JP2007039331A - Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member - Google Patents

Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member Download PDF

Info

Publication number
JP2007039331A
JP2007039331A JP2006259070A JP2006259070A JP2007039331A JP 2007039331 A JP2007039331 A JP 2007039331A JP 2006259070 A JP2006259070 A JP 2006259070A JP 2006259070 A JP2006259070 A JP 2006259070A JP 2007039331 A JP2007039331 A JP 2007039331A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
manufacturing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006259070A
Other languages
Japanese (ja)
Inventor
Minoru Takao
実 高尾
Isao Ikeda
功 池田
Hiroyoshi Tonai
弘喜 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006259070A priority Critical patent/JP2007039331A/en
Publication of JP2007039331A publication Critical patent/JP2007039331A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a silicon nitride sintered compact having excellent chemical resistance (anti-corrosive property) against a chemical agent of acid, alkali or the like without impairing high strength, high abrasion resistance, high heat resistance and the like which are intrinsic characteristics of the silicon nitride sintered compact, to provide a method for manufacturing a chemical resistant member using the silicon nitride sintered compact, and to provide a method of manufacturing a bearing member. <P>SOLUTION: The method of manufacturing the silicon nitride sintered compact is carried out by preparing a ceramic mixture comprising 0.5-6 wt.% MgO-Al<SB>2</SB>O<SB>3</SB>spinel structure, 0.1-20 wt.% silicon carbide, ≤1 wt.% silicon oxide, 0.5-3 wt.% aluminum oxide and the balance substantially silicon nitride and forming and firing the resultant ceramic mixture. The resultant silicon nitride sintered compact is used as the chemical resistant member or the bearing members 1, 2, 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化けい素焼結体の製造方法、それを用いた耐薬品性部材の製造方法および軸受部材の製造方法に係り、特に優れた機械的強度および耐摩耗性に加えて、耐薬品性にも優れた窒化けい素焼結体の製造方法、それを用いた耐薬品性部材の製造方法および軸受部材の製造方法に関する。   The present invention relates to a method for producing a silicon nitride sintered body, a method for producing a chemical resistant member using the same, and a method for producing a bearing member. In addition to excellent mechanical strength and wear resistance, the present invention relates to chemical resistance. Further, the present invention relates to a method for manufacturing a silicon nitride sintered body that is excellent, a method for manufacturing a chemical resistant member using the same, and a method for manufacturing a bearing member.

窒化けい素を主成分とするセラミックス焼結体は、優れた耐熱性を示し、かつ熱膨張係数が小さいため、耐熱衝撃性にも優れる等の諸特性を有することから、従来の耐熱合金に代わる高温構造用材料として、エンジン部品、製鋼用機械部品等への応用が試みられている。また、耐摩耗性にも優れていることから、軸受け等の摺動部材や切削工具としての実用化も図られている。   Ceramic sintered body mainly composed of silicon nitride has excellent heat resistance and low thermal expansion coefficient, so it has various characteristics such as excellent thermal shock resistance. As high-temperature structural materials, application to engine parts, steelmaking machine parts, and the like has been attempted. Moreover, since it is excellent also in abrasion resistance, practical use as a sliding member, such as a bearing, or a cutting tool is also achieved.

通常、窒化けい素は難焼結性のセラミックス材料であるため、焼結助剤として希土類酸化物や酸化アルミニウム等を原料粉末に所定量添加して焼結性を改善し、緻密で高強度なセラミックス焼結体を得ている。例えば、窒化けい素系セラミックスの焼結組成としては、Si−Y−Al系、Si−Y−Al−AlN系、Si−Y−Al−Ti,Mg,Zr等の酸化物系等が知られている(例えば、特許文献1参照)。 Usually, silicon nitride is a hard-to-sinter ceramic material, so a rare earth oxide or aluminum oxide is added to the raw material powder as a sintering aid to improve the sinterability, and it is dense and has high strength. A ceramic sintered body is obtained. For example, the sintered composition of silicon nitride ceramics includes Si 3 N 4 —Y 2 O 3 —Al 2 O 3 , Si 3 N 4 —Y 2 O 3 —Al 2 O 3 —AlN, and Si 3. An oxide system such as N 4 —Y 2 O 3 —Al 2 O 3 —Ti, Mg, Zr or the like is known (for example, see Patent Document 1).

上記焼結組成における酸化イットリウム等の希土類元素の酸化物や酸化アルミニウムを添加して形成した窒化けい素焼結体は、焼結性が向上して緻密化が促進され、機械的強度特性にも優れたものとなる。また、窒化アルミニウムや酸化チタン等の複数種類の化合物を組合せたものを添加する等によって、高温での機械的特性、耐摩耗性を改善するように工夫されている。
特開平6−219837号公報
The silicon nitride sintered body formed by adding rare earth element oxides such as yttrium oxide and aluminum oxide in the above sintered composition improves sinterability, promotes densification, and has excellent mechanical strength characteristics. It will be. Further, it has been devised to improve mechanical properties and wear resistance at high temperatures by adding a combination of a plurality of types of compounds such as aluminum nitride and titanium oxide.
Japanese Patent Laid-Open No. 6-219837

しかしながら、上記組成を有する窒化けい素焼結体は、いずれも酸やアルカリ等の化学薬品に対する耐腐食性が不十分であり、薬品が混在する環境下で使用する構造材料として採用した場合には、所定の耐久性や信頼性が得られないという問題があった。一方、耐薬品性に優れた材料として、β−サイアロンを原料とする焼結体も広く使用されているが、機械的特性が不十分であるため、適用範囲が狭く限定されるという欠点があった。   However, the silicon nitride sintered body having the above composition has insufficient corrosion resistance to chemicals such as acid and alkali, and when employed as a structural material used in an environment where chemicals are mixed, There was a problem that predetermined durability and reliability could not be obtained. On the other hand, as a material excellent in chemical resistance, a sintered body using β-sialon as a raw material is also widely used. However, since the mechanical properties are insufficient, there is a drawback that the application range is limited. It was.

