JP3367165B2 - Ceramic sliding member - Google Patents

Ceramic sliding member

Info

Publication number
JP3367165B2
JP3367165B2 JP26545993A JP26545993A JP3367165B2 JP 3367165 B2 JP3367165 B2 JP 3367165B2 JP 26545993 A JP26545993 A JP 26545993A JP 26545993 A JP26545993 A JP 26545993A JP 3367165 B2 JP3367165 B2 JP 3367165B2
Authority
JP
Japan
Prior art keywords
sliding member
ceramic
ceramic sliding
fracture toughness
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26545993A
Other languages
Japanese (ja)
Other versions
JPH07101781A (en
Inventor
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP26545993A priority Critical patent/JP3367165B2/en
Publication of JPH07101781A publication Critical patent/JPH07101781A/en
Application granted granted Critical
Publication of JP3367165B2 publication Critical patent/JP3367165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は,セラミックスの
母相中に化合物ウィスカー又は繊維が分散しているセラ
ミックス摺動部材に関する。 【0002】 【従来の技術】従来,セラミックスを摺動部材として実
用化されているものがある。また,窒化ケイ素Si3
4 中に窒化硼素BN等の固体潤滑材を分散させて摩擦係
数を低減するものは,例えば,特開昭59−30769
号公報に開示されている。また,焼結助剤として,Fe
3 4 等の鉄Feの酸化物を添加した窒化ケイ素Si3
4 は,例えば,特開昭58−64268号公報,特開
昭59−88374号公報,特開昭61−72685号
公報等に開示されている。また,SiにAl2 3 ,Y
2 3 等の酸化物を添加して,主として,高強度化を図
る反応焼結する方法は,例えば,特開昭59−1522
71号公報,特開昭59−207875号公報,特開昭
59−207876号公報に開示されている。 【0003】また,複合摺動部材として,Al等の合金
にセラミックスを種々の方法で複合化し,例えば,セラ
ミックプリフォームを作製した後,含浸等により金属と
セラミックスを複合化させたものが知られており,この
ような複合摺動部材はピストンリングとして一部実用化
されている。金属基体にセラミックスを被覆する場合
に,溶射等が一般的に実用化されている。 【0004】 【発明が解決しようとする課題】しかしながら,上記複
合摺動部材は,セラミックスを主に耐摩耗性材料として
機能させており,摩擦係数μの低下を意図するものでは
なく,あるいは摩擦係数μを大幅に低下させることを意
図したものではない。また,SiにAl2 3 ,Y2
3 等の添加剤を加えるものでは,十分に摩擦係数μを低
減することができない。また,BN等の固体潤滑材をS
3 4 中に含有させるものでは,強度低下が著しく,
ある程度の強度を要求されるエンジン部品には使用する
ことができない。 【0005】ところで,窒化ケイ素のセラミックスにつ
いては,低い摩擦係数を持つものが望まれている。一般
に,Si3 4 中に,炭化ケイ素,窒化ホウ素或いは酸
化物の粒子を分散させた場合には,結合界面での反応性
に乏しく,材料自体の強度が低下する。また,窒化ホウ
素を複合した材料では高温中その部分が酸化され結晶構
