JPH06219837A - Silicon nitride ceramic sintered compact and its production - Google Patents

Silicon nitride ceramic sintered compact and its production

Info

Publication number
JPH06219837A
JPH06219837A JP50A JP1186893A JPH06219837A JP H06219837 A JPH06219837 A JP H06219837A JP 50 A JP50 A JP 50A JP 1186893 A JP1186893 A JP 1186893A JP H06219837 A JPH06219837 A JP H06219837A
Authority
JP
Japan
Prior art keywords
silicon nitride
weight
parts
oxide
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50A
Other languages
Japanese (ja)
Other versions
JP3810806B2 (en
Inventor
Isao Ikeda
功 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01186893A priority Critical patent/JP3810806B2/en
Publication of JPH06219837A publication Critical patent/JPH06219837A/en
Application granted granted Critical
Publication of JP3810806B2 publication Critical patent/JP3810806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a silicon nitride ceramic sintered compact easily densified with small amts. of auxiliaries, excellent in toughness, strength, wear resistance and rolling fatigue characteristics and suitable for use as a sliding member and a bearing material. CONSTITUTION:A ceramic mixture of 100 pts.wt. silicon nitride with 2-7 pts.wt. yttrium oxide, 0.3-9 pts.wt. aluminum oxide, 0.6-7 pts.wt. MgO.Al2O3 spinel and <=2 pts.wt. at least one among titanium oxide, zirconium oxide, hafnium oxide, molybdenum carbide and tungsten carbide is sintered to obtain the objective silicon nitride ceramic sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化珪素セラミックス焼
結体およびその製造方法に係り、特に少量の添加助剤で
容易に緻密化し、靭性強度、耐摩耗性および転がり疲労
特性に優れ、摺動部材および軸受材料として好適な窒化
珪素セラミックス焼結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride ceramics sintered body and a method for producing the same, and particularly to densification easily with a small amount of additive aid, excellent toughness, wear resistance and rolling fatigue characteristics, and sliding. The present invention relates to a silicon nitride ceramics sintered body suitable as a member and a bearing material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】窒化珪素を主成分とするセラミックス焼
結体は軽量で高強度を有し、また耐摩耗特性や摺動性に
優れているため、ベアリングの転動体およびレース材や
各種摺動部材や軸受部材として広く普及し始め、さらに
自動車部品や化学機械部品にも利用されている。特に窒
化珪素焼結体は1900℃程度までの高温度範囲におい
て優れた耐熱性を有し、かつ熱膨脹係数も小さいため、
また熱衝撃に対する耐性も従来の金属材より優れている
ことから、ガスタービン翼、ガスタービンノズル、内燃
機関部品を始め、各種の高強度耐熱部品材料としてその
用途開発が進められている。
2. Description of the Related Art Ceramic sinters containing silicon nitride as a main component are lightweight and have high strength, as well as excellent wear resistance and slidability. It has begun to spread widely as a member and bearing member, and is also used for automobile parts and chemical mechanical parts. In particular, a silicon nitride sintered body has excellent heat resistance in a high temperature range up to about 1900 ° C. and has a small coefficient of thermal expansion.
In addition, since it has better resistance to thermal shock than conventional metal materials, its application is being developed as various high-strength heat-resistant parts materials such as gas turbine blades, gas turbine nozzles, and internal combustion engine parts.

【0003】ところで、窒化珪素は、強固な共有結合性
セラミックスであり、焼結体を構成する窒化珪素粉末の
みでは焼結性が極めて悪いため、通常窒化珪素焼結体を
製造する場合には、所定粒径の窒化珪素粉末に対して、
酸化イットリウム(Y2 3)等の希土類酸化物やマグ
ネシア、アルミナ、ジルコニア等の金属酸化物を焼結助
剤として添加し、得られた原料混合体をプレス成形法等
により成形体とし、この成形体を真空あるいは非酸化性
雰囲気中で常圧焼結し緻密化して製造されている。
By the way, since silicon nitride is a strong covalently-bonded ceramic, and the sinterability is extremely poor only with the silicon nitride powder forming the sintered body, when a silicon nitride sintered body is usually manufactured, For silicon nitride powder of a predetermined particle size,
A rare earth oxide such as yttrium oxide (Y 2 O 3 ) or a metal oxide such as magnesia, alumina or zirconia is added as a sintering aid, and the obtained raw material mixture is formed into a compact by a press molding method. It is manufactured by compacting a compact by pressureless sintering in a vacuum or non-oxidizing atmosphere.