例えば、近年、化学物質が多量に存在する環境下で使用可能な軸受部材や耐熱性部材や耐摩耗性部材に対する需要が増加しており、このような用途には従来用いられてきた耐食・耐熱合金や耐熱超硬合金等では対応が困難であるため、耐熱性や耐摩耗性等が金属より優れるだけでなく、耐薬品性(耐腐食性)にも優れたセラミックス部材の出現が強く望まれている。特に化学薬品が存在する環境下で使用可能な軸受けの需要が増加しているが、従来の金属製の転がり軸受けでは、耐久性が不十分であった。そこで耐薬品性や耐熱性などの基本要求特性において金属材よりも優れた特性を有するセラミックス材料を軸受け構成材として適用することが試行されているが、軸受け材の全ての要求特性を満足するセラミックス材料は未だ実現していない。   For example, in recent years, there has been an increasing demand for bearing members, heat-resistant members, and wear-resistant members that can be used in an environment where a large amount of chemical substances are present. Since it is difficult to deal with alloys and heat-resistant cemented carbides, it is strongly desired to develop ceramic members that are not only superior in heat resistance and wear resistance but also in chemical resistance (corrosion resistance). ing. In particular, the demand for bearings that can be used in an environment where chemicals are present is increasing, but conventional metal rolling bearings have insufficient durability. Therefore, attempts have been made to apply ceramic materials that are superior to metal materials in basic required properties such as chemical resistance and heat resistance as bearing components, but ceramics that satisfy all the required properties of bearing materials. The material has not been realized yet.

本発明は、このような課題に対処するためになされたもので、窒化けい素焼結体本来の特性である高強度、耐摩耗性、耐熱性等を損なうことなく、さらに酸やアルカリ等の化学薬品に対しても優れた耐薬品性(耐腐食性)を示す窒化けい素焼結体の製造方法、それを用いた耐薬品性部材の製造方法および軸受部材の製造方法を提供することを目的としている。   The present invention has been made to cope with such problems, and without damaging the original characteristics of the sintered silicon nitride, such as high strength, wear resistance, heat resistance, and the like, and further chemicals such as acids and alkalis. For the purpose of providing a method for producing a silicon nitride sintered body exhibiting excellent chemical resistance (corrosion resistance) against chemicals, a method for producing a chemical resistant member using the same, and a method for producing a bearing member Yes.

本発明者らは、上記目的を達成するために、添加助剤の種類および量に着目し、各種化合物を窒化けい素原料粉に添加して焼結体を調製し、各焼結体を腐食雰囲気に暴露した後における焼結体特性を比較評価することによって、上記添加助剤の種類および添加量が焼結体の耐腐食特性に及ぼす影響を確認した。   In order to achieve the above object, the present inventors paid attention to the type and amount of the additive aid, added various compounds to the silicon nitride raw material powder to prepare sintered bodies, and corroded each sintered body. By comparing and evaluating the characteristics of the sintered body after exposure to the atmosphere, the effect of the type and amount of the additive added on the corrosion resistance of the sintered body was confirmed.

その結果、MgO・Alスピネル構造体と、炭化けい素と、必要に応じて酸化けい素と、Ti、HfおよびWの酸化物、炭化物の少くとも一種とを添加助剤として窒化けい素原料に適量配合することによって、耐薬品性に優れると共に、強度劣化等が少ない窒化けい素焼結体が得られることを見出した。 As a result, silicon nitride is added as additive aids with MgO.Al 2 O 3 spinel structure, silicon carbide, and optionally silicon oxide, and oxides and carbides of Ti, Hf and W. It has been found that a silicon nitride sintered body having excellent chemical resistance and little deterioration in strength can be obtained by blending an appropriate amount into the raw material.

本発明は、上記知見に基づいてなされたものである。すなわち、本発明に係る窒化けい素焼結体の製造方法は、MgO・Alスピネル構造体を0.5〜6重量%、炭化けい素を0.1〜20重量%、酸化けい素を1重量%以下、酸化アルミニウムを0.5〜3重量%含み、残部が実質的に窒化けい素から成るセラミックス混合体を調製し、得られたセラミックス混合体を成形後、焼成することを特徴とする。 The present invention has been made based on the above findings. That is, in the method for producing a silicon nitride sintered body according to the present invention, the MgO · Al 2 O 3 spinel structure is 0.5 to 6% by weight, silicon carbide is 0.1 to 20% by weight, and silicon oxide is used. A ceramic mixture comprising 1% by weight or less and 0.5 to 3% by weight of aluminum oxide, the balance being substantially composed of silicon nitride is prepared, and the resulting ceramic mixture is molded and fired. To do.

また、上記窒化けい素焼結体の製造方法において、前記セラミックス混合体に、さらに、チタニウム、ハフニウム、タングステンの酸化物および炭化物から選ばれる少なくとも1種の化合物を0.1〜4重量%の範囲で含有させることが好ましい。   In the method for producing a silicon nitride sintered body, the ceramic mixture may further contain at least one compound selected from titanium, hafnium, tungsten oxides and carbides in a range of 0.1 to 4% by weight. It is preferable to contain.

さらに上記窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記酸化けい素を0.2〜0.6重量%の範囲で含有させることが好ましい。   Further, in the method for producing a silicon nitride sintered body, it is preferable that the ceramic mixture contains the silicon oxide in a range of 0.2 to 0.6% by weight.

また、上記窒化けい素焼結体の製造方法において、前記セラミックス混合体は、前記酸化アルミニウムを0.5〜2重量%の範囲で含有させることが好ましい。   In the method for producing a silicon nitride sintered body, the ceramic mixture preferably contains the aluminum oxide in a range of 0.5 to 2% by weight.

さらに、上記窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記炭化けい素を1〜10重量%の範囲で含有させることが好ましい。   Furthermore, in the method for producing a silicon nitride sintered body, it is preferable that the ceramic mixture contains the silicon carbide in an amount of 1 to 10% by weight.

また、上記窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記MgO・Alスピネル構造体を2〜5重量%の範囲で含有させることが好ましい。 In the method for manufacturing a silicon nitride sintered body, it is preferable that the ceramic mixture contains the MgO · Al 2 O 3 spinel structure in an amount of 2 to 5% by weight.