造が変化し,摩擦係数が上昇することがある。上記公報
に開示されているように,焼結助剤として,Fe3 4
等の金属酸化物を添加したものでは,該添加量が少な
く,また低摩擦の特性を得ることができない。 【0006】更に,セラミックスについて,境界潤滑域
においては,必ずしも低摩擦特性とはならず,また,窒
化ホウ素を複合した材料では,600℃以上で酸化ホウ
素となり,結晶構造が変化するため,特に摩擦係数が上
昇してしまうという問題がある。 【0007】また,Si3 4 と鉄Feの酸化物との複
合では,焼成時に還元反応が起こり,FeO,Fe2
3 ,Fe3 4 の形で混合段階で添加しても,焼成後に
は,Fe−Si系の化合物に変化する。このような化合
物も潤滑油との吸着性に優れるが,更に一層吸着性を高
め,低摩擦化するためには,酸化物の状態で残すことが
望ましいものである。 【0008】そこで,本出願人は,上記の課題を解決す
るため,低摩擦セラミックスを開発して先に出願した
〔特願平5−95048号(特開平6−234564号
公報)〕。該低摩擦セラミックスは,Si3 4 又はS
iCのSiを主成分とする母相中にFeO,Fe
2 3 ,Fe3 4 等のFeの酸化物を分散させ,大気
中において表面からやや内部にかけて酸化させ,化合物
として存在していたFe−Si系の化合物をオイルとの
吸着性に優れたFe−O系の酸化物に変化させることに
よって低摩擦化したものである。 【0009】しかしながら,セラミックス母相中にFe
化合物の粒子を分散させたセラミックス摺動部材の場合
に,例えば,Si3 4 では粒成長が抑制され,破壊じ
ん性値K1 C は6.4MPam1 / 2 と低くなる。ま
た,セラミックス成形体の焼成パターン制御,即ち,焼
結温度,最高温保持時間を高く,あるいは最高温保持時
間を長くするという制御をして,粒成長化を図って高破
壊じん性化する試みも,良好な結果を得ていないのが現
状である。 【0010】この発明の目的は,上記の課題を解決する
ことであり,セラミックスを母相とし,該母相中にFe
の酸化物,珪化物のウィスカー又は繊維を分散させるこ
とによって,オイル吸着性に優れた表面から油膜が途切
れ難く,低摩擦係数を有すると共に,特に,破壊じん性
値を高く向上させたセラミックス摺動部材を提供するこ
とである。 【0011】 【課題を解決するための手段】この発明は,ZrO2
Al2 3 ,Si3 4 又はSiCであるセラミックス
を母相とし,前記母相中にFeの酸化物又はFeの珪化
物であるウィスカー又は繊維が分散していることを特徴
とするセラミックス摺動部材に関する。 【0012】このセラミックス摺動部材は,上記のよう
に構成されているので,オイルの吸着性に優れた分散相
が存在し,極めて低い摩擦係数を有する特性となると共
に,破壊じん性値KI C を高く向上させることができ
る。即ち,Feの酸化物又は珪化物は,吸着性に優れて
いるので,該化合物をセラミックス母相に分散させる
と,表面の油膜が切れ難くなり,その結果,優れた耐摩
耗性を発揮し,低い摩擦係数を示すことになる。 【0013】また,このセラミックス摺動部材は,Al
2 3 ,ZrO2 ,Si3 4 ,SiC等のセラミック
スを母相とし,前記母相中にFeO,Fe2 3 ,Fe
3 4 等の吸着性に優れた相がウィスカー又は繊維とし
て内包された構造を有しており,ウィスカー又は繊維の
原料としてはFe3 4 等のウィスカーを用いれば,作
製できるものである。なお,ここでいう破壊じん性値K
ICとは,臨界応力拡大係数であり,セラミックスの機械
的機能を評価する材料定数である。セラミックスの破壊
強度は,グリフィスによれば材料内に潜在する亀裂の大
きさに依存する。セラミックスにおける亀裂が成長して
破壊に至る引張強度σf は,次式で表される。σf =K
1 C /(πc)1 / 2 ,ここで,K1 C が破壊じん性値
であり,応力拡大係数の臨界値であり,cは表面亀裂の
長さあるいは内部の円形亀裂の半径である。 【0014】 【発明の実施の形態】以下,図面を参照して,この発明
によるセラミックス摺動部材の実施例を説明する。この
セラミックス摺動部材は,図1に示すように,セラミッ
クスを母相1とし,該母相1中に周期律表中の8族の元
