JPH0920563A - Sintered silicon nitride - Google Patents

Sintered silicon nitride

Info

Publication number
JPH0920563A
JPH0920563A JP7166518A JP16651895A JPH0920563A JP H0920563 A JPH0920563 A JP H0920563A JP 7166518 A JP7166518 A JP 7166518A JP 16651895 A JP16651895 A JP 16651895A JP H0920563 A JPH0920563 A JP H0920563A
Authority
JP
Japan
Prior art keywords
silicon nitride
weight
sintered body
nitride sintered
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166518A
Other languages
Japanese (ja)
Inventor
Minoru Takao
実 高尾
Isao Ikeda
功 池田
Hiroyoshi Tonai
弘喜 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7166518A priority Critical patent/JPH0920563A/en
Publication of JPH0920563A publication Critical patent/JPH0920563A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/58Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic nitrides
    • F16C2206/60Silicon nitride (Si3N4)l

Abstract

PURPOSE: To obtain a sintered silicon nitride exhibiting excellent chemical resistance (corrosion resistance) to chemicals such as acid and alkali without deteriorating characteristic high strength, abrasion resistance, heat-resistance, etc., of sintered silicon nitride. CONSTITUTION: This sintered silicon nitride contains 0.1-1.5wt.% of magnesium, 0.1-3wt.% of aluminum, 0.01-6wt.% of carbon and 0.2-5wt.% of oxygen as constituent elements and the remaining part essentially composed of silicon nitride. The sintered silicon nitride can be produced by burning a ceramic mixture composed of 0.5-6wt.% of an MgO-Al2 O3 spinel structure material, 0.1-20wt.% of silicon carbide, <=1wt.% of silicon oxide, <=3wt.% of aluminum oxide and the remaining part essentially composed of silicon nitride. The sintered silicon nitride can be used as a chemical resistance part or bearing parts 1, 2, 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化けい素焼結体に係
り、特に優れた機械的強度および耐摩耗性に加えて、耐
薬品性にも優れた窒化けい素焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body, and more particularly to a silicon nitride sintered body having excellent chemical resistance in addition to excellent mechanical strength and wear resistance.

【0002】[0002]

【従来の技術】窒化けい素を主成分とするセラミックス
焼結体は、優れた耐熱性を示し、かつ熱膨張係数が小さ
いため、耐熱衝撃性にも優れる等の諸特性を有すること
から、従来の耐熱合金に代わる高温構造用材料として、
エンジン部品、製鋼用機械部品等への応用が試みられて
いる。また、耐摩耗性にも優れていることから、軸受け
等の摺動部材や切削工具としての実用化も図られてい
る。
2. Description of the Related Art Sintered ceramics containing silicon nitride as a main component have excellent heat resistance and a small coefficient of thermal expansion, and thus have various properties such as excellent thermal shock resistance. As a high-temperature structural material to replace the heat-resistant alloy of
Application to engine parts, mechanical parts for steelmaking, and the like has been attempted. Further, since it is also excellent in wear resistance, it is being put to practical use as a sliding member such as a bearing and a cutting tool.

【0003】通常、窒化けい素は難焼結性のセラミック
ス材料であるため、焼結助剤として希土類酸化物や酸化
アルミニウム等を原料粉末に所定量添加して焼結性を改
善し、緻密で高強度なセラミックス焼結体を得ている。
例えば、窒化けい素系セラミックスの焼結組成として
は、Si3 4 −Y2 3 −Al2 3 系、Si3 4
−Y2 3 −Al2 3 −AlN系、Si3 4 −Y2
3 −Al2 3 −Ti,Mg,Zr等の酸化物系等が
知られている。
Since silicon nitride is usually a ceramic material which is difficult to sinter, a predetermined amount of rare earth oxide, aluminum oxide or the like as a sintering aid is added to the raw material powder to improve the sinterability and to make it dense. We have obtained a high-strength ceramic sintered body.
For example, the sintering composition of the silicon nitride Motokei ceramics, Si 3 N 4 -Y 2 O 3 -Al 2 O 3 system, Si 3 N 4
-Y 2 O 3 -Al 2 O 3 -AlN system, Si 3 N 4 -Y 2
Oxide systems such as O 3 —Al 2 O 3 —Ti, Mg, and Zr are known.