さらに、上記窒化けい素焼結体の製造方法において、前記セラミックス混合体を調製する際に、酸化アルミニウム製ボールを粉砕媒体とするボールミルでセラミックス混合体を混合し、酸化アルミニウム製ボールからセラミックス混合体に混入する酸化アルミニウムの混入量を3重量%以下にすることが好ましい。   Further, in the method for producing a silicon nitride sintered body, when preparing the ceramic mixture, the ceramic mixture is mixed with a ball mill using an aluminum oxide ball as a grinding medium, and the aluminum oxide ball is converted into the ceramic mixture. The amount of aluminum oxide to be mixed is preferably 3% by weight or less.

また、本発明の耐薬品性部材の製造方法は、上記窒化けい素焼結体の製造方法によって製造された窒化けい素焼結体を所定形状に加工して耐薬品性部材を形成することを特徴とする。   The method for producing a chemical resistant member of the present invention is characterized in that the silicon nitride sintered body produced by the method for producing a silicon nitride sintered body is processed into a predetermined shape to form a chemical resistant member. To do.

さらに、本発明の軸受部材の製造方法は、上記窒化けい素焼結体の製造方法によって製造された窒化けい素焼結体を所定形状に加工して軸受部材を形成することを特徴とする。   Furthermore, the bearing member manufacturing method of the present invention is characterized in that the silicon nitride sintered body manufactured by the method for manufacturing a silicon nitride sintered body is processed into a predetermined shape to form a bearing member.

本発明で得られる窒化けい素焼結体は、構成元素として、マグネシウムを0.1〜1.5重量%、アルミニウムを0.1〜3重量%、炭素を0.01〜6重量%、酸素を0.2〜5重量%の範囲で含み、残部が実質的に窒化けい素からなることを特徴とする。また、上記窒化けい素焼結体において、前記窒化けい素焼結体が、その構成元素として、さらにチタニウム、ハフニウム、タングステンから選ばれる少なくとも1種を0.1〜3.8重量%の範囲で含むように構成してもよい。   The silicon nitride sintered body obtained according to the present invention contains 0.1 to 1.5% by weight of magnesium, 0.1 to 3% by weight of aluminum, 0.01 to 6% by weight of carbon, and oxygen as constituent elements. It is contained in the range of 0.2 to 5% by weight, and the balance is substantially made of silicon nitride. In the silicon nitride sintered body, the silicon nitride sintered body further contains at least one selected from titanium, hafnium, and tungsten as a constituent element in a range of 0.1 to 3.8% by weight. You may comprise.

また、出発原料組成から規定した窒化けい素焼結体は、MgO・Alスピネル構造体を0.5〜6重量%、炭化けい素を0.1〜20重量%、酸化けい素を1重量%以下(0を含む)、酸化アルミニウムを3重量%以下(0を含む)含み、残部が実質的に窒化けい素からなるセラミックス混合体を、焼成してなることを特徴としている。また、上記MgO・Alスピネル構造体と、炭化けい素と、酸化けい素と、酸化アルミニウムとの他に、さらに必要に応じてチタニウム、ハフニウム、タングステンの酸化物および炭化物から選ばれる少なくとも1種の化合物を0.1〜4重量%の範囲で含むセラミックス混合体を焼成してなることを特徴としている。 In addition, the silicon nitride sintered body defined from the starting material composition is 0.5 to 6% by weight of MgO.Al 2 O 3 spinel structure, 0.1 to 20% by weight of silicon carbide, and 1 of silicon oxide. It is characterized by firing a ceramic mixture containing not more than wt% (including 0), aluminum oxide not more than 3 wt% (including 0), and the balance substantially consisting of silicon nitride. In addition to the MgO · Al 2 O 3 spinel structure, silicon carbide, silicon oxide, and aluminum oxide, at least selected from oxides and carbides of titanium, hafnium, tungsten as required. A ceramic mixture containing one compound in a range of 0.1 to 4% by weight is fired.

本発明が目的とする窒化けい素焼結体を製造する工程において、窒化けい素原料粉末に添加されるMgO・Alスピネル構造体は、焼結促進剤として機能するばかりでなく、特に薬品に対して強い耐性を示す粒界相を形成して、焼結体の耐薬品性を向上させるものである。このため、原料粉末中に0.5〜6重量%の範囲で添加される。その添加量が0.5重量%未満の場合には、焼結体の緻密化が不十分となり、窒化けい素焼結体本来の特性が損われる。一方、添加量が6重量%を超えると、耐薬品性が逆に低下しはじめるので上記範囲に設定されるが、特に好ましい添加量は2〜5重量%の範囲である。 In the process of producing the silicon nitride sintered body targeted by the present invention, the MgO · Al 2 O 3 spinel structure added to the silicon nitride raw material powder not only functions as a sintering accelerator, but also a chemical. It forms a grain boundary phase exhibiting strong resistance to improving the chemical resistance of the sintered body. For this reason, it is added in the range of 0.5 to 6% by weight in the raw material powder. When the amount added is less than 0.5% by weight, densification of the sintered body becomes insufficient, and the original characteristics of the silicon nitride sintered body are impaired. On the other hand, when the addition amount exceeds 6% by weight, the chemical resistance starts to decrease conversely, so the amount is set within the above range, but a particularly preferable addition amount is in the range of 2 to 5% by weight.

また、本発明において使用する窒化けい素原料粉末に添加する他の成分としての炭化けい素は、耐薬品性を高める効果を発揮するのみでなく、窒化けい素焼結体の機械的特性、特に硬度の向上に寄与し、焼結体の高剛性化を達成するものである。また、薬品中等の無潤滑環境下においては、摩擦抵抗の軽減にも効果を示すものであり、原料粉末中に0.1〜20重量%の範囲で添加される。炭化けい素の添加量が0.1重量%未満であると、機械的特性の改善効果および摩擦抵抗の低減効果が不十分であり、一方20重量%を超えると、焼結性を阻害する。より好ましい添加量は1〜10重量%の範囲である。   In addition, silicon carbide as another component added to the silicon nitride raw material powder used in the present invention not only exhibits an effect of improving chemical resistance, but also mechanical properties of the silicon nitride sintered body, particularly hardness. This contributes to an improvement in the strength of the sintered body. In addition, in a non-lubricated environment such as in chemicals, it is effective for reducing frictional resistance, and is added to the raw material powder in the range of 0.1 to 20% by weight. If the amount of silicon carbide added is less than 0.1% by weight, the effect of improving mechanical properties and the effect of reducing frictional resistance are insufficient, while if it exceeds 20% by weight, the sinterability is impaired. A more preferable addition amount is in the range of 1 to 10% by weight.