素であるFeの酸化物又はFeの珪化物の化合物ウィス
カー,繊維3が分散しているものである。母相1のセラ
ミックスとしては,ZrO2 ,Al2 3 ,Si
3 4 ,SiCのいずれかである。また,8族の元素の
化合物は,Feの酸化物又はFeの珪化物のいずれかで
ある。なお,符号2はセラミックス摺動部材の表面を示
す。 【0015】一般に,破壊じん性値K1 C の低いセラミ
ックスについては,破壊じん性値K1 C を高める方法と
して,粒成長させること,あるいは短繊維,長繊維を複
合化させること等が知られている。これらは,いずれも
クラックの偏向により亀裂進展に必要なエネルギー量を
高めることによって破壊じん性値K1 C を高めようとし
ている。一方,FeO,Fe2 3 ,Fe3 4 等の物
質はオイル吸着性を高め,低い摩擦係数とすることがで
きることができるものである。そこで,このセラミック
ス摺動部材では,Fe3 4 等のウィスカーを用いて破
壊じん性値K1 C を高く向上させると共に,吸着性を向
上させて低摩擦係数化を図ったものである。 【0016】この発明によるセラミックス摺動部材の一
実施例(実施例1)を説明する。 〔実施例1〕 このセラミックス摺動部材は次のようにして作製した。
まず,La−βAl23 添加CeO2 安定化ZrO2
粉末にFe3 4 のウィスカー(20μm長さ)を加
え,トルク等を測定できる手段を備えた混練機によって
約5時間混練して混合物を作製した。この場合に,混合
媒体として水を用い,混練機の回転数を60rpmとし
た。ここで,La−βAl2 3 添加CeO2 安定化Z
rO2 粉末は,CeO2 で安定化したZrO2 とLa−
βAl2 3 とを配合して焼成し,該焼結体を粉砕して
作製したセラミックス粉末である。混練機から混合物を
取り出し,該混合物を金型に入れて予備成形して予備成
形体を作製した。予備成形体を150℃で乾燥させ,約
2000kgf/cm2 の圧力により,乾燥した予備成
形体をCIP成形して成形体を作製した。次いで,成形
体を最高温度1650℃で焼成し,緻密な焼結体即ちセ
ラミックス摺動部材を作製した。 【0017】上記製造工程によって作製した焼結体につ
いて,上記セラミックス粉末にFe3 4 のウィスカー
の添加量(wt%)に対する破壊じん性値K1 C (MP
a・m1 / 2 )の関係を図2に示す。図2から分かるよ
うに,上記セラミックス粉末へのFe3 4 のウィスカ
ーの添加量が増加するに従って破壊じん性値K1 C が徐
々に高くなっていることが分かる。また,上記セラミッ
クス粉末にFe3 4のウィスカーの添加量を8wt%
添加したセラミックス摺動部材について,その摺動特性
を調査した。その結果を図3に示す。 【0018】摺動試験は,次の条件で行った。摺動試験
の相手材としては鋳鉄で作製されているピンを使用し
た。このセラミックス摺動部材の摺動試験について,往
復動試験機を用い,大気中で170℃の下で,摺動の平
均速度2m/sで行って摺動特性を評価した。摺動試験
では,荷重を種々に変化させて試験を行った。その結果
を,図3のグラフに示す。図3において,縦軸には摩擦
係数μをとり,横軸にはP=log(η×V/F)をと
った。パラメータPについて,Fは荷重,Vは速度及び
ηと潤滑油の粘度を示しており,Pの単位は〔×10
- 6 ・(m2 /S)・(m/S)/kgf〕である。 【0019】また,上記実施例1のセラミックス摺動部
材の摺動特性を知るため,比較例1として,Fe3 4
ウィスカーを添加していない上記セラミックス,即ちL
a−βAl2 3 添加CeO2 安定化ZrO2 粉末でセ
ラミックス摺動部材を作製した。比較例1のセラミック
ス摺動部材の摺動試験を上記実施例1と同様に行った。
その結果を,図3のグラフに示す。 【0020】図3から分かるように,実施例1のセラミ
ックス摺動部材は,比較例1のセラミックス摺動部材に
比較して,摩擦係数μが低くなっていることが分かる。 【0021】この発明によるセラミックス摺動部材の別
の実施例(実施例2)を説明する。 〔実施例2〕 この実施例2におけるセラミックス摺動部材は,Al2
3 粉末を原料として用い,実施例1と同様に,Fe3
4 (鉄の酸化物)ウィスカー又はFe−Si(鉄の珪