【0004】上記焼結組成における酸化イットリウム等
の希土類元素の酸化物や酸化アルミニウムを添加して形
成した窒化けい素焼結体は、焼結性が向上して緻密化が
促進され、機械的強度特性にも優れたものとなる。ま
た、窒化アルミニウムや酸化チタン等の複数種類の化合
物を組合せたものを添加する等によって、高温での機械
的特性、耐摩耗性を改善するように工夫されている。
A silicon nitride sintered body formed by adding an oxide of a rare earth element such as yttrium oxide or aluminum oxide in the above-mentioned sintering composition has improved sinterability, promotes densification, and has mechanical strength characteristics. Will also be excellent. Further, it is devised to improve mechanical properties and wear resistance at high temperature by adding a combination of plural kinds of compounds such as aluminum nitride and titanium oxide.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記組
成を有する窒化けい素焼結体は、いずれも酸やアルカリ
等の化学薬品に対する耐腐食性が不十分であり、薬品が
混在する環境下で使用する構造材料として採用した場合
には、所定の耐久性や信頼性が得られないという問題が
あった。一方、耐薬品性に優れた材料として、β−サイ
アロンを原料とする焼結体も広く使用されているが、機
械的特性が不十分であるため、適用範囲が狭く限定され
るという欠点があった。
However, any of the silicon nitride sintered bodies having the above composition has insufficient corrosion resistance to chemicals such as acids and alkalis, and is used in an environment in which chemicals are mixed. When adopted as a structural material, there is a problem that predetermined durability and reliability cannot be obtained. On the other hand, as a material having excellent chemical resistance, a sintered body made of β-sialon is widely used, but it has a drawback that its application range is limited due to insufficient mechanical properties. It was

【0006】例えば、近年、化学物質が多量に存在する
環境下で使用可能な軸受け部材や耐熱性部材や耐摩耗性
部材に対する需要が増加しており、このような用途には
従来用いられてきた耐食・耐熱合金や耐熱超硬合金等で
は対応が困難であるため、耐熱性や耐摩耗性等が金属よ
り優れるだけでなく、耐薬品性(耐腐食性)にも優れた
セラミックス部材の出現が強く望まれている。特に化学
薬品が存在する環境下で使用可能な軸受けの需要が増加
しているが、従来の金属製の転がり軸受けでは、耐久性
が不十分であった。そこで耐薬品性や耐熱性などの基本
要求特性において金属材よりも優れた特性を有するセラ
ミックス材料を軸受け構成材として適用することが試行
されているが、軸受け材の全ての要求特性を満足するセ
ラミックス材料は未だ実現していない。
For example, in recent years, there has been an increasing demand for bearing members, heat resistant members and wear resistant members that can be used in environments where a large amount of chemical substances are present, and they have been conventionally used for such applications. Corrosion-resistant / heat-resistant alloys and heat-resistant cemented carbides are difficult to handle, so the emergence of ceramic members not only superior in heat resistance and wear resistance to metals, but also in chemical resistance (corrosion resistance) Strongly desired. In particular, there is an increasing demand for bearings that can be used in environments where chemicals are present, but conventional metal rolling bearings have insufficient durability. Therefore, it has been attempted to apply a ceramic material, which has basic characteristics such as chemical resistance and heat resistance, which are superior to those of metal materials, as a bearing constituent material. Ceramics satisfying all the required characteristics of the bearing material. The material has not been realized yet.

【0007】本発明は、このような課題に対処するため
になされたもので、窒化けい素焼結体本来の特性である
高強度、耐摩耗性、耐熱性等を損なうことなく、さらに
酸やアルカリ等の化学薬品に対しても優れた耐薬品性
(耐腐食性)を示す窒化けい素焼結体を提供することを
目的としている。
The present invention has been made in order to solve such a problem, and further, without impairing the high strength, wear resistance, heat resistance, etc., which are the original characteristics of the silicon nitride sintered body, the acid and alkali It is an object of the present invention to provide a silicon nitride sintered body that exhibits excellent chemical resistance (corrosion resistance) against chemicals such as.

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、上
記目的を達成するために、添加助剤の種類および量に着
目し、各種化合物を窒化けい素原料粉に添加して焼結体
を調製し、各焼結体を腐食雰囲気に暴露した後における
焼結体特性を比較評価することによって、上記添加助剤
の種類および添加量が焼結体の耐腐食特性に及ぼす影響
を確認した。
Means and Actions for Solving the Problems In order to achieve the above-mentioned object, the present inventors have paid attention to the kind and amount of the additive aid, and added various compounds to the raw material powder of silicon nitride and sintered it. The effects of the types and amounts of the above-mentioned additives on the corrosion resistance of the sintered body were confirmed by comparing the sintered body characteristics after preparing the sintered body and exposing each sintered body to a corrosive atmosphere. did.

【0009】その結果、MgO・Al2 3 スピネル構
造体と、炭化けい素と、必要に応じて酸化けい素と、T
i、HfおよびWの酸化物、炭化物の少くとも一種とを
添加助剤として窒化けい素原料に適量配合することによ
って、耐薬品性に優れると共に、強度劣化等が少ない窒
化けい素焼結体が得られることを見出した。
As a result, the MgO.Al 2 O 3 spinel structure, silicon carbide and, if necessary, silicon oxide, T
By mixing at least one of i, Hf and W oxides, and at least one of carbides into the silicon nitride raw material as an additive aid, a silicon nitride sintered body having excellent chemical resistance and little strength deterioration can be obtained. I found that