さらに、本発明において使用する窒化けい素原料粉末に添加する他の成分としての酸化けい素は、窒化けい素粒子と各種添加助剤との結合を強固にし、耐薬品性を高める効果を有し、原料粉末中に1重量%以下(0を含む)添加される。酸化けい素は必ずしも添加しなければならないものではないが、上記したような効果を得る上で添加することが望ましく、その際の添加量は1重量%以下とする。添加量が1重量%を超える過量とした場合には、焼結性が阻害される。より好ましい添加量の範囲は0.2〜0.6重量%である。   Furthermore, silicon oxide as another component added to the silicon nitride raw material powder used in the present invention has an effect of strengthening the bond between silicon nitride particles and various additive aids and improving chemical resistance. 1% by weight or less (including 0) is added to the raw material powder. Silicon oxide is not necessarily added, but it is desirable to add it to obtain the above-described effects, and the amount added is 1% by weight or less. When the added amount exceeds 1% by weight, the sinterability is hindered. A more preferable range of the addition amount is 0.2 to 0.6% by weight.

また本発明において使用する窒化けい素原料粉末に添加する他の成分としての酸化アルミニウムは、焼結性を向上させる焼結促進剤として機能するため、より多くの添加が望ましい。しかしながら多量に添加すると焼結体の耐薬品性を損うことになる。そして耐薬品性を低下させることなく焼結促進剤として機能させる添加量の範囲は3重量%以下であり、より好ましくは0.5〜2重量%の範囲が望ましい。   In addition, aluminum oxide as another component added to the silicon nitride raw material powder used in the present invention functions as a sintering accelerator for improving the sinterability, so that it is desirable to add more. However, if added in a large amount, the chemical resistance of the sintered body is impaired. And the range of the addition amount which functions as a sintering accelerator without reducing chemical resistance is 3% by weight or less, and more preferably in the range of 0.5 to 2% by weight.

本発明で用いるセラミックス混合体においては、上記した各種添加助剤の他に、さらにTi、HfおよびWの酸化物および炭化物から選ばれる少なくとも1種の化合物を0.1〜4重量%の範囲で添加することができる。これらのTi、Hf、Wの化合物は、MgO・Alスピネル構造体と相乗的に作用し、緻密化を促進する焼結促進剤として機能する上に、焼結後において高融点の化合物となって、単独で粒子として焼結体組織内に分散する形態を示し、焼結体の強度および耐摩耗性を向上させる効果を有する。上記Ti、Hf、Wの化合物は、原料粉末中に0.1〜4重量%の範囲で添加することが好ましい。添加量が0.1重量%未満のときは、焼結性の促進および強度特性の改善効果が少なく、一方4重量%を超えると、耐薬品性が低下してしまう。焼結体の機械的強度、耐薬品性を保持するためには、1〜2重量%の範囲で添加することがより好ましい。 In the ceramic mixture used in the present invention, in addition to the above-mentioned various auxiliary additives, at least one compound selected from oxides and carbides of Ti, Hf and W is added in the range of 0.1 to 4% by weight. Can be added. These compounds of Ti, Hf, and W act synergistically with the MgO.Al 2 O 3 spinel structure, function as a sintering accelerator that promotes densification, and have a high melting point after sintering. Thus, it shows a form in which it is dispersed as a single particle in the sintered body structure, and has the effect of improving the strength and wear resistance of the sintered body. The Ti, Hf, and W compounds are preferably added to the raw material powder in the range of 0.1 to 4% by weight. When the addition amount is less than 0.1% by weight, the effect of promoting the sinterability and improving the strength characteristics is small, whereas when it exceeds 4% by weight, the chemical resistance is lowered. In order to maintain the mechanical strength and chemical resistance of the sintered body, it is more preferable to add in the range of 1 to 2% by weight.

本発明で製造される窒化けい素焼結体における各構成元素の含有量は、上記した各添加成分の添加量規定と同様な理由から規定されたものであり、Mgの含有量が0.1重量%未満であったり、Alの含有量が0.1重量%未満であると、良好な耐薬品性を付与することができないと共に、焼結体の密度低下をもたらし、一方Mgの含有量が1.5重量%を超えたり、Alの含有量が3重量%を超えると、逆に耐薬品性が低下してしまう。これらは、基本的にはMgO・Alスピネル構造体を構成し得るような比率で含有されているものであるが、焼結過程等において多少変動するものである。酸素(O)の含有量範囲は、上記MgとAlの含有量の理由に準ずるものである。また、炭素(C)は炭化けい素として添加されたものであり、Cの含有量が0.01重量%未満であると、機械的特性や耐薬品性を十分に高めることができず、一方6重量%を超えると、焼結体の密度低下をもたらす。Ti、Hf、Wに関しても同様である。 The content of each constituent element in the silicon nitride sintered body produced according to the present invention is specified for the same reason as the above-described addition amount definition of each additive component, and the Mg content is 0.1 weight. If the Al content is less than 0.1% or less than 0.1% by weight, good chemical resistance cannot be imparted and the density of the sintered body is reduced, while the Mg content is 1 If it exceeds 0.5% by weight or if the Al content exceeds 3% by weight, the chemical resistance decreases. These are basically contained at a ratio that can constitute the MgO.Al 2 O 3 spinel structure, but slightly change in the sintering process and the like. The content range of oxygen (O) conforms to the reason for the content of Mg and Al. Carbon (C) is added as silicon carbide, and if the C content is less than 0.01% by weight, the mechanical properties and chemical resistance cannot be sufficiently improved. When it exceeds 6% by weight, the density of the sintered body is lowered. The same applies to Ti, Hf, and W.