【0004】上記焼結助剤等の添加剤は焼結後において
は粒界に第2相として存在するが、この第2相の存在形
態が窒化珪素セラミックス焼結体の特性を大きく左右す
る。すなわち第2相が融点の低い非結晶質である場合に
は焼結体の高温強度が大幅に劣化する。一方、第2相が
結晶質で構成される場合には高温強度の低下は少ない。
さらに上記第2相の絶対量も焼結体の耐摩耗性や特に軸
受部品に適用した場合の転がり疲労寿命に大きく影響す
ることが判明している。そして一般に上記第2相の絶対
量が減少するに伴って焼結体の特性向上が図られること
が確認されている。
Additives such as the above-mentioned sintering aids exist as a second phase at the grain boundaries after sintering, and the existence form of this second phase greatly affects the characteristics of the silicon nitride ceramics sintered body. That is, when the second phase is amorphous with a low melting point, the high temperature strength of the sintered body is significantly deteriorated. On the other hand, when the second phase is crystalline, the decrease in high temperature strength is small.
Further, it has been found that the absolute amount of the second phase also has a great influence on the wear resistance of the sintered body and especially on the rolling fatigue life when applied to bearing parts. It has been generally confirmed that the characteristics of the sintered body are improved as the absolute amount of the second phase is reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記粒界
第2相の絶対量が極度に減少すると、窒化珪素が本来備
える機械的強度および靭性値が損われるため、本来の品
質特性を保証することが困難となる。
However, if the absolute amount of the second phase of the grain boundary is extremely reduced, the mechanical strength and toughness inherent in silicon nitride are impaired, so that the original quality characteristics can be guaranteed. It will be difficult.

【0006】一方、従来、窒化珪素原料粉末と上記添加
助剤とを均一に混合するために、トリクロロエタン、ト
リクロロエチレン、エチルアルコール等の有機溶剤が使
用されていた。しかしながら、トリクロロエタン等の塩
素系有機溶剤は毒性が強く使用が規制される方向にある
一方、エチルアルコール等の可燃性溶剤を使用する場合
には、製造設備の安全性を高める手段が必要となり、い
ずれにしても製造技術上の難点があった。そこで水を溶
剤として使用する方法も採用されているが、例えば窒化
アルミニウム(AlN)のように水と反応する助剤は使
用できない問題点があった。
On the other hand, conventionally, an organic solvent such as trichloroethane, trichloroethylene or ethyl alcohol has been used in order to uniformly mix the silicon nitride raw material powder and the above-mentioned addition aid. However, while chlorine-based organic solvents such as trichloroethane are highly toxic and their use is being restricted, when flammable solvents such as ethyl alcohol are used, a means to enhance the safety of production equipment is required. However, there were difficulties in manufacturing technology. Therefore, a method of using water as a solvent is also adopted, but there is a problem that an auxiliary agent that reacts with water, such as aluminum nitride (AlN), cannot be used.

【0007】従来より窒化珪素セラミックス焼結体を製
造する際に使用する添加助剤としては、前記の通り酸化
イットリウム−酸化アルミニウム系や、さらにジルコニ
ウム、チタニウムの酸化物、モリブデン、タングステン
の炭化物等を添加した系が採用されている。しかしなが
ら、高温強度の低下をもたらす助剤の使用量を低減しつ
つ、さらに焼結性を高め緻密で耐摩耗性、転がり疲労強
度、機械的強度および靭性値の高い焼結体を得ることが
求められてきている。
As described above, as additive aids used in the production of silicon nitride ceramics sintered bodies, yttrium oxide-aluminum oxide-based materials, zirconium and titanium oxides, molybdenum and tungsten carbides, and the like have been used. The added system is adopted. However, it is required to obtain a sintered body that is dense and has high wear resistance, rolling fatigue strength, mechanical strength and toughness while further increasing the sinterability while reducing the amount of the auxiliary agent that causes a decrease in high temperature strength. Has been done.

【0008】本発明は上記の要請および問題点に対応す
るためになされたものであり、特に少量の添加助剤で容
易に緻密化し、靭性強度、耐摩耗性および転がり疲労特
性に優れており、摺動部材および軸受材料として好適な
窒化珪素セラミックス焼結体およびその製造方法を提供
することを目的とする。
The present invention has been made in order to meet the above-mentioned demands and problems, and in particular, it is easily densified with a small amount of an additive aid, and has excellent toughness, wear resistance and rolling fatigue characteristics. An object of the present invention is to provide a silicon nitride ceramics sintered body suitable as a sliding member and a bearing material, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本願発明者は、各種の焼結助剤および分散強化剤の
添加量を変えて焼結体試料を多数調製し、それらが焼結
体の焼結性や強度特性等に及ぼす影響を定量的に把握し
た。その結果、特に焼結助剤としてMgO・Al2 3
スピネル(MgAl2 4 )を酸化イットリウム−酸化
アルミニウム系材料に添加することにより焼結特性が大
幅に改善され、少量の助剤添加の場合においても、焼結
時に緻密化が進行し易くなり、耐摩耗性、高温強度およ
び耐転がり疲労特性に優れた窒化珪素セラミックス焼結
体が得られた。本発明はこれらの知見に基づいて完成さ
れたものである。
In order to achieve the above object, the inventor of the present application prepared a large number of sintered body samples by changing the addition amount of various sintering aids and dispersion strengthening agents, and sintering them. The effects on the sinterability and strength characteristics of the body were quantitatively understood. As a result, MgO.Al 2 O 3 is used as a sintering aid.
By adding spinel (MgAl 2 O 4 ) to the yttrium oxide-aluminum oxide-based material, the sintering characteristics are significantly improved, and even when a small amount of an auxiliary agent is added, densification easily proceeds during sintering, A silicon nitride ceramics sintered body excellent in wear resistance, high temperature strength and rolling fatigue resistance was obtained. The present invention has been completed based on these findings.