【0010】本発明は、上記知見に基づいてなされたも
ので、本発明の窒化けい素焼結体は、構成元素として、
マグネシウムを0.1〜1.5重量%、アルミニウムを
0.1〜3重量%、炭素を0.01〜6重量%、酸素を
0.2〜5重量%の範囲で含み、残部が実質的に窒化け
い素からなることを特徴とする。また、上記窒化けい素
焼結体において、前記窒化けい素焼結体が、その構成元
素として、さらにチタニウム、ハフニウム、タングステ
ンから選ばれる少なくとも1種を0.1〜3.8重量%
の範囲で含むように構成してもよい。
The present invention was made based on the above findings, and the silicon nitride sintered body of the present invention has the following constituent elements:
0.1 to 1.5% by weight of magnesium, 0.1 to 3% by weight of aluminum, 0.01 to 6% by weight of carbon, and 0.2 to 5% by weight of oxygen, with the balance substantially. It is characterized by being made of silicon nitride. Further, in the above silicon nitride sintered body, the silicon nitride sintered body further contains 0.1 to 3.8% by weight of at least one selected from titanium, hafnium, and tungsten as its constituent elements.
You may comprise so that it may be included in the range of.

【0011】また、本発明を出発原料組成から規定した
窒化けい素焼結体は、MgO・Al2 3 スピネル構造
体を0.5〜6重量%、炭化けい素を0.1〜20重量
%、酸化けい素を1重量%以下(0を含む)、酸化アル
ミニウムを3重量%以下(0を含む)含み、残部が実質
的に窒化けい素からなるセラミックス混合体を、焼成し
てなることを特徴としている。また、上記MgO・Al
2 3 スピネル構造体と、炭化けい素と、酸化けい素
と、酸化アルミニウムとの他に、さらに必要に応じてチ
タニウム、ハフニウム、タングステンの酸化物および炭
化物から選ばれる少なくとも1種の化合物を0.1〜4
重量%の範囲で含むセラミックス混合体を焼成してなる
ことを特徴としている。
The silicon nitride sintered body according to the present invention defined by the starting material composition is 0.5 to 6% by weight of MgO.Al 2 O 3 spinel structure and 0.1 to 20% by weight of silicon carbide. A ceramic mixture containing 1% by weight or less (including 0) of silicon oxide, 3% by weight or less (including 0) of aluminum oxide, and the balance substantially consisting of silicon nitride. It has a feature. In addition, the above MgO / Al
In addition to the 2 O 3 spinel structure, silicon carbide, silicon oxide, and aluminum oxide, at least one compound selected from titanium, hafnium, tungsten oxides and carbides may be added as necessary. .1 to 4
It is characterized in that it is obtained by firing a ceramics mixture containing it in the range of wt%.

【0012】本発明に係る窒化けい素焼結体を製造する
工程において、窒化けい素原料粉末に添加されるMgO
・Al2 3 スピネル構造体は、焼結促進剤として機能
するばかりでなく、特に薬品に対して強い耐性を示す粒
界相を形成して、焼結体の耐薬品性を向上させるもので
ある。このため、原料粉末中に0.5〜6重量%の範囲
で添加される。その添加量が0.5重量%未満の場合に
は、焼結体の緻密化が不十分となり、窒化けい素焼結体
本来の特性が損われる。一方、添加量が6重量%を超え
ると、耐薬品性が逆に低下しはじめるので上記範囲に設
定されるが、特に好ましい添加量は2〜5重量%の範囲
である。
MgO added to the silicon nitride raw material powder in the step of producing the silicon nitride sintered body according to the present invention.
The Al 2 O 3 spinel structure not only functions as a sintering accelerator, but also improves the chemical resistance of the sintered body by forming a grain boundary phase that is particularly resistant to chemicals. is there. Therefore, it is added to the raw material powder in the range of 0.5 to 6% by weight. If the amount added is less than 0.5% by weight, the densification of the sintered body will be insufficient and the original properties of the silicon nitride sintered body will be impaired. On the other hand, if the amount added exceeds 6% by weight, the chemical resistance will start to decrease, and therefore the above range is set, but the particularly preferable amount added is within the range of 2 to 5% by weight.

【0013】また、本発明において窒化けい素原料粉末
に添加する他の成分としての炭化けい素は、耐薬品性を
高める効果を発揮するのみでなく、窒化けい素焼結体の
機械的特性、特に硬度の向上に寄与し、焼結体の高剛性
化を達成するものである。また、薬品中等の無潤滑環境
下においては、摩擦抵抗の軽減にも効果を示すものであ
り、原料粉末中に0.1〜20重量%の範囲で添加され
る。炭化けい素の添加量が0.1重量%未満であると、
機械的特性の改善効果および摩擦抵抗の低減効果が不十
分であり、一方20重量%を超えると、焼結性を阻害す
る。より好ましい添加量は1〜10重量%の範囲であ
る。
Further, silicon carbide as another component added to the silicon nitride raw material powder in the present invention not only exerts the effect of enhancing chemical resistance, but also the mechanical properties of the silicon nitride sintered body, particularly It contributes to the improvement of hardness and achieves high rigidity of the sintered body. Further, in a non-lubricated environment such as in chemicals, it also has an effect of reducing frictional resistance, and is added to the raw material powder in an amount of 0.1 to 20% by weight. When the amount of silicon carbide added is less than 0.1% by weight,
The effect of improving mechanical properties and the effect of reducing frictional resistance are insufficient, while if it exceeds 20% by weight, the sinterability is impaired. A more preferred amount is in the range of 1 to 10% by weight.