化物)ウィスカー,Cr2 3 ウィスカー,CrNウィ
スカーをそれぞれ8wt%添加し,実施例1と同様の条
件で,テストピースを作製した。このテストピースの摺
動特性を評価した。実施例2のセラミックス摺動部材
は,破壊じん性値K1 C はウィスカーを添加していない
元のセラミックス摺動部材に比較して15〜25%高く
なり,向上していることが分かった。また,実施例2の
セラミックス摺動部材の摩擦係数μは,元のセラミック
ス摺動部材に比較して10%低くなっていることが確認
できた。 【0022】次に,この発明によるセラミックス摺動部
材の他の実施例(実施例3)を説明する。 〔実施例3〕 このセラミックス摺動部材は,Si3 4 粉末にAl2
3 とY2 3 を添加して作製したセラミックスを粉砕
してセラミックス粉末を作製した。このセラミックス粉
末にFe3 4 ウィスカーを混合した後,該混合物を成
形して成形体を作製し,該成形体を1700℃で焼成し
た。該セラミックス粉末にFe3 4 ウィスカーを8w
t%添加することにより作製したセラミックス摺動部材
は,破壊じん性値K1 C =7.8MPa・m1 / 2 であ
り,Fe3 4 ウィスカーを無添加の元のセラミックス
摺動部材は,破壊じん性値K1 C =6.4MPa・m
1 / 2 であった。また,実施例3のセラミックス摺動部
材の摩擦係数μは,元のセラミックス摺動部材に比較し
て約12%低下していることが確認された。 【0023】 【発明の効果】この発明によるセラミックス摺動部材
は,上記のように構成されているので,低摩擦化を達成
することができると共に,特に,破壊じん性値が高く向
上させることができ,摺動部材として適用して極めて好
ましいものである。しかも,Feの元素の化合物ウィス
カーは,吸着性に優れた分散剤として機能し,油膜の途
切れ難い低摩擦化を確保でき,耐摩耗性に富んだ安定し
たものとなり,摺動部に使用してもスティック等のトラ
ブルが発生することがない。また,このセラミックス摺
動部材は,Al2 3 ,ZrO2 ,Si3 4 ,SiC
等のセラミックスの構造中,即ち,セラミックスを母相
として,Fe3 4 等の吸着性に優れた相がウィスカー
の形態で内包された構造となり,破壊じん性を向上させ
ることができる。しかも,このセラミックス摺動部材
は,Fe3 4 等のウィスカーを使用することで容易に
作製できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sliding member in which compound whiskers or fibers are dispersed in a ceramic matrix. 2. Description of the Related Art Conventionally, there is a sliding member made of ceramics. In addition, silicon nitride Si 3 N
A method of dispersing a solid lubricant such as boron nitride BN in the material 4 to reduce the coefficient of friction is disclosed in, for example, JP-A-59-30769.
No. 6,086,045. In addition, as a sintering aid, Fe
Silicon nitride Si 3 added with an oxide of iron Fe such as 3 O 4
N 4, for example, JP 58-64268, JP-Sho 59-88374 and JP disclosed in JP-61-72685 Publication. In addition, Al 2 O 3 , Y
A method of performing reaction sintering mainly to increase strength by adding an oxide such as 2 O 3 is disclosed in, for example, JP-A-59-1522.