【0010】すなわち本発明に係る窒化珪素セラミック
ス焼結体は、窒化珪素100重量部に対して酸化イット
リウムを2〜7重量部、酸化アルミニウムを0.3〜9
重量部と、MgO・Al2 3 スピネルを0.6〜7重
量部と、酸化チタニウム、酸化ジルコニウム、酸化ハフ
ニウム、炭化モリブデンおよび炭化タングステンから選
択される少なくとも1種を2重量部以下添加したセラミ
ックス混合体を焼結してなることを特徴とする。
That is, in the silicon nitride ceramics sintered body according to the present invention, 2 to 7 parts by weight of yttrium oxide and 0.3 to 9 parts of aluminum oxide are used with respect to 100 parts by weight of silicon nitride.
Parts by weight, 0.6 to 7 parts by weight of MgO.Al 2 O 3 spinel, and 2 parts by weight or less of at least one selected from titanium oxide, zirconium oxide, hafnium oxide, molybdenum carbide and tungsten carbide. It is characterized in that the mixture is sintered.

【0011】また窒化珪素100重量部に対して酸化イ
ットリウム、酸化アルミニウム、MgO・Al2 3
ピネル、酸化チタニウム、酸化ジルコニウム、酸化ハフ
ニウム、炭化モリブデンおよび炭化タングステンの総含
有量は13重量部以下に設定するとよい。
The total content of yttrium oxide, aluminum oxide, MgO.Al 2 O 3 spinel, titanium oxide, zirconium oxide, hafnium oxide, molybdenum carbide and tungsten carbide is 13 parts by weight or less based on 100 parts by weight of silicon nitride. Good to set.

【0012】また本発明に係る窒化珪素セラミックス焼
結体の製造方法は、上記セラミックス混合体を成形し、
得られた成形体を脱脂した後に、非酸化性雰囲気中で温
度1650〜1825℃で焼結または熱間静水圧プレス
(HIP)処理することを特徴とする。
A method of manufacturing a silicon nitride ceramics sintered body according to the present invention comprises molding the above ceramic mixture,
The obtained molded body is degreased and then sintered or hot isostatic pressing (HIP) is performed at a temperature of 1650 to 1825 ° C. in a non-oxidizing atmosphere.

【0013】ここで上記窒化珪素粉末としては、粒径が
5μm以下好ましくは2μm以下の微細で高純度の原料
粉末を使用するとよい。特に焼結体の粒界に低融点化合
物を形成するリチウム、カリウム、ナトリウム、カルシ
ウム、鉄などの不純物の含有量が0.5重量%以下の原
料粉末を使用する。また窒化珪素(Si3 4 )は、α
相型およびβ相型の2種のいずれも使用することが可能
であるが、α相型窒化珪素は、β相型と比較して高温焼
結後に結晶粒が長く成長し、高い機械的強度を保持する
ことができるため、原料窒化珪素全体のうちα相型の窒
化珪素が80重量%以上を占めることが望ましい。さら
に窒化珪素特有の耐熱衝撃特性、耐摩耗性を確保するた
めに、焼結体に占める窒化珪素成分比が85重量%以上
となるように、他の添加成分量を設定することが望まし
い。
Here, as the silicon nitride powder, it is preferable to use a fine and highly pure raw material powder having a particle size of 5 μm or less, preferably 2 μm or less. In particular, a raw material powder containing 0.5% by weight or less of impurities such as lithium, potassium, sodium, calcium and iron that form a low melting point compound at the grain boundaries of the sintered body is used. Silicon nitride (Si 3 N 4 ) is α
Both of the phase type and the β phase type can be used, but the α phase type silicon nitride has crystal grains grown longer after high temperature sintering and has a higher mechanical strength than the β phase type. Therefore, it is desirable that α-phase type silicon nitride accounts for 80% by weight or more of the entire raw material silicon nitride. Further, in order to secure the thermal shock resistance and wear resistance peculiar to silicon nitride, it is desirable to set the amount of other additive components so that the silicon nitride component ratio in the sintered body is 85% by weight or more.

【0014】本発明に係る焼結体の添加成分の1つであ
る酸化イットリウム(Y2 3 )は、焼結過程における
緻密化速度を低下させるものの、α相型からβ相型への
相転移速度を早めβ相型柱状結晶の生成を促進して焼結
体の強度および靭性の向上を図るために2〜7重量部添
加される。添加量が2重量部未満の場合には上記効果が
不充分となる一方、添加量が7重量部を超えると得られ
る焼結体の機械的強度および耐熱衝撃性が低下し易くな
るので好ましくない。
Yttrium oxide (Y 2 O 3 ), which is one of the additional components of the sintered body according to the present invention, reduces the densification rate in the sintering process, but the phase from the α phase type to the β phase type is reduced. It is added in an amount of 2 to 7 parts by weight in order to accelerate the transition rate and accelerate the formation of β-phase type columnar crystals to improve the strength and toughness of the sintered body. If the addition amount is less than 2 parts by weight, the above effect becomes insufficient, while if the addition amount exceeds 7 parts by weight, the mechanical strength and thermal shock resistance of the obtained sintered body are likely to decrease, which is not preferable. .