【0014】さらに、本発明において窒化けい素原料粉
末に添加する他の成分としての酸化けい素は、窒化けい
素粒子と各種添加助剤との結合を強固にし、耐薬品性を
高める効果を有し、原料粉末中に1重量%以下(0を含
む)添加される。酸化けい素は必ずしも添加しなければ
ならないものではないが、上記したような効果を得る上
で添加することが望ましく、その際の添加量は1重量%
以下とする。添加量が1重量%を超える過量とした場合
には、焼結性が阻害される。より好ましい添加量の範囲
は0.2〜0.6重量%である。
Furthermore, in the present invention, silicon oxide as another component added to the silicon nitride raw material powder has the effect of strengthening the bond between the silicon nitride particles and various additive aids and enhancing the chemical resistance. Then, 1% by weight or less (including 0) is added to the raw material powder. Silicon oxide is not necessarily required to be added, but it is desirable to add it in order to obtain the above effects, and the addition amount at that time is 1% by weight.
The following is assumed. If the amount added exceeds 1% by weight, the sinterability will be impaired. A more preferable range of addition is 0.2 to 0.6% by weight.

【0015】また本発明において窒化けい素原料粉末に
添加する他の成分としての酸化アルミニウムは、焼結性
を向上させる焼結促進剤として機能するため、より多く
の添加が望ましい。しかしながら多量に添加すると焼結
体の耐薬品性を損うことになる。そして耐薬品性を低下
させることなく焼結促進剤として機能させる添加量の範
囲は3重量%以下であり、より好ましくは0.5〜2重
量%の範囲が望ましい。
Further, in the present invention, aluminum oxide as another component added to the silicon nitride raw material powder functions as a sintering accelerator for improving the sinterability, so that it is desirable to add more. However, if added in a large amount, the chemical resistance of the sintered body will be impaired. And the range of the amount of addition to function as a sintering accelerator without lowering the chemical resistance is 3% by weight or less, more preferably 0.5 to 2% by weight.

【0016】本発明で用いるセラミックス混合体におい
ては、上記した各種添加助剤の他に、さらにTi、Hf
およびWの酸化物および炭化物から選ばれる少なくとも
1種の化合物を0.1〜4重量%の範囲で添加すること
ができる。これらのTi、Hf、Wの化合物は、MgO
・Al2 3 スピネル構造体と相乗的に作用し、緻密化
を促進する焼結促進剤として機能する上に、焼結後にお
いて高融点の化合物となって、単独で粒子として焼結体
組織内に分散する形態を示し、焼結体の強度および耐摩
耗性を向上させる効果を有する。上記Ti、Hf、Wの
化合物は、原料粉末中に0.1〜4重量%の範囲で添加
することが好ましい。添加量が0.1重量%未満のとき
は、焼結性の促進および強度特性の改善効果が少なく、
一方4重量%を超えると、耐薬品性が低下してしまう。
焼結体の機械的強度、耐薬品性を保持するためには、1
〜2重量%の範囲で添加することがより好ましい。
In the ceramic mixture used in the present invention, in addition to the above various additive aids, Ti and Hf are further added.
And at least one compound selected from the oxides and carbides of W can be added in the range of 0.1 to 4% by weight. These compounds of Ti, Hf and W are MgO
-Al 2 O 3 spinel structure acts synergistically to function as a sintering accelerator that promotes densification, and also becomes a high melting point compound after sintering, and as a particle, a sintered body structure It has the effect of improving the strength and wear resistance of the sintered body. The compounds of Ti, Hf and W are preferably added to the raw material powder in a range of 0.1 to 4% by weight. When the addition amount is less than 0.1% by weight, the effect of promoting sinterability and improving strength characteristics is small,
On the other hand, if it exceeds 4% by weight, the chemical resistance is lowered.
To maintain the mechanical strength and chemical resistance of the sintered body, 1
More preferably, it is added in the range of 2 wt%.

【0017】本発明の窒化けい素焼結体における各構成
元素の含有量は、上記した各添加成分の添加量規定と同
様な理由から規定されたものであり、Mgの含有量が
0.1重量%未満であったり、Alの含有量が0.1重
量%未満であると、良好な耐薬品性を付与することがで
きないと共に、焼結体の密度低下をもたらし、一方Mg
の含有量が1.5重量%を超えたり、Alの含有量が3
重量%を超えると、逆に耐薬品性が低下してしまう。こ
れらは、基本的にはMgO・Al2 3 スピネル構造体
を構成し得るような比率で含有されているものである
が、焼結過程等において多少変動するものである。酸素
(O)の含有量範囲は、上記MgとAlの含有量の理由
に準ずるものである。また、炭素(C)は炭化けい素と
して添加されたものであり、Cの含有量が0.01重量
%未満であると、機械的特性や耐薬品性を十分に高める
ことができず、一方6重量%を超えると、焼結体の密度
低下をもたらす。Ti、Hf、Wに関しても同様であ
る。
The content of each constituent element in the silicon nitride sintered body of the present invention is specified for the same reason as the above-mentioned addition amount specification of each additive component, and the content of Mg is 0.1% by weight. % Or the Al content is less than 0.1% by weight, good chemical resistance cannot be imparted, and the density of the sintered body decreases, while Mg
Content of more than 1.5% by weight, Al content of 3
On the other hand, if it exceeds the weight%, the chemical resistance is lowered. These are contained basically in such a ratio that they can form a MgO.Al 2 O 3 spinel structure, but they are somewhat changed in the sintering process or the like. The oxygen (O) content range is based on the reason for the Mg and Al content. Further, carbon (C) is added as silicon carbide, and if the content of C is less than 0.01% by weight, mechanical properties and chemical resistance cannot be sufficiently enhanced, while If it exceeds 6% by weight, the density of the sintered body is lowered. The same applies to Ti, Hf, and W.