本発明が目的とする窒化けい素焼結体は、例えば以下に示すような製造方法により作製される。   The silicon nitride sintered body targeted by the present invention is produced, for example, by the following production method.

すなわち、窒化けい素原料粉末にMgO・Alスピネル構造体、炭化けい素、酸化けい素、酸化アルミニウム、さらには必要に応じて、Ti、Hf、Wの酸化物および炭化物から選ばれる少なくとも1種の化合物を所定量添加し、原料混合体を調製する。次いで、得られた原料混合体を金型プレス等の汎用の成形法によって所望形状の成形体(セラミックス混合物成形体)とした後、この成形体を窒素ガスまたはアルゴンガス等の不活性ガス雰囲気中で、1700〜1850℃程度の温度で所定時間焼結する。なお、上記焼結操作は、常圧焼結法によっても、あるいはその他の焼結法、例えばホットプレス法、雰囲気加圧焼結法、熱間静水圧焼結法(HIP)等を適用して実施してもよい。いずれの焼結法においても緻密で機械的強度が高く、特に酸やアルカリ等の化学的薬品が混在する使用環境下において、耐薬品性(耐腐食性)に優れた窒化けい素焼結体が得られる。 That is, at least selected from MgO · Al 2 O 3 spinel structure, silicon carbide, silicon oxide, aluminum oxide, and, if necessary, oxides and carbides of Ti, Hf, and W in the silicon nitride raw material powder A predetermined amount of one compound is added to prepare a raw material mixture. Next, the obtained raw material mixture is formed into a desired-shaped formed body (ceramic mixture formed body) by a general-purpose forming method such as a die press, and then this formed body is placed in an inert gas atmosphere such as nitrogen gas or argon gas. And sintering at a temperature of about 1700 to 1850 ° C. for a predetermined time. The sintering operation may be performed by atmospheric pressure sintering, or by applying other sintering methods such as hot pressing, atmospheric pressure sintering, hot isostatic pressing (HIP), etc. You may implement. In any sintering method, a dense silicon nitride sintered body with high mechanical strength and excellent chemical resistance (corrosion resistance) is obtained, especially in a usage environment where chemicals such as acid and alkali are mixed. It is done.

本発明に係る窒化けい素焼結体の製造方法、それを用いた耐薬品性部材の製造方法および軸受部材の製造方法によれば、特にスピネル構造体により焼結体組織に耐薬品性を有する粒界相が形成されるため、耐腐食性を向上させることがきると共に、窒化けい素焼結体本来の耐摩耗性等を損なうことなく、機械的特性も改善することができる。従って、軸受部品やガスタービン部品等を構成していた従来の耐食・耐熱合金や耐食超硬合金等に代わる高強度耐摩耗性・耐薬品性部材等として極めて有用な窒化けい素焼結体である。   According to the method for manufacturing a silicon nitride sintered body, the method for manufacturing a chemical resistant member using the same, and the method for manufacturing a bearing member according to the present invention, particles having chemical resistance in the sintered body structure, in particular, due to the spinel structure. Since the field phase is formed, the corrosion resistance can be improved, and the mechanical characteristics can be improved without impairing the original wear resistance of the silicon nitride sintered body. Therefore, it is a silicon nitride sintered body that is extremely useful as a high-strength wear-resistant and chemical-resistant member that replaces conventional corrosion-resistant and heat-resistant alloys and corrosion-resistant cemented carbides that constitute bearing parts and gas turbine parts. .

次に、本発明を以下に示す実施例を参照してより具体的に説明する。   Next, the present invention will be described more specifically with reference to the following examples.

[実施例1および比較例1〜2]
平均粒径0.7μmのα相型窒化けい素粉末89.5重量%と、平均粒径0.8μmのMgO・Alスピネル構造体粉末4重量%と、平均粒径0.5μmの炭化けい素粉末3重量%と、平均粒径0.7μmの酸化けい素粉末0.5重量%と、平均粒径0.9μmの酸化アルミニウム粉末3重量%との混合物を、トルエンを溶媒としてボールミルで96時間混合し、均一な原料混合体を作製した。
[Example 1 and Comparative Examples 1-2]
An α-phase type silicon nitride powder having an average particle size of 0.7 μm, 89.5% by weight, an MgO · Al 2 O 3 spinel structure powder having an average particle size of 0.8 μm, and an average particle size of 0.5 μm A ball mill using a mixture of 3% by weight of silicon carbide powder, 0.5% by weight of silicon oxide powder having an average particle size of 0.7 μm and 3% by weight of aluminum oxide powder having an average particle size of 0.9 μm, using toluene as a solvent. Were mixed for 96 hours to prepare a uniform raw material mixture.

次に、得られた原料混合体に有機バインダを所定量添加して均一に混合した後に、1000kgf/cmの成形圧力で加圧成形し、50×50×5mmの成形体を作製した。次いで、得られた成形体を温度500℃の大気雰囲気中で脱脂した後、この脱脂体を窒素ガス雰囲気中にて、1850℃で6時間常圧焼結し、実施例1に係る窒化けい素焼結体を調製した。 Next, a predetermined amount of an organic binder was added to the obtained raw material mixture and mixed uniformly, and then pressure-molded with a molding pressure of 1000 kgf / cm 2 to prepare a 50 × 50 × 5 mm molded body. Next, after the obtained molded body was degreased in an air atmosphere at a temperature of 500 ° C., the degreased body was sintered at 1850 ° C. for 6 hours in a nitrogen gas atmosphere, and the silicon nitride firing according to Example 1 was performed. A ligation was prepared.

一方、本発明との比較として、上記実施例1において、MgO・Alスピネル構造体粉末を添加せず、平均粒径0.9μmの酸化イットリウム粉末を2重量%と平均粒径0.9μmの酸化アルミニウム粉末2重量%のみを添加する以外は、実施例1と同一条件で、混合、成形、焼結を行って、比較例1に係る窒化けい素焼結体を調製した。 On the other hand, as a comparison with the present invention, in Example 1 above, MgO.Al 2 O 3 spinel structure powder was not added, and yttrium oxide powder having an average particle size of 0.9 μm was 2% by weight and the average particle size was 0. A silicon nitride sintered body according to Comparative Example 1 was prepared by mixing, molding and sintering under the same conditions as in Example 1 except that only 2% by weight of 9 μm aluminum oxide powder was added.

また上記実施例1において、酸化アルミニウムの添加量を6重量%と過量に設定した以外は、実施例1と同一条件で、混合、成形、脱脂、焼結を実施して比較例2に係る窒化けい素焼結体を調製した。   Further, in Example 1 above, except that the amount of aluminum oxide added was set to an excessive amount of 6% by weight, mixing, molding, degreasing, and sintering were performed under the same conditions as Example 1, and nitriding according to Comparative Example 2 was performed. A silicon sintered body was prepared.

こうして得た実施例1および比較例1〜2に係る各窒化けい素焼結体について、密度、常温(25℃)における曲げ強度および破壊靭性値を測定した。また、耐薬品性を評価するために、各試料をそれぞれ30%濃度のHCl溶液に浸漬し、90℃で100時間加熱処理し、処理後における重量減および曲げ強度を測定した。それらの結果を表1に示す。なお、実施例1による窒化けい素焼結体中に含まれる構成元素は、Mg 0.7重量%、Al 1.8重量%、O 2.7重量%、C 1.0重量%、Si 57.2重量%、N 36.6重量%、不純物(Fe等)0.01重量%であった。

Figure 2007039331
The silicon nitride sintered bodies according to Example 1 and Comparative Examples 1 and 2 thus obtained were measured for density, bending strength at room temperature (25 ° C.), and fracture toughness. Further, in order to evaluate chemical resistance, each sample was immersed in a 30% strength HCl solution and heat-treated at 90 ° C. for 100 hours, and weight loss and bending strength after the treatment were measured. The results are shown in Table 1. The constituent elements contained in the silicon nitride sintered body according to Example 1 were Mg 0.7% by weight, Al 1.8% by weight, O 2.7% by weight, C 1.0% by weight, Si 57. They were 2 wt%, N 36.6 wt%, and impurities (Fe, etc.) 0.01 wt%.
Figure 2007039331

表1の結果が示すように、実施例1に係る窒化けい素焼結体は、曲げ強度、破壊靭性値等の機械的特性が優れていると共に、浸漬処理後の特性についても、比較例1の酸化イットリウム添加系の焼結体よりも重量減が少なく耐薬品性に優れており、また機械特性にも優れていることが判明した。   As shown in the results of Table 1, the silicon nitride sintered body according to Example 1 has excellent mechanical properties such as bending strength and fracture toughness, and the properties after the immersion treatment are the same as those of Comparative Example 1. It has been found that the sintered body of the yttrium oxide-added system has less weight loss and is excellent in chemical resistance and also has excellent mechanical properties.

また実施例1および比較例2の各焼結体の相違点は、ボールミルで混合して調製した原料混合体中に含まれる酸化アルミニウムの添加量が、それぞれ3重量%と6重量%と異なる点のみである。比較例2に係る焼結体の曲げ強度や破壊靭性値などの機械的特性は、実施例1の焼結体と比較して遜色がない。しかしながら、比較例2の焼結体においては、HCl浸漬後における曲げ強度が明らかに低下する傾向が判明した。   The difference between the sintered bodies of Example 1 and Comparative Example 2 is that the amount of aluminum oxide contained in the raw material mixture prepared by mixing with a ball mill is different from 3% by weight and 6% by weight, respectively. Only. The mechanical properties such as bending strength and fracture toughness value of the sintered body according to Comparative Example 2 are comparable to those of the sintered body of Example 1. However, in the sintered body of Comparative Example 2, it was found that the bending strength after immersion in HCl clearly decreased.

なお、酸化アルミニウム製ボールを粉砕媒体とするボールミル混合機を使用して原料混合体を調製する場合には、アルミナボールの減耗により、相当量の酸化アルミニウム成分が不可避的に原料混合体中に混入することが本発明者らの実験により確認されている。しかしながら上記実施例1と比較例2との比較結果から明らかなように、ボールミル混合機からの酸化アルミニウム成分の混入汚染量が3重量%以下であれば、窒化けい素焼結体の強度特性および耐薬品性を低下させるおそれが少ないことも確認できた。   When a raw material mixture is prepared using a ball mill mixer using aluminum oxide balls as a grinding medium, a considerable amount of aluminum oxide components are inevitably mixed into the raw material mixture due to depletion of alumina balls. This has been confirmed by experiments by the present inventors. However, as is clear from the comparison results between Example 1 and Comparative Example 2 above, if the contamination amount of the aluminum oxide component from the ball mill mixer is 3% by weight or less, the strength characteristics and anti-resistance of the silicon nitride sintered body are reduced. It was also confirmed that there was little risk of reducing chemical properties.

[実施例2〜15、比較例3〜6]
実施例1で使用した窒化けい素粉末、MgO・Alスピネル構造体粉末、炭化けい素粉末、酸化けい素粉末、酸化アルミニウム粉末およびTi、Hf、Wの酸化物または炭化物粉末を、表2に示す組成比となるように調合して原料混合体をそれぞれ調製した。次いで、得られた各原料混合体を実施例1と同一条件で成形、脱脂、焼結して、それぞれ実施例2〜15に係る窒化けい素焼結体を作製した。
[Examples 2-15, Comparative Examples 3-6]
The silicon nitride powder, the MgO.Al 2 O 3 spinel structure powder, the silicon carbide powder, the silicon oxide powder, the aluminum oxide powder, and the oxide or carbide powder of Ti, Hf, and W used in Example 1 The raw material mixtures were prepared by blending so that the composition ratio shown in FIG. Next, each obtained raw material mixture was molded, degreased, and sintered under the same conditions as in Example 1 to produce silicon nitride sintered bodies according to Examples 2 to 15, respectively.