No. 71, JP-A-59-207875 and JP-A-59-207876. Further, as a composite sliding member, there has been known a composite sliding member in which ceramic is composited with an alloy such as Al by various methods, for example, a ceramic preform is prepared, and then metal and ceramic are composited by impregnation or the like. Therefore, such a composite sliding member has been partially put into practical use as a piston ring. When coating a metal substrate with ceramics, thermal spraying or the like is generally put to practical use. [0004] However, the above-mentioned composite sliding member uses ceramics mainly as a wear-resistant material, and is not intended to reduce the friction coefficient μ. It is not intended to significantly reduce μ. Also, Al 2 O 3 and Y 2 O are used for Si.
Addition of additives such as 3 cannot sufficiently reduce the friction coefficient μ. In addition, solid lubricant such as BN
When it is contained in i 3 N 4 , the strength is significantly reduced.
It cannot be used for engine parts that require a certain level of strength. [0005] Meanwhile, silicon nitride ceramics having a low friction coefficient are desired. In general, when silicon carbide, boron nitride, or oxide particles are dispersed in Si 3 N 4 , the reactivity at the bonding interface is poor, and the strength of the material itself is reduced. Further, in a material in which boron nitride is compounded, the portion is oxidized at a high temperature, the crystal structure is changed, and the friction coefficient may be increased. As disclosed in the above publication, Fe 3 O 4 is used as a sintering aid.
In the case where a metal oxide such as that described above is added, the amount of addition is small and low friction characteristics cannot be obtained. Furthermore, ceramics do not always have low friction characteristics in the boundary lubrication region, and in the case of a material containing boron nitride, boron oxide is formed at a temperature of 600 ° C. or more, and the crystal structure changes. There is a problem that the coefficient increases. In addition, in the case of a composite of Si 3 N 4 and an oxide of iron Fe, a reduction reaction occurs during firing, and FeO, Fe 2 O
Even if it is added at the mixing stage in the form of 3 , Fe 3 O 4 , it changes to an Fe—Si compound after firing. Such a compound is also excellent in adsorptivity to lubricating oil, but is desirably left in the form of an oxide in order to further enhance the adsorptivity and reduce friction. [0008] In order to solve the above-mentioned problems, the present applicant has developed a low-friction ceramic and filed an application [Japanese Patent Application No. 5-95048 (Japanese Patent Application Laid-Open No. Hei 6-234564)]. The low friction ceramic is made of Si 3 N 4 or S
iC, FeO, Fe
Fe oxides such as 2 O 3 and Fe 3 O 4 are dispersed and oxidized from the surface to the inside in the air, and the Fe-Si compound existing as a compound is excellent in adsorbability with oil. The friction is reduced by changing to an Fe-O-based oxide. However, Fe in the ceramic matrix
In the case of a ceramic sliding member in which compound particles are dispersed, for example, in Si 3 N 4 , grain growth is suppressed, and the fracture toughness value K 1 C is lowered to 6.4 MPam 1/2 . In addition, an attempt to control the firing pattern of the ceramic compact, that is, to increase the sintering temperature and the maximum temperature holding time or to increase the maximum temperature holding time, to increase the grain growth and increase the fracture toughness. However, at present, good results have not been obtained. [0010] An object of the present invention is to solve the above-mentioned problems, and uses ceramics as a mother phase and contains Fe in the mother phase.
By dispersing whiskers or fibers of oxides and silicides, it is possible to prevent the oil film from breaking off from the surface with excellent oil-absorbing property, to have a low friction coefficient, and especially to improve the fracture toughness. It is to provide a member. SUMMARY OF THE INVENTION The present invention provides ZrO 2 ,
A ceramic, which is Al 2 O 3 , Si 3 N 4 or SiC, is used as a mother phase, and an oxide of Fe or silicidation of Fe is contained in the mother phase.
The present invention relates to a ceramic sliding member in which whiskers or fibers are dispersed. [0012] Since this ceramic sliding member is configured as described above, it has a dispersed phase having excellent oil adsorbing properties, has an extremely low friction coefficient, and has a fracture toughness value of K IC. Can be improved. That is, since Fe oxide or silicide is excellent in adsorptivity, when the compound is dispersed in the ceramic matrix, the oil film on the surface is hard to be cut, and as a result, excellent wear resistance is exhibited. It will exhibit a low coefficient of friction. The ceramic sliding member is made of Al.