【0018】本発明に係る窒化けい素焼結体は、例えば
以下に示すような製造方法により作製される。
The silicon nitride sintered body according to the present invention is manufactured, for example, by the following manufacturing method.

【0019】すなわち、窒化けい素原料粉末にMgO・
Al2 3 スピネル構造体、炭化けい素、酸化けい素、
酸化アルミニウム、さらには必要に応じて、Ti、H
f、Wの酸化物および炭化物から選ばれる少なくとも1
種の化合物を所定量添加し、原料混合体を調製する。次
いで、得られた原料混合体を金型プレス等の汎用の成形
法によって所望形状の成形体(セラミックス混合物成形
体)とした後、この成形体を窒素ガスまたはアルゴンガ
ス等の不活性ガス雰囲気中で、1700〜1850℃程
度の温度で所定時間焼結する。なお、上記焼結操作は、
常圧焼結法によっても、あるいはその他の焼結法、例え
ばホットプレス法、雰囲気加圧焼結法、熱間静水圧焼結
法(HIP)等を適用して実施してもよい。いずれの焼
結法においても緻密で機械的強度が高く、特に酸やアル
カリ等の化学的薬品が混在する使用環境下において、耐
薬品性(耐腐食性)に優れた窒化けい素焼結体が得られ
る。
That is, MgO.
Al 2 O 3 spinel structure, silicon carbide, silicon oxide,
Aluminum oxide and, if necessary, Ti, H
at least 1 selected from oxides and carbides of f and W
A predetermined amount of the seed compound is added to prepare a raw material mixture. Next, after the obtained raw material mixture is formed into a formed body (ceramics mixture formed body) having a desired shape by a general-purpose forming method such as a die press, the formed body is placed in an atmosphere of an inert gas such as nitrogen gas or argon gas. Then, sintering is performed at a temperature of about 1700 to 1850 ° C. for a predetermined time. The sintering operation is
It may be carried out by the normal pressure sintering method or by applying other sintering methods such as a hot pressing method, an atmosphere pressure sintering method, a hot isostatic pressing method (HIP) and the like. Dense and high mechanical strength is obtained by any of the sintering methods, and a silicon nitride sintered body with excellent chemical resistance (corrosion resistance) is obtained, especially in a usage environment where chemicals such as acids and alkalis are mixed. To be

【0020】[0020]

【実施例】次に、本発明を以下に示す実施例を参照して
より具体的に説明する。
Next, the present invention will be described more specifically with reference to the following examples.

【0021】実施例1および比較例1〜2 平均粒径0.7μmのα相型窒化けい素粉末89.5重
量%と、平均粒径0.8μmのMgO・Al2 3 スピ
ネル構造体粉末4重量%と、平均粒径0.5μmの炭化
けい素粉末3重量%と、平均粒径0.7μmの酸化けい
素粉末0.5重量%と、平均粒径0.9μmの酸化アル
ミニウム粉末3重量%との混合物を、トルエンを溶媒と
してボールミルで96時間混合し、均一な原料混合体を
作製した。
Example 1 and Comparative Examples 1 and 2 89.5% by weight of α-phase silicon nitride powder having an average particle size of 0.7 μm and MgO.Al 2 O 3 spinel structure powder having an average particle size of 0.8 μm. 4% by weight, 3% by weight of silicon carbide powder having an average particle size of 0.5 μm, 0.5% by weight of silicon oxide powder having an average particle size of 0.7 μm, and aluminum oxide powder 3 having an average particle size of 0.9 μm The mixture with the weight% was mixed with toluene as a solvent in a ball mill for 96 hours to prepare a uniform raw material mixture.

【0022】次に、得られた原料混合体に有機バインダ
を所定量添加して均一に混合した後に、1000kgf
/cm2 の成形圧力で加圧成形し、50×50×5mm
の成形体を作製した。次いで、得られた成形体を温度5
00℃の大気雰囲気中で脱脂した後、この脱脂体を窒素
ガス雰囲気中にて、1850℃で6時間常圧焼結し、実
施例1に係る窒化けい素焼結体を調製した。
Next, a predetermined amount of an organic binder was added to the obtained raw material mixture and uniformly mixed, and then 1000 kgf
/ Cm pressure and pressure molded at 2 of molding pressure, 50 × 50 × 5mm
Was formed. Then, the obtained molded body is heated to a temperature of 5
After degreasing in an air atmosphere of 00 ° C., the degreased body was subjected to normal pressure sintering in a nitrogen gas atmosphere at 1850 ° C. for 6 hours to prepare a silicon nitride sintered body according to Example 1.