【0015】また酸化アルミニウム(Al2 3 )は高
温強度を増加させるとともに焼結促進に寄与するために
0.3〜9重量部添加されるものであり、特に常圧焼結
法によって焼結する場合に効果が大きい。添加量が0.
3重量部未満の場合には焼結促進効果が不充分となる一
方、添加量が9重量部を超える場合には耐熱衝撃性が低
下し、常温強度も劣化し易い。
Aluminum oxide (Al 2 O 3 ) is added in an amount of 0.3 to 9 parts by weight in order to increase the high temperature strength and contribute to the promotion of sintering. The effect is great when you do. Addition amount is 0.
If the amount is less than 3 parts by weight, the effect of promoting sintering will be insufficient, while if the amount added exceeds 9 parts by weight, the thermal shock resistance will decrease and the room temperature strength will also tend to deteriorate.

【0016】さらにMgO・Al2 3 スピネルは、製
造プロセスにおいて焼結促進剤として機能する上に焼結
体の耐薬品性を向上させることができ、0.6〜7重量
部添加される。その添加量が0.6重量部未満の場合に
は、粒界相の形成が不充分となり、高温度における焼結
体の耐薬品性が低下し易い一方、含有量が7重量部を超
える場合には、焼結後において低融点の液相を多量に生
じ機械的強度が逆に低下し始めるため、添加量は上記範
囲内に設定される。
Further, MgO.Al 2 O 3 spinel functions as a sintering accelerator in the manufacturing process and can improve the chemical resistance of the sintered body, and is added in an amount of 0.6 to 7 parts by weight. When the addition amount is less than 0.6 parts by weight, the formation of the grain boundary phase becomes insufficient and the chemical resistance of the sintered body at a high temperature tends to decrease, while when the content exceeds 7 parts by weight. In addition, since a large amount of liquid phase having a low melting point is generated after sintering and mechanical strength starts to decrease, the addition amount is set within the above range.

【0017】なお、MgO成分およびAl2 3 成分を
個別でなく、助剤としては融点が高いMgO・Al2
3 スピネルの形で添加することにより、従来製法と比較
して焼結性が大幅に改善され、特にY2 3 やMgOな
どの従来の焼結助剤を使用する場合と比較して助剤の添
加量を低減できる上に、焼結体密度を大幅に改善するこ
とができる。また従来製法による焼結体と同一密度の焼
結体を製造する場合には、焼結温度を50〜100℃程
度引き下げることが可能になり、製造条件を緩和するこ
とができ製造コストの低減も図ることができる。
Incidentally, the MgO component and the Al 2 O 3 component are not separate, but MgO.Al 2 O having a high melting point as an auxiliary agent.
By adding in the form of 3 spinels, the sinterability is greatly improved as compared with the conventional manufacturing method, and in particular, as compared with the case where the conventional sintering aid such as Y 2 O 3 or MgO is used, In addition to being able to reduce the addition amount of, the density of the sintered body can be significantly improved. Further, when a sintered body having the same density as that of the sintered body manufactured by the conventional manufacturing method is manufactured, the sintering temperature can be lowered by about 50 to 100 ° C., the manufacturing conditions can be relaxed, and the manufacturing cost can be reduced. Can be planned.

【0018】また本発明に係る焼結体の製造プロセスに
おいて原料粉末に添加する他の成分であるTi,Zr,
Hfの酸化物およびMo,Wの炭化物は、 MgO・Al2
3スピネルと相乗的に作用し、緻密化焼結を促進する
焼結促進剤として機能する上に、焼結後において粒径1
〜5μmの高融点の化合物となり、単独に粒子として焼
結体粒界内に分散する形態を有し、焼結体の強度および
耐摩耗性を向上させる効果を有し、原料粉末100重量
部に対して2重量部以下の割合で添加される。添加量が
2重量部を超えると、耐薬品性および靭性が低下する一
方、添加量が0.1重量未満の場合には強度特性および
耐摩耗性の改善効果が充分に得られない。そのため好ま
しくは0.3〜1.5重量部の範囲で添加される。
Further, in the manufacturing process of the sintered body according to the present invention, Ti, Zr, which is another component added to the raw material powder,
The oxides of Hf and the carbides of Mo and W are MgO.Al 2
It acts synergistically with O 3 spinel to function as a sintering accelerator that promotes densification sintering, and has a grain size of 1 after sintering.
The compound has a high melting point of ˜5 μm and is dispersed as a particle in the grain boundary of the sintered body, and has the effect of improving the strength and wear resistance of the sintered body. On the other hand, it is added at a ratio of 2 parts by weight or less. If the amount added exceeds 2 parts by weight, the chemical resistance and toughness will decrease, while if the amount added is less than 0.1 part by weight, the effect of improving the strength characteristics and wear resistance will not be sufficiently obtained. Therefore, it is preferably added in the range of 0.3 to 1.5 parts by weight.