Ceramics such as 2 O 3 , ZrO 2 , Si 3 N 4 , and SiC are used as a mother phase, and FeO, Fe 2 O 3 , Fe
It has a structure in which a phase having excellent adsorptivity such as 3 O 4 is included as whiskers or fibers, and can be produced by using a whisker such as Fe 3 O 4 as a raw material of the whiskers or fibers. Note that the fracture toughness value K
IC is the critical stress intensity factor, a material constant for evaluating the mechanical function of ceramics. According to Griffith, the fracture strength of ceramics depends on the size of cracks that are latent in the material. The tensile strength σ f at which a crack grows and breaks in ceramics is expressed by the following equation. σ f = K
1 C / (πc) 1/2 , where K 1 C is the fracture toughness, the critical value of the stress intensity factor, and c is the length of a surface crack or the radius of an internal circular crack. Hereinafter, an embodiment of a ceramic sliding member according to the present invention will be described with reference to the drawings. As shown in FIG. 1, this ceramic sliding member has ceramics as a mother phase 1 and contains, in the mother phase 1, elements of group 8 in the periodic table.
Compound whiskers and fibers 3 of elemental oxides of Fe or silicides of Fe are dispersed. ZrO 2 , Al 2 O 3 , Si
3 N 4, is either SiC. The compound of the group VIII element is either Fe oxide or Fe silicide. Reference numeral 2 denotes the surface of the ceramic sliding member. [0015] In general, for low fracture toughness K 1 C ceramics, as a method to enhance the fracture toughness value K 1 C, it is grain growth, or short fibers, or the like can be conjugated the long fibers are known ing. All of them attempt to increase the fracture toughness value K 1 C by increasing the amount of energy required for crack propagation by crack deflection. On the other hand, substances such as FeO, Fe 2 O 3 , and Fe 3 O 4 can enhance oil adsorbability and have a low friction coefficient. Therefore, in this ceramic sliding member, a whisker of Fe 3 O 4 or the like is used to improve the fracture toughness value K 1 C to a high value and improve the adsorptivity to reduce the friction coefficient. An embodiment (Embodiment 1) of the ceramic sliding member according to the present invention will be described. [Example 1] This ceramic sliding member was produced as follows.
First, La-βAl 2 O 3 -added CeO 2 -stabilized ZrO 2
A whisker (20 μm length) of Fe 3 O 4 was added to the powder, and the mixture was kneaded for about 5 hours by a kneader equipped with a means capable of measuring torque and the like to prepare a mixture. In this case, water was used as the mixing medium, and the number of revolutions of the kneader was set to 60 rpm. Here, La-βAl 2 O 3 added CeO 2 stabilized Z
rO 2 powder is composed of ZrO 2 stabilized with CeO 2 and La-
This is a ceramic powder produced by mixing and firing with βAl 2 O 3 and pulverizing the sintered body. The mixture was taken out of the kneader, and the mixture was put into a mold and preformed to prepare a preform. The preform was dried at 150 ° C., and the dried preform was CIP-molded under a pressure of about 2000 kgf / cm 2 to produce a formed body. Next, the compact was fired at a maximum temperature of 1650 ° C. to produce a dense sintered body, that is, a ceramic sliding member. With respect to the sintered body produced by the above-described manufacturing process, the fracture toughness value K 1 C (MP) with respect to the amount (wt%) of the whisker of Fe 3 O 4 added to the above ceramic powder.
FIG. 2 shows the relationship of (a · m 1/2 ). As can be seen from FIG. 2, the fracture toughness value K 1 C gradually increases as the amount of Fe 3 O 4 whiskers added to the ceramic powder increases. Further, the addition amount of the whisker of Fe 3 O 4 to the above ceramic powder was 8 wt%.