【0023】一方、本発明との比較として、上記実施例
1において、MgO・Al2 3 スピネル構造体粉末を
添加せず、平均粒径0.9μmの酸化イットリウム粉末
を2重量%と平均粒径0.9μmの酸化アルミニウム粉
末2重量%のみを添加する以外は、実施例1と同一条件
で、混合、成形、焼結を行って、比較例1に係る窒化け
い素焼結体を調製した。
On the other hand, as a comparison with the present invention, in Example 1 described above, MgO.Al 2 O 3 spinel structure powder was not added, and 2% by weight of yttrium oxide powder having an average particle size of 0.9 μm was added. A silicon nitride sintered body according to Comparative Example 1 was prepared by mixing, molding and sintering under the same conditions as in Example 1 except that only 2% by weight of aluminum oxide powder having a diameter of 0.9 μm was added.

【0024】また上記実施例1において、酸化アルミニ
ウムの添加量を6重量%と過量に設定した以外は、実施
例1と同一条件で、混合、成形、脱脂、焼結を実施して
比較例2に係る窒化けい素焼結体を調製した。
In Comparative Example 2, the mixing, molding, degreasing, and sintering were carried out under the same conditions as in Example 1 except that the amount of aluminum oxide added was set to an excessive amount of 6% by weight. A silicon nitride sintered body according to the above was prepared.

【0025】こうして得た実施例1および比較例1〜2
に係る各窒化けい素焼結体について、密度、常温(25
℃)における曲げ強度および破壊靭性値を測定した。ま
た、耐薬品性を評価するために、各試料をそれぞれ30
%濃度のHCl溶液に浸漬し、90℃で100時間加熱
処理し、処理後における重量減および曲げ強度を測定し
た。それらの結果を表1に示す。なお、実施例1による
窒化けい素焼結体中に含まれる構成元素は、Mg 0.
7重量%、Al 1.8重量%、O 2.7重量%、C
1.0重量%、Si 57.2重量%、N 36.6
重量%、不純物(Fe等)0.01重量%であった。
Example 1 and Comparative Examples 1-2 thus obtained
For each silicon nitride sintered body according to
The bending strength and fracture toughness value in (° C.) Were measured. To evaluate chemical resistance, each sample was 30
%, And heat-treated at 90 ° C. for 100 hours, and the weight loss and flexural strength after the treatment were measured. Table 1 shows the results. The constituent elements contained in the silicon nitride sintered body according to Example 1 were Mg 0.
7% by weight, Al 1.8% by weight, O 2.7% by weight, C
1.0 wt%, Si 57.2 wt%, N 36.6
% By weight, and 0.01% by weight of impurities (Fe, etc.).

【0026】[0026]

【表1】 [Table 1]

【0027】表1の結果が示すように、実施例1に係る
窒化けい素焼結体は、曲げ強度、破壊靭性値等の機械的
特性が優れていると共に、浸漬処理後の特性について
も、比較例1の酸化イットリウム添加系の焼結体よりも
重量減が少なく耐薬品性に優れており、また機械特性に
も優れていることが判明した。
As shown by the results in Table 1, the silicon nitride sintered body according to Example 1 has excellent mechanical properties such as bending strength and fracture toughness, and the properties after immersion are also compared. It was found that the yttrium oxide-added sintered body of Example 1 had less weight loss, was excellent in chemical resistance, and was also excellent in mechanical properties.

【0028】また実施例1および比較例2の各焼結体の
相違点は、ボールミルで混合して調製した原料混合体中
に含まれる酸化アルミニウムの添加量が、それぞれ3重
量%と6重量%と異なる点のみである。比較例2に係る
焼結体の曲げ強度や破壊靭性値などの機械的特性は、実
施例1の焼結体と比較して遜色がない。しかしながら、
比較例2の焼結体においては、HCl浸漬後における曲
げ強度が明らかに低下する傾向が判明した。
The difference between the sintered bodies of Example 1 and Comparative Example 2 is that the amounts of aluminum oxide contained in the raw material mixture prepared by mixing with a ball mill are 3% by weight and 6% by weight, respectively. Is the only difference. The mechanical properties such as bending strength and fracture toughness value of the sintered body according to Comparative Example 2 are comparable to those of the sintered body of Example 1. However,
In the sintered body of Comparative Example 2, it was found that the bending strength after dipping in HCl obviously decreased.