【0019】なおセラミックス混合体における上記酸化
イットリウム、酸化アルミニウム、MgO・Al2 3
スピネル、Ti,Zr,Hfの酸化物、およびMo,T
iの炭化物等の焼結助剤の総添加量は13重量部以下、
より好ましくは7〜10重量部の範囲に設定する。また
上記酸化アルミニウムとMgO・Al2 3 スピネルと
の合計量に対する酸化イットリウムの比が0.5未満で
あると、焼結体の強度および靭性値の低下が顕著となる
一方、比の値が3を超えると緻密化速度が低下するた
め、上記比の値が0.5〜3の範囲になるように各助剤
成分割合を設定する。
The above yttrium oxide, aluminum oxide, MgO.Al 2 O 3 in the ceramic mixture is used.
Spinel, oxides of Ti, Zr, Hf, and Mo, T
The total addition amount of the sintering aid such as carbide of i is 13 parts by weight or less,
More preferably, it is set in the range of 7 to 10 parts by weight. When the ratio of yttrium oxide to the total amount of aluminum oxide and MgO.Al 2 O 3 spinel is less than 0.5, the strength and toughness of the sintered body are significantly decreased, while the ratio value is If it exceeds 3, the densification rate will decrease, so the ratio of each auxiliary component is set so that the value of the above ratio falls within the range of 0.5 to 3.

【0020】またMgO・Al2 3 スピネルは前記の
通り、緻密化速度を高める作用を有するが、焼結後には
低融点の液相を生じ易くなる。そのためMgO・Al2
3スピネルに対する酸化アルミニウムの比は0.5〜
5の範囲が望ましい。これは比の値が0.5未満の場
合、液相による高温強度の低下が顕著になる一方、比の
値が5を超えるとMgO・Al2 3 スピネルの効果が
相対的に低下してしまうからである。
As described above, the MgO.Al 2 O 3 spinel has the effect of increasing the densification rate, but it tends to form a liquid phase having a low melting point after sintering. Therefore, MgO ・ Al 2
The ratio of aluminum oxide to O 3 spinel is 0.5-
A range of 5 is desirable. This is because when the ratio value is less than 0.5, the high temperature strength due to the liquid phase is significantly reduced, while when the ratio value exceeds 5, the effect of MgO.Al 2 O 3 spinel is relatively reduced. Because it will be.

【0021】本発明に係る窒化珪素セラミックス焼結体
は、例えば以下のようなプロセスを経て製造される。す
なわち窒化珪素粉末に対して助剤としてのY2 3 と、
Al2 3 と、MgO・Al2 3 スピネルと、Ti,
Zr,Hfの酸化物、および、Mo,Wの炭化物の少な
くとも1種の粉末とを所定量添加してセラミックス混合
体を調製し、次に得られたセラミックス混合体を金型プ
レス等の汎用の成形法によって所定形状の成形体とした
後に、この成形体を脱脂し、さらに窒素ガスまたはアル
ゴンガスなどの非酸化性雰囲気中で1650〜1825
℃程度の温度で1〜10時間焼成する。
The silicon nitride ceramics sintered body according to the present invention is manufactured through the following processes, for example. That is, Y 2 O 3 as an auxiliary agent for silicon nitride powder,
Al 2 O 3 , MgO.Al 2 O 3 spinel, Ti,
A predetermined amount of Zr, Hf oxide and at least one powder of Mo, W carbide is added to prepare a ceramic mixture, and the obtained ceramic mixture is then used in a general-purpose die press or the like. After forming a molded body having a predetermined shape by a molding method, the molded body is degreased, and further 1650 to 1825 in a non-oxidizing atmosphere such as nitrogen gas or argon gas.
Baking is performed at a temperature of about C for 1 to 10 hours.

【0022】ここで焼成雰囲気を窒素やアルゴン等の非
酸化性雰囲気とする理由は、酸素等を含む酸化性雰囲気
では高温焼結時に窒化珪素が酸化されてSiO2 に変化
し、目的とする窒化珪素焼結体本来の機械的強度が得ら
れないからである。
The reason why the firing atmosphere is a non-oxidizing atmosphere such as nitrogen or argon is that in an oxidizing atmosphere containing oxygen or the like, silicon nitride is oxidized during high temperature sintering to change to SiO 2 and the desired nitriding is performed. This is because the original mechanical strength of the silicon sintered body cannot be obtained.

【0023】なお、上記焼成操作は常圧焼結法によって
も、あるいはその他の焼結法、例えばホットプレス法、
雰囲気加圧法、熱間静水圧プレス(HIP)法等を使用
して実施してもよい。いずれの焼成法においても緻密で
機械的強度が高く、特に酸などの化学薬品が混在する使
用環境において耐薬品性が優れた窒化珪素セラミックス
焼結体が得られる。特に常圧焼結法によっても焼結性が
良好であるため、窒化珪素セラミックス焼結体の量産性
を大幅に改善することが可能になる。
The above-mentioned firing operation may be carried out by the atmospheric pressure sintering method or another sintering method, for example, a hot pressing method,
You may implement by using an atmosphere pressurizing method, a hot isostatic pressing (HIP) method, etc. In any firing method, it is possible to obtain a silicon nitride ceramics sintered body which is dense and has high mechanical strength and which has excellent chemical resistance particularly in a use environment in which chemicals such as acids are mixed. In particular, since the sinterability is good even by the atmospheric pressure sintering method, the mass productivity of the silicon nitride ceramics sintered body can be greatly improved.

【0024】[0024]

【作用】上記構成に係る窒化珪素セラミックス焼結体お
よびその製造方法によれば、酸化イットリウム−酸化ア
ルミニウム系の焼結助剤に、さらにMgO・Al2 3
スピネルを所定量添加しているため、少量の焼結助剤を
添加した場合においても焼結特性が大幅に改善される一
方、Ti,Zr,Hfの酸化物、および、Mo,Wの炭
化物が粒界内に分散して耐摩耗性および転がり疲労特性
が改善される。したがって、摺動部材および軸受部材に
好適な窒化珪素セラミックス焼結体が得られる。
According to the silicon nitride ceramics sintered body and the method of manufacturing the same having the above-described structure, a yttrium oxide-aluminum oxide based sintering aid is further used, and MgO.Al 2 O 3 is further added.
Since a predetermined amount of spinel is added, the sintering characteristics are significantly improved even when a small amount of sintering additive is added, while Ti, Zr, Hf oxides and Mo, W carbides are Dispersion in the grain boundaries improves wear resistance and rolling fatigue properties. Therefore, a silicon nitride ceramics sintered body suitable for the sliding member and the bearing member can be obtained.

【0025】[0025]

【実施例】次に本発明を以下に示す実施例を参照してよ
り具体的に説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to the following examples.

【0026】実施例1〜5 α相型窒化珪素を95重量%含有する平均粒径0.6μ
mの窒化珪素粉末100重量部に対して、表1左欄に示
すようにY2 3 、Al2 3 、MgO・Al2 3
ピネルおよびMoC等を焼結助剤および分散強化剤とし
て所定量ずつ添加し、5種類のセラミックス混合体を調
製した。次に得られた各セラミックス混合体をエタノー
ルを溶媒としてアルミナポットで48時間湿式混合した
後に乾燥し、プレス成形機で800kgf/cm2 の成形圧力
で加圧成形し、長さ50mm×幅50mm×厚さ10mmの成
形体を多数製作した。
Examples 1 to 5 Average particle size of 0.6 μm containing 95% by weight of α-phase type silicon nitride
As shown in the left column of Table 1, Y 2 O 3 , Al 2 O 3 , MgO.Al 2 O 3 spinel, MoC, etc. were used as a sintering aid and a dispersion strengthener for 100 parts by weight of the silicon nitride powder of m. 5 kinds of ceramics mixtures were prepared by adding a predetermined amount each. Next, each ceramic mixture obtained is wet-mixed with ethanol as a solvent in an alumina pot for 48 hours, then dried, and pressure-molded with a press molding machine at a molding pressure of 800 kgf / cm 2 , to obtain a length of 50 mm x a width of 50 mm x A large number of 10 mm thick molded bodies were manufactured.

【0027】次に得られた成形体を温度500℃の窒素
ガス雰囲気中において2時間脱脂した後に、この脱脂体
を、圧力5atm の窒素ガス雰囲気中において、温度18
00℃で加圧焼成した後に、さらに温度1700℃で圧
力1000atm にて熱間静水圧(HIP)処理を行い、
それぞれ実施例1〜5に係る窒化珪素セラミックス焼結
体を調製した。
Next, after degreasing the obtained molded body in a nitrogen gas atmosphere at a temperature of 500 ° C. for 2 hours, the degreased body was heated at a temperature of 18 at a pressure of 5 atm in a nitrogen gas atmosphere.
After pressure calcination at 00 ° C, hot isostatic pressure (HIP) treatment was further performed at a temperature of 1700 ° C and a pressure of 1000 atm.
Silicon nitride ceramics sintered bodies according to Examples 1 to 5 were prepared.

【0028】比較例1〜6 一方、比較例1〜6として、焼結助剤および分散強化剤
としてのY2 3 、Al2 3 、MgO・Al2 3
ピネル、MoC等の添加量を、表1左欄に示すように過
少または過多に設定した以外は実施例1〜5と同様に処
理してそれぞれ比較例1〜6に係る窒化珪素セラミック
ス焼結体を調製した。
Comparative Examples 1 to 6 On the other hand, as Comparative Examples 1 to 6, the addition amounts of Y 2 O 3 , Al 2 O 3 , MgO.Al 2 O 3 spinel, MoC and the like as sintering aids and dispersion strengtheners. Was treated in the same manner as in Examples 1 to 5 except that the amount was set to be too small or too large as shown in the left column of Table 1, to prepare silicon nitride ceramics sintered bodies according to Comparative Examples 1 to 6, respectively.