The sliding characteristics of the added ceramic sliding members were investigated. The result is shown in FIG. The sliding test was performed under the following conditions. A pin made of cast iron was used as a mating material for the sliding test. The sliding characteristics of this ceramic sliding member were evaluated using a reciprocating motion tester at 170 ° C. in the air at an average sliding speed of 2 m / s. In the sliding test, the test was performed by changing the load variously. The results are shown in the graph of FIG. In FIG. 3, the vertical axis represents the friction coefficient μ, and the horizontal axis represents P = log (η × V / F). Regarding the parameter P, F indicates load, V indicates speed, η and viscosity of lubricating oil, and the unit of P is [× 10
−6 · (m 2 / S) · (m / S) / kgf]. Further, in order to know the sliding characteristics of the ceramic sliding member of the first embodiment, as a comparative example 1, Fe 3 O 4
The above ceramics without added whiskers, namely L
A ceramic sliding member was produced from a-βAl 2 O 3 -added CeO 2 stabilized ZrO 2 powder. A sliding test of the ceramic sliding member of Comparative Example 1 was performed in the same manner as in Example 1 above.
The results are shown in the graph of FIG. As can be seen from FIG. 3, the ceramic sliding member of Example 1 has a lower friction coefficient μ than the ceramic sliding member of Comparative Example 1. Another embodiment (Embodiment 2) of the ceramic sliding member according to the present invention will be described. [Embodiment 2] The ceramic sliding member in this embodiment 2 is made of Al 2
Using O 3 powder as a raw material, Fe 3
8% by weight of O 4 (iron oxide) whiskers or Fe—Si (iron silicide) whiskers, Cr 2 O 3 whiskers, and CrN whiskers were added, and test pieces were prepared under the same conditions as in Example 1. . The sliding characteristics of this test piece were evaluated. It was found that the fracture toughness value K 1 C of the ceramic sliding member of Example 2 was 15 to 25% higher than that of the original ceramic sliding member to which no whisker was added, and was improved. Also, it was confirmed that the friction coefficient μ of the ceramic sliding member of Example 2 was 10% lower than that of the original ceramic sliding member. Next, another embodiment (Embodiment 3) of the ceramic sliding member according to the present invention will be described. [Embodiment 3] This ceramic sliding member is formed by adding Al 2 powder to Si 3 N 4 powder.
Ceramics produced by adding O 3 and Y 2 O 3 were pulverized to produce ceramic powder. After mixing this ceramic powder with Fe 3 O 4 whiskers, the mixture was molded to form a molded body, which was fired at 1700 ° C. 8w of Fe 3 O 4 whisker is added to the ceramic powder.
The ceramic sliding member manufactured by adding t% had a fracture toughness value K 1 C = 7.8 MPa · m 1/2 , and the original ceramic sliding member without the addition of Fe 3 O 4 whisker was: Fracture toughness value K 1 C = 6.4 MPa · m
It was 1/2 . Further, it was confirmed that the friction coefficient μ of the ceramic sliding member of Example 3 was reduced by about 12% as compared with the original ceramic sliding member. The ceramic sliding member according to the present invention is configured as described above, so that a low friction can be achieved and, in particular, a high fracture toughness value can be improved. It is very preferable to apply as a sliding member. Moreover, the compound whisker of Fe element functions as a dispersant having excellent adsorptivity, can secure a low friction in which an oil film is not interrupted, and has a stable and rich wear resistance. Also, troubles such as sticks do not occur. This ceramic sliding member is made of Al 2 O 3 , ZrO 2 , Si 3 N 4 , SiC
In other words, in the structure of ceramics such as above, that is, a phase having excellent adsorbability such as Fe 3 O 4 is contained in the form of whiskers with the ceramic as a mother phase, and the fracture toughness can be improved. In addition, this ceramic sliding member can be easily manufactured by using whiskers such as Fe 3 O 4 .