【0029】なお、酸化アルミニウム製ボールを粉砕媒
体とするボールミル混合機を使用して原料混合体を調製
する場合には、アルミナボールの減耗により、相当量の
酸化アルミニウム成分が不可避的に原料混合体中に混入
することが本発明者らの実験により確認されている。し
かしながら上記実施例1と比較例2との比較結果から明
らかなように、ボールミル混合機からの酸化アルミニウ
ム成分の混入汚染量が3重量%以下であれば、窒化けい
素焼結体の強度特性および耐薬品性を低下させるおそれ
が少ないことも確認できた。
When a raw material mixture is prepared by using a ball mill mixer using aluminum oxide balls as a grinding medium, a considerable amount of aluminum oxide component is unavoidable due to the wear of the alumina balls. It has been confirmed by experiments by the present inventors that they are mixed in. However, as is clear from the comparison result between Example 1 and Comparative Example 2, if the contamination amount of the aluminum oxide component mixed from the ball mill mixer is 3% by weight or less, the strength characteristics and the resistance of the silicon nitride sintered body are improved. It was also confirmed that there is little risk of lowering the chemical properties.

【0030】実施例2〜15、比較例3〜6 実施例1で使用した窒化けい素粉末、MgO・Al2
3 スピネル構造体粉末、炭化けい素粉末、酸化けい素粉
末、酸化アルミニウム粉末およびTi、Hf、Wの酸化
物または炭化物粉末を、表2に示す組成比となるように
調合して原料混合体をそれぞれ調製した。次いで、得ら
れた各原料混合体を実施例1と同一条件で成形、脱脂、
焼結して、それぞれ実施例2〜15に係る窒化けい素焼
結体を作製した。
Examples 2 to 15, Comparative Examples 3 to 6 Silicon nitride powder used in Example 1, MgO.Al 2 O
3 Spinel structure powder, silicon carbide powder, silicon oxide powder, aluminum oxide powder and oxides or carbides of Ti, Hf, W are compounded to have a composition ratio shown in Table 2 to form a raw material mixture. Each was prepared. Next, each of the obtained raw material mixtures was molded, degreased, under the same conditions as in Example 1.
Sintering was carried out to produce silicon nitride sintered bodies according to Examples 2 to 15, respectively.

【0031】一方、比較例3〜6として、表2に示す通
り、炭化けい素を過剰に添加したもの(比較例3)、M
gO・Al2 3 スピネル構造体を過剰に添加したもの
(比較例4)、酸化けい素を過剰に添加したもの(比較
例5)、酸化チタニウムを過剰に添加したもの(比較例
6)をそれぞれ調製し、実施例1と同一条件で原料混合
から焼結操作を実施し、それぞれ対応する比較例3〜6
に係る窒化けい素焼結体を作製した。
On the other hand, as Comparative Examples 3 to 6, as shown in Table 2, those in which silicon carbide was excessively added (Comparative Example 3), M
One in which gO.Al 2 O 3 spinel structure was excessively added (Comparative Example 4), one in which silicon oxide was excessively added (Comparative Example 5), and one in which titanium oxide was excessively added (Comparative Example 6) were used. Each was prepared and the sintering operation was performed from the raw material mixing under the same conditions as in Example 1, and the corresponding Comparative Examples 3 to 6 were performed.
A silicon nitride sintered body according to the above was produced.

【0032】[0032]

【表2】 [Table 2]

【0033】こうして得た実施例2〜15および比較例
3〜6の各窒化けい素焼結体について、実施例1と同一
条件で、密度、曲げ強度、硬度をそれぞれ測定すると共
に、浸漬処理を実施して各試料の重量減および曲げ強度
を測定した。それらの測定結果を表3に示す。
With respect to each of the silicon nitride sintered bodies of Examples 2 to 15 and Comparative Examples 3 to 6 thus obtained, the density, the bending strength and the hardness were respectively measured under the same conditions as in Example 1, and the dipping treatment was carried out. Then, the weight loss and bending strength of each sample were measured. Table 3 shows the measurement results.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示す結果から明らかなように、スピ
ネル構造体と炭化けい素と、酸化アルミニウムと、必要
に応じて酸化けい素と、Ti、Hf、Wの酸化物または
炭化物とを所定量添加した実施例2〜15の各焼結体
は、いずれも高い機械的特性を示し、かつHCl浸漬試
験後における重量減および曲げ強度の低下が少なく、耐
薬品性に優れていることが確認された。
As is clear from the results shown in Table 3, the spinel structure, silicon carbide, aluminum oxide, silicon oxide as required, and oxides or carbides of Ti, Hf, and W in predetermined amounts. It was confirmed that each of the added sintered bodies of Examples 2 to 15 exhibited high mechanical properties, reduced weight loss and reduced bending strength after the HCl immersion test, and had excellent chemical resistance. It was

【0036】また上記のように調製した窒化けい素焼結
体を、実際に軸受の耐薬品性部材に適用して、その軸受
の耐薬品性を含めた耐久性を評価した。すなわち、実施
例12に係る製造方法に準拠して調製した窒化けい素焼
結体を加工し、図1に示すようなセラミックス玉軸受
(ボールベアリング)を製造した。この玉軸受は、上記
窒化けい素焼結体から成る円筒状の内輪1と外輪2との
間に、球状の転動体(窒化けい素ボール)3を介在させ
て構成されている。
The silicon nitride sintered body prepared as described above was actually applied to a chemical resistant member of a bearing, and the durability including the chemical resistance of the bearing was evaluated. That is, the silicon nitride sintered body prepared according to the manufacturing method of Example 12 was processed to manufacture a ceramic ball bearing (ball bearing) as shown in FIG. This ball bearing is configured by interposing a spherical rolling element (silicon nitride ball) 3 between a cylindrical inner ring 1 and an outer ring 2 made of the above silicon nitride sintered body.