【0029】こうして調製した実施例1〜5および比較
例1〜6に係る窒化珪素セラミックス焼結体(試料)に
ついて、常温度および1000℃における3点曲げ強
度、ビッカース硬度(Hv)、破壊靭性値および比摩耗
量を測定した。
Three-point bending strength, Vickers hardness (Hv), and fracture toughness values at normal temperature and 1000 ° C. of the silicon nitride ceramics sintered bodies (samples) according to Examples 1 to 5 and Comparative Examples 1 to 6 thus prepared And the specific wear amount was measured.

【0030】なお曲げ強度値は3点曲げ強度試験機によ
って測定したものであり、試料サイズは4mm×3mm×4
0mm、クロスヘッドスピード0.5mm/min、スパン30
mmの試験条件で測定した。各試料の測定操作は5回ずつ
実施し、その平均値を示している。また破壊靭性値はマ
イクロインデンテーション法を使用して測定した。
The bending strength values were measured by a 3-point bending strength tester, and the sample size was 4 mm × 3 mm × 4.
0mm, crosshead speed 0.5mm / min, span 30
It was measured under the test condition of mm. The measurement operation of each sample was performed 5 times, and the average value is shown. The fracture toughness value was measured using the microindentation method.

【0031】さらに比摩耗量は図1に示すようなブロッ
クオンリング型・ファレックス(FALEX)摩耗試験機を使
用して測定した。図1に示す摩耗試験機1は、下端部を
エンジン油2中に浸漬した鋼製リング3の上端外周面に
Si3 4 試料ブロック4を所定荷重Pで押し付けた状
態で鋼製リング3を所定の回転方向に連続6時間回転せ
しめ、Si3 4 試料ブロック4の比摩耗量を測定し
た。なお、試料条件としての荷重Pは150kgf 、鋼製
リング3の周速は1.2m/sec 、エンジン油2の温度
は125℃に設定した。
Further, the specific wear amount was measured using a block-on-ring type FALEX wear tester as shown in FIG. The wear tester 1 shown in FIG. 1 has a steel ring 3 with a lower end portion immersed in an engine oil 2 and a Si 3 N 4 sample block 4 pressed against the upper outer peripheral surface of the steel ring 3 with a predetermined load P. The specific wear amount of the Si 3 N 4 sample block 4 was measured by continuously rotating in a predetermined rotation direction for 6 hours. The load P as sample conditions was set to 150 kgf, the peripheral speed of the steel ring 3 was set to 1.2 m / sec, and the temperature of the engine oil 2 was set to 125 ° C.

【0032】上記測定結果を下記表1に示す。The measurement results are shown in Table 1 below.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す結果から明らかなように、実施
例1〜5に係るSi3 4 焼結体によれば、曲げ強度、
硬度、破壊靭性値、比摩耗量が比較例1〜6と比較して
相対的に高くなり、機械的強度が優れた高品質の焼結体
が得られた。
As is clear from the results shown in Table 1, according to the Si 3 N 4 sintered bodies according to Examples 1 to 5, bending strength,
The hardness, fracture toughness value, and specific wear amount were relatively higher than those of Comparative Examples 1 to 6, and a high-quality sintered body having excellent mechanical strength was obtained.

【0035】[0035]

【発明の効果】以上説明の通り本発明に係る窒化珪素セ
ラミックス焼結体およびその製造方法によれば、酸化イ
ットリウム−酸化アルミニウム系の焼結助剤に、さらに
MgO・Al2 3 スピネルを所定量添加しているた
め、少量の焼結助剤を添加した場合においても焼結特性
が大幅に改善される一方、Ti,Zr,Hfの酸化物、
および、Mo,Wの炭化物が粒界内に分散して耐摩耗性
および転がり疲労特性が改善される。したがって、摺動
部材および軸受部材に好適な窒化珪素セラミックス焼結
体が得られる。
As described above, according to the silicon nitride ceramics sintered body and the method for manufacturing the same according to the present invention, a yttrium oxide-aluminum oxide based sintering aid is further provided with MgO.Al 2 O 3 spinel. Since a fixed amount is added, the sintering characteristics are significantly improved even when a small amount of sintering additive is added, while oxides of Ti, Zr, Hf,
Further, carbides of Mo and W are dispersed in the grain boundaries, and wear resistance and rolling fatigue characteristics are improved. Therefore, a silicon nitride ceramics sintered body suitable for the sliding member and the bearing member can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ファレックス摩耗試験機の構成を示す断面図。FIG. 1 is a sectional view showing the configuration of a Falex wear tester.