【図面の簡単な説明】 【図1】この発明によるセラミックス摺動部材の一実施
例を示す構造図である。 【図2】このセラミックス摺動部材へのFe3 4 ウィ
スカーの添加量に対する破壊じん性値KICの関係を示す
グラフである。 【図3】この発明によるセラミックス摺動部材のパラメ
ータPに対する摩擦係数を示すグラフである。 【符号の説明】 1 母相 2 表面 3 化合物ウィスカー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural view showing one embodiment of a ceramic sliding member according to the present invention. FIG. 2 is a graph showing the relationship between the fracture toughness value K IC and the amount of Fe 3 O 4 whisker added to the ceramic sliding member. FIG. 3 is a graph showing a friction coefficient with respect to a parameter P of a ceramic sliding member according to the present invention. [Description of Signs] 1 Mother phase 2 Surface 3 Compound whisker

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ZrO2 ,Al2 3 ,Si3 4 又は
SiCであるセラミックスを母相とし,前記母相中に
eの酸化物又はFeの珪化物であるウィスカー又は繊維
が分散していることを特徴とするセラミックス摺動部
材。
(57) [Claims 1] A ceramic which is ZrO 2 , Al 2 O 3 , Si 3 N 4 or SiC is used as a matrix, and F is contained in the matrix.
ceramic sliding member whiskers or fibers is an oxide or silicide of Fe e is characterized in that it dispersed.
JP26545993A 1993-09-30 1993-09-30 Ceramic sliding member Expired - Fee Related JP3367165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26545993A JP3367165B2 (en) 1993-09-30 1993-09-30 Ceramic sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26545993A JP3367165B2 (en) 1993-09-30 1993-09-30 Ceramic sliding member

Publications (2)

Publication Number Publication Date
JPH07101781A JPH07101781A (en) 1995-04-18
JP3367165B2 true JP3367165B2 (en) 2003-01-14

Family

ID=17417466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26545993A Expired - Fee Related JP3367165B2 (en) 1993-09-30 1993-09-30 Ceramic sliding member

Country Status (1)

Country Link
JP (1) JP3367165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455198B2 (en) * 2020-04-28 2024-03-25 京セラ株式会社 Sliding parts and paper making parts

Also Published As

Publication number Publication date
JPH07101781A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
KR100355138B1 (en) rolling bearing
JP3367165B2 (en) Ceramic sliding member
Pasto Causes and effects of Fe‐bearing inclusions in sintered Si3N4
KR950004776B1 (en) High temperature bearing alloy and method of producing the same
JP2004002067A (en) Wear-resistant member and its production process
JPS6241775A (en) Fiber reinforced composite material for tool
JPH1143372A (en) Silicon nitride-based ceramic and its production
JPH0520382B2 (en)
JPH059055A (en) Ceramics-carbon system composite material, its manufacture and sliding component
JPH0987029A (en) Silicon carbide-based composite material and wear-resistant sliding part using the material
JP3417005B2 (en) Ceramic sliding member and method of manufacturing the same
Kustas et al. Lubricious-surface-silicon-nitride rings for high-temperature tribological applications
JP3351016B2 (en) Low-friction ceramics, sliding parts and wear-resistant parts comprising the same, and methods for producing them
JPH08119723A (en) Sliding member
JP4178691B2 (en) Low friction ceramics and manufacturing method thereof
JPH09249448A (en) Alumina-based sintered material for sliding member
CN100448799C (en) Material based on sialon's
JP2002356373A (en) Sliding material and its manufacturing method
JPH06219837A (en) Silicon nitride ceramic sintered compact and its production
JPH03281600A (en) Self-lubricating hard material
RU2010783C1 (en) Charge for producing ceramic materials
JP2592267B2 (en) Sialon reinforced with silicon carbide whiskers
JP3632219B2 (en) Gradient composition sliding member
JP2543093B2 (en) Sliding parts for seals
JPS62127454A (en) Wear-resistant composite sintered material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees