5075264A (en) * 1986-04-09 1991-12-24 Nippon Pillar Packing Co., Ltd. Slider composed of high-density silicon carbide sintered compact
JP2001139376A (en) * 1999-11-10 2001-05-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
WO2007097402A1 (en) * 2006-02-24 2007-08-30 Hitachi Chemical Company, Ltd. Sintered ceramic, slide part therefrom, and process for producing sintered ceramic

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145496A2 (en) * 1983-12-14 1985-06-19 The Carborundum Company Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
JPS60141676A (en) * 1983-12-14 1985-07-26 ステンカ−・コ−ポレ−シヨン Composite ceramic body of silicon carbide/graphite/carbon
US4987103A (en) * 1986-04-09 1991-01-22 Nippon Pillar Packing Co., Ltd. Slider composed of a high-density silicon carbide sintered compact
US5075264A (en) * 1986-04-09 1991-12-24 Nippon Pillar Packing Co., Ltd. Slider composed of high-density silicon carbide sintered compact
JPS62260773A (en) * 1986-05-06 1987-11-13 科学技術庁無機材質研究所長 High density silicon carbide sintered body and manufacture
JP2001139376A (en) * 1999-11-10 2001-05-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
WO2007097402A1 (en) * 2006-02-24 2007-08-30 Hitachi Chemical Company, Ltd. Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
KR101060863B1 (en) 2006-02-24 2011-08-31 히다치 가세고교 가부시끼가이샤 Ceramic sintered body, sliding parts using the same, and ceramic sintered body manufacturing method
JP4998458B2 (en) * 2006-02-24 2012-08-15 日立化成工業株式会社 Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
US8293667B2 (en) 2006-02-24 2012-10-23 Hitachi Chemical Company, Ltd. Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
CN104692805A (en) * 2006-02-24 2015-06-10 日立化成工业株式会社 Sintered ceramic, slide part therefrom, and process for producing sintered ceramic

Similar Documents

Publication Publication Date Title
US5707567A (en) Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
US8906522B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US5707065A (en) Sintered SIC mechanical seals having particular pore volume, shape, and diameter
JPS58204873A (en) Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
WO1993025495A1 (en) Porous silicon carbide
US6398991B1 (en) Processes for making a silicon carbide composition
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
JPS6313953B2 (en)
JPS59131577A (en) Silicon carbide material and manufacture
JPS60112670A (en) Silicon carbide material and manufacture
JP3650739B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JPS598668A (en) Silicon carbide sintered body and manufacture
JPS6158861A (en) Silicon carbide material and manufacture
CN107540380A (en) The bearing material of porous SiC and its manufacture method of hole composition with three forms
JP2752417B2 (en) Preparation of Alumina-Molybdenum Disulfide Composite
JPS61281086A (en) Sliding material
JP2543093B2 (en) Sliding parts for seals
JPH01320254A (en) Ceramic-carbon based composite material and its production
JP2836866B2 (en) Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts
JP2002338357A (en) Sliding body and mechanical seal
JPS63147880A (en) Silicon carbide-carbon composite material
JPH06206770A (en) Production of silicon carbide-carbon-based composite material
JPH11278937A (en) Tungsten carbide/carbon composite material and slide member
JPS6227030B2 (en)