【符号の説明】[Explanation of symbols]

1 摩耗試験機 2 エンジン油 3 鋼製リング 4 Si3 4 試料ブロック P 荷重1 abrasion tester 2 engine oil 3 steel ring 4 Si 3 N 4 sample block P load

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素100重量部に対して酸化イッ
トリウムを2〜7重量部、酸化アルミニウムを0.3〜
9重量部と、MgO・Al2 3 スピネルを0.6〜7
重量部と、酸化チタニウム、酸化ジルコニウム、酸化ハ
フニウム、炭化モリブデンおよび炭化タングステンから
選択される少なくとも1種を2重量部以下添加したセラ
ミックス混合体を焼結してなることを特徴とする窒化珪
素セラミックス焼結体。
1. Yttrium oxide in an amount of 2 to 7 parts by weight and aluminum oxide in an amount of 0.3 to 100 parts by weight of silicon nitride.
9 parts by weight and 0.6 to 7 of MgO.Al 2 O 3 spinel
A silicon nitride ceramic calcination, characterized by comprising, by weight, a ceramic mixture containing 2 parts by weight or less of at least one selected from titanium oxide, zirconium oxide, hafnium oxide, molybdenum carbide and tungsten carbide. Union.
【請求項2】 窒化珪素100重量部に対して酸化イッ
トリウムを2〜7重量部、酸化アルミニウムを0.3〜
9重量部と、MgO・Al2 3 スピネルを0.6〜7
重量部と、酸化チタニウム、酸化ジルコニウム、酸化ハ
フニウム、炭化モリブデンおよび炭化タングステンから
選択される少なくとも1種を2重量部以下添加したセラ
ミックス混合体を成形し、得られた成形体を脱脂した後
に、非酸化性雰囲気中で温度1650〜1825℃で焼
結または熱間静水圧プレス(HIP)処理することを特
徴とする窒化珪素セラミックス焼結体の製造方法。
2. Yttrium oxide in an amount of 2 to 7 parts by weight and aluminum oxide in an amount of 0.3 to 100 parts by weight of silicon nitride.
9 parts by weight and 0.6 to 7 of MgO.Al 2 O 3 spinel
Parts by weight and at least one selected from titanium oxide, zirconium oxide, hafnium oxide, molybdenum carbide, and tungsten carbide in an amount of 2 parts by weight or less are molded into a ceramic mixture, and after degreasing the resulting molded body, A method for producing a silicon nitride ceramics sintered body, which comprises sintering or hot isostatic pressing (HIP) at a temperature of 1650 to 1825 ° C. in an oxidizing atmosphere.
JP01186893A 1993-01-27 1993-01-27 Sintered silicon nitride ceramics Expired - Lifetime JP3810806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01186893A JP3810806B2 (en) 1993-01-27 1993-01-27 Sintered silicon nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01186893A JP3810806B2 (en) 1993-01-27 1993-01-27 Sintered silicon nitride ceramics

Publications (2)

Publication Number Publication Date
JPH06219837A true JPH06219837A (en) 1994-08-09
JP3810806B2 JP3810806B2 (en) 2006-08-16

Family

ID=11789707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01186893A Expired - Lifetime JP3810806B2 (en) 1993-01-27 1993-01-27 Sintered silicon nitride ceramics

Country Status (1)

Country Link
JP (1) JP3810806B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726859B2 (en) 2000-09-29 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Fresnel lens, screen, image display device, lens mold manufacturing method and lens manufacturing method
JP2007039331A (en) * 2006-09-25 2007-02-15 Toshiba Corp Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member
CN115677357A (en) * 2022-11-10 2023-02-03 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof
CN116217239A (en) * 2023-03-22 2023-06-06 中国科学院上海硅酸盐研究所 Preparation method of silicon nitride ceramic with high thermal conductivity and low resistivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726859B2 (en) 2000-09-29 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Fresnel lens, screen, image display device, lens mold manufacturing method and lens manufacturing method
JP2007039331A (en) * 2006-09-25 2007-02-15 Toshiba Corp Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member
CN115677357A (en) * 2022-11-10 2023-02-03 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof
CN115677357B (en) * 2022-11-10 2023-07-11 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof
CN116217239A (en) * 2023-03-22 2023-06-06 中国科学院上海硅酸盐研究所 Preparation method of silicon nitride ceramic with high thermal conductivity and low resistivity

Also Published As

Publication number Publication date
JP3810806B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP4744704B2 (en) Method for manufacturing wear-resistant member
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH09268072A (en) Production of silicon nitride sintered compact
JP5362758B2 (en) Wear resistant parts
JP3810806B2 (en) Sintered silicon nitride ceramics
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2663028B2 (en) Silicon nitride sintered body
JPH08323509A (en) Boron nitride cutting-tool and its manufacture
JPH10259058A (en) Sialon complex and its production
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JPH0632658A (en) Silicon nitride-based sintered compact
JPH10279360A (en) Silicon nitride structural parts and its production
JP4869171B2 (en) Method for producing wear-resistant member made of silicon nitride
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JP3667145B2 (en) Silicon nitride sintered body
JPH11310465A (en) Ceramic sintered body and sealing material using the same
JP3810236B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP2524635B2 (en) Fiber reinforced ceramics
JP2592267B2 (en) Sialon reinforced with silicon carbide whiskers
JPH05238829A (en) Sintered silicone nitride ceramic
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7