一方、比較例3〜6として、表2に示す通り、炭化けい素を過剰に添加したもの(比較例3)、MgO・Alスピネル構造体を過剰に添加したもの(比較例4)、酸化けい素を過剰に添加したもの(比較例5)、酸化チタニウムを過剰に添加したもの(比較例6)をそれぞれ調製し、実施例1と同一条件で原料混合から焼結操作を実施し、それぞれ対応する比較例3〜6に係る窒化けい素焼結体を作製した。 On the other hand, as Comparative Examples 3 to 6, as shown in Table 2, an excessive addition of silicon carbide (Comparative Example 3) and an excessive addition of MgO.Al 2 O 3 spinel structure (Comparative Example 4) Then, an excessively added silicon oxide (Comparative Example 5) and an excessively added titanium oxide (Comparative Example 6) were respectively prepared, and the sintering operation was performed from the raw material mixing under the same conditions as in Example 1. The silicon nitride sintered bodies according to Comparative Examples 3 to 6 respectively corresponding to these were prepared.

Figure 2007039331
Figure 2007039331

こうして得た実施例2〜15および比較例3〜6の各窒化けい素焼結体について、実施例1と同一条件で、密度、曲げ強度、硬度をそれぞれ測定すると共に、浸漬処理を実施して各試料の重量減および曲げ強度を測定した。それらの測定結果を表3に示す。   For each silicon nitride sintered body of Examples 2 to 15 and Comparative Examples 3 to 6 thus obtained, the density, bending strength, and hardness were measured under the same conditions as in Example 1, and immersion treatment was performed. The weight loss and bending strength of the sample were measured. The measurement results are shown in Table 3.

Figure 2007039331
Figure 2007039331

表3に示す結果から明らかなように、スピネル構造体と炭化けい素と、酸化アルミニウムと、必要に応じて酸化けい素と、Ti、Hf、Wの酸化物または炭化物とを所定量添加した実施例2〜15の各焼結体は、いずれも高い機械的特性を示し、かつHCl浸漬試験後における重量減および曲げ強度の低下が少なく、耐薬品性に優れていることが確認された。   As is apparent from the results shown in Table 3, a spinel structure, silicon carbide, aluminum oxide, silicon oxide as required, and an oxide or carbide of Ti, Hf, W were added in predetermined amounts. Each of the sintered bodies of Examples 2 to 15 exhibited high mechanical properties, and was confirmed to be excellent in chemical resistance with little decrease in weight and bending strength after the HCl immersion test.

また上記のように調製した窒化けい素焼結体を、実際に軸受の耐薬品性部材に適用して、その軸受の耐薬品性を含めた耐久性を評価した。すなわち、実施例12に係る製造方法に準拠して調製した窒化けい素焼結体を加工し、図1に示すようなセラミックス玉軸受(ボールベアリング)を製造した。この玉軸受は、上記窒化けい素焼結体から成る円筒状の内輪1と外輪2との間に、球状の転動体(窒化けい素ボール)3を介在させて構成されている。   Further, the silicon nitride sintered body prepared as described above was actually applied to a chemical-resistant member of a bearing, and the durability including the chemical resistance of the bearing was evaluated. That is, a silicon nitride sintered body prepared according to the manufacturing method according to Example 12 was processed to manufacture a ceramic ball bearing (ball bearing) as shown in FIG. This ball bearing is constructed by interposing a spherical rolling element (silicon nitride ball) 3 between a cylindrical inner ring 1 and an outer ring 2 made of the silicon nitride sintered body.

一方、比較例として、同一寸法を有する従来の鋼(SUJ2)製玉軸受を用意し、上記セラミックス玉軸受とともに、塩酸ミストが混在するグリース潤滑環境下で連続回転試験を実施した。その結果、耐熱・耐食性がより優れたセラミックス玉軸受の方が、従来の鋼製玉軸受と比較して高温下でも硬さを維持でき、焼き付きも生じることがないため、10倍以上も寿命を延伸できることが判明し、優れた効果を発揮できることが確認された。   On the other hand, as a comparative example, a conventional steel (SUJ2) ball bearing having the same dimensions was prepared, and a continuous rotation test was performed in a grease lubrication environment where hydrochloric acid mist was mixed together with the ceramic ball bearing. As a result, ceramic ball bearings with better heat resistance and corrosion resistance can maintain hardness even at high temperatures and do not cause seizure compared to conventional steel ball bearings. It was found that the film could be stretched, and it was confirmed that an excellent effect could be exhibited.

本発明に係る窒化けい素焼結体で形成した玉軸受(ボールベアリング)の構成を示す断面図。Sectional drawing which shows the structure of the ball bearing (ball bearing) formed with the silicon nitride sintered compact concerning this invention.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 転動体(窒化けい素ボール)
1 Inner ring 2 Outer ring 3 Rolling element (silicon nitride ball)

Claims (9)

MgO・Alスピネル構造体を0.5〜6重量%、炭化けい素を0.1〜20重量%、酸化けい素を1重量%以下、酸化アルミニウムを0.5〜3重量%含み、残部が実質的に窒化けい素から成るセラミックス混合体を調製し、得られたセラミックス混合体を成形後、焼成することを特徴とする窒化けい素焼結体の製造方法。 0.5 to 6% by weight of MgO.Al 2 O 3 spinel structure, 0.1 to 20% by weight of silicon carbide, 1% by weight or less of silicon oxide, and 0.5 to 3% by weight of aluminum oxide A method for producing a silicon nitride sintered body, comprising preparing a ceramic mixture substantially comprising silicon nitride as a balance, and forming the obtained ceramic mixture and then firing it. 請求項1記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体に、さらに、チタニウム、ハフニウム、タングステンの酸化物および炭化物から選ばれる少なくとも1種の化合物を0.1〜4重量%の範囲で含有させることを特徴とする窒化けい素焼結体の製造方法。 2. The method of manufacturing a silicon nitride sintered body according to claim 1, further comprising 0.1 to 4 wt% of at least one compound selected from titanium, hafnium, an oxide of tungsten, and a carbide in the ceramic mixture. A method for producing a silicon nitride sintered body, wherein the silicon nitride sintered body is contained in a range. 請求項1または2記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記酸化けい素を0.2〜0.6重量%の範囲で含有させることを特徴とする窒化けい素焼結体の製造方法。 3. The method of manufacturing a silicon nitride sintered body according to claim 1 or 2, wherein the ceramic mixture contains the silicon oxide in a range of 0.2 to 0.6% by weight. A method for producing a knot. 請求項1または2記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体は、前記酸化アルミニウムを0.5〜2重量%の範囲で含有させることを特徴とする窒化けい素焼結体の製造方法。 3. The method of manufacturing a silicon nitride sintered body according to claim 1, wherein the ceramic mixture contains the aluminum oxide in a range of 0.5 to 2% by weight. Production method. 請求項1または2記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記炭化けい素を1〜10重量%の範囲で含有させることを特徴とする窒化けい素焼結体の製造方法。 3. The method of manufacturing a silicon nitride sintered body according to claim 1 or 2, wherein the ceramic mixture contains the silicon carbide in an amount of 1 to 10% by weight. Method. 請求項1または2記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体に、前記MgO・Alスピネル構造体を2〜5重量%の範囲で含有させることを特徴とする窒化けい素焼結体の製造方法。 3. The method of manufacturing a silicon nitride sintered body according to claim 1, wherein the ceramic mixture contains the MgO.Al 2 O 3 spinel structure in a range of 2 to 5% by weight. A method for producing a silicon sintered body. 請求項1乃至6のいずれか1項に記載の窒化けい素焼結体の製造方法において、前記セラミックス混合体を調製する際に、酸化アルミニウム製ボールを粉砕媒体とするボールミルでセラミックス混合体を混合し、酸化アルミニウム製ボールからセラミックス混合体に混入する酸化アルミニウムの混入量を3重量%以下にすることを特徴とする窒化けい素焼結体の製造方法。 7. The method of manufacturing a silicon nitride sintered body according to claim 1, wherein the ceramic mixture is prepared by mixing the ceramic mixture with a ball mill using aluminum oxide balls as a grinding medium. A method for producing a silicon nitride sintered body, characterized in that the amount of aluminum oxide mixed into the ceramic mixture from an aluminum oxide ball is 3% by weight or less. 請求項1乃至7のいずれかに記載の窒化けい素焼結体の製造方法によって製造された窒化けい素焼結体を所定形状に加工して耐薬品性部材を形成することを特徴とする耐薬品性部材の製造方法。 A chemical-resistant member formed by processing the silicon nitride sintered body produced by the method for producing a silicon nitride sintered body according to any one of claims 1 to 7 into a predetermined shape. Manufacturing method of member. 請求項1乃至7のいずれかに記載の窒化けい素焼結体の製造方法によって製造された窒化けい素焼結体を所定形状に加工して軸受部材を形成することを特徴とする軸受部材の製造方法。 A method for manufacturing a bearing member, comprising forming a bearing member by processing the silicon nitride sintered body manufactured by the method for manufacturing a silicon nitride sintered body according to any one of claims 1 to 7 into a predetermined shape. .
JP2006259070A 2006-09-25 2006-09-25 Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member Pending JP2007039331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259070A JP2007039331A (en) 2006-09-25 2006-09-25 Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259070A JP2007039331A (en) 2006-09-25 2006-09-25 Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7166518A Division JPH0920563A (en) 1995-06-30 1995-06-30 Sintered silicon nitride

Publications (1)

Publication Number Publication Date
JP2007039331A true JP2007039331A (en) 2007-02-15

Family

ID=37797647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259070A Pending JP2007039331A (en) 2006-09-25 2006-09-25 Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member

Country Status (1)

Country Link
JP (1) JP2007039331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019143A1 (en) * 2022-07-22 2024-01-25 Agc株式会社 Silicon nitride sintered body and method for producing silicon nitride sintered body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294730A (en) * 1992-04-16 1993-11-09 Toshiba Corp Silicon nitride ceramic sintered compact
JPH0692713A (en) * 1992-09-11 1994-04-05 Agency Of Ind Science & Technol Production of composite starting material for ceramics
JPH06219837A (en) * 1993-01-27 1994-08-09 Toshiba Corp Silicon nitride ceramic sintered compact and its production
JPH06305823A (en) * 1993-04-27 1994-11-01 Kyocera Corp Sliding member material
JPH07118070A (en) * 1993-10-25 1995-05-09 Toshiba Corp Silicon nitride ceramic sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294730A (en) * 1992-04-16 1993-11-09 Toshiba Corp Silicon nitride ceramic sintered compact
JPH0692713A (en) * 1992-09-11 1994-04-05 Agency Of Ind Science & Technol Production of composite starting material for ceramics
JPH06219837A (en) * 1993-01-27 1994-08-09 Toshiba Corp Silicon nitride ceramic sintered compact and its production
JPH06305823A (en) * 1993-04-27 1994-11-01 Kyocera Corp Sliding member material
JPH07118070A (en) * 1993-10-25 1995-05-09 Toshiba Corp Silicon nitride ceramic sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019143A1 (en) * 2022-07-22 2024-01-25 Agc株式会社 Silicon nitride sintered body and method for producing silicon nitride sintered body

Similar Documents

Publication Publication Date Title
JP4744704B2 (en) Method for manufacturing wear-resistant member
CN100473627C (en) Wear-resistance silicon nitride member and method for manufacturing thereof
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
JP3549239B2 (en) Rolling bearing
JP5002155B2 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JP4850007B2 (en) Silicon nitride sintered body
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP5362758B2 (en) Wear resistant parts
JP2004002067A (en) Wear-resistant member and its production process
JP2007039331A (en) Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JPH0920563A (en) Sintered silicon nitride
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
JP4869171B2 (en) Method for producing wear-resistant member made of silicon nitride
JPH06219837A (en) Silicon nitride ceramic sintered compact and its production
JP2006182590A (en) Conductive silicon nitride material and its manufacturing method
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JPH05238829A (en) Sintered silicone nitride ceramic
JP2011144109A (en) Silicon nitride sintered compact
JPH08295570A (en) Silicon nitride-boron nitride composite sintered compact and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201