【0037】一方、比較例として、同一寸法を有する従
来の鋼(SUJ2)製玉軸受を用意し、上記セラミック
ス玉軸受とともに、塩酸ミストが混在するグリース潤滑
環境下で連続回転試験を実施した。その結果、耐熱・耐
食性がより優れたセラミックス玉軸受の方が、従来の鋼
製玉軸受と比較して高温下でも硬さを維持でき、焼き付
きも生じることがないため、10倍以上も寿命を延伸で
きることが判明し、優れた効果を発揮できることが確認
された。
On the other hand, as a comparative example, a conventional steel (SUJ2) ball bearing having the same dimensions was prepared, and a continuous rotation test was carried out in a grease lubrication environment in which hydrochloric acid mist was mixed together with the above ceramic ball bearing. As a result, the ceramic ball bearings, which have superior heat resistance and corrosion resistance, can maintain hardness even at high temperatures compared to conventional steel ball bearings and do not cause seizure, resulting in a life of 10 times or more. It was revealed that the film could be stretched, and it was confirmed that the excellent effect could be exhibited.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係る窒化
けい素焼結体によれば、特にスピネル構造体により焼結
体組織に耐薬品性を有する粒界相が形成されるため、耐
腐食性を向上させることがきると共に、窒化けい素焼結
体本来の耐摩耗性等を損なうことなく、機械的特性も改
善することができる。従って、軸受部品やガスタービン
部品等を構成していた従来の耐食・耐熱合金や耐食超硬
合金等に代わる高強度耐摩耗性・耐薬品性部材等として
極めて有用な窒化けい素焼結体として有用である。
As described above, according to the silicon nitride sintered body of the present invention, since the grain boundary phase having chemical resistance is formed in the sintered body structure by the spinel structure, corrosion resistance is improved. The mechanical properties can be improved without impairing the original wear resistance and the like of the silicon nitride sintered body. Therefore, it is useful as a silicon nitride sintered body that is extremely useful as a high-strength, wear-resistant, chemical-resistant member, etc., which replaces the conventional corrosion-resistant / heat-resistant alloys, corrosion-resistant cemented carbides, etc. that were used to configure bearing parts and gas turbine parts Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化けい素焼結体で形成した玉軸
受(ボールベアリング)の構成を示す断面図。
FIG. 1 is a cross-sectional view showing the structure of a ball bearing (ball bearing) formed of a silicon nitride sintered body according to the present invention.

【符号の説明】[Explanation of symbols]

1 内輪 2 外輪 3 転動体(窒化けい素ボール) 1 Inner ring 2 Outer ring 3 Rolling element (silicon nitride ball)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 構成元素として、マグネシウムを0.1
〜1.5重量%、アルミニウムを0.1〜3重量%、炭
素を0.01〜6重量%、酸素を0.2〜5重量%の範
囲で含み、残部が実質的に窒化けい素からなることを特
徴とする窒化けい素焼結体。
1. Magnesium as a constituent element is 0.1
.About.1.5% by weight, aluminum in the range of 0.1 to 3% by weight, carbon in the range of 0.01 to 6% by weight, oxygen in the range of 0.2 to 5% by weight, the balance being substantially silicon nitride. A silicon nitride sintered body characterized by:
【請求項2】 請求項1記載の窒化けい素焼結体におい
て、前記窒化けい素焼結体は、その構成元素として、さ
らにチタニウム、ハフニウム、タングステンから選ばれ
る少なくとも1種を0.1〜3.8重量%の範囲で含む
ことを特徴とする窒化けい素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body further comprises at least one selected from titanium, hafnium and tungsten as a constituent element thereof in a range of 0.1 to 3.8. A silicon nitride sintered body, characterized in that the content is in the range of% by weight.
【請求項3】 MgO・Al2 3 スピネル構造体を
0.5〜6重量%、炭化けい素を0.1〜20重量%、
酸化けい素を1重量%以下、酸化アルミニウムを3重量
%以下含み、残部が実質的に窒化けい素からなるセラミ
ックス混合体を、焼成してなることを特徴とする窒化け
い素焼結体。
3. An MgO.Al 2 O 3 spinel structure of 0.5 to 6% by weight, silicon carbide of 0.1 to 20% by weight,
A silicon nitride sintered body, which is obtained by firing a ceramics mixture containing silicon oxide in an amount of 1% by weight or less, aluminum oxide in an amount of 3% by weight or less, and the balance substantially consisting of silicon nitride.
【請求項4】 請求項3記載の窒化けい素焼結体におい
て、前記セラミックス混合体は、さらに、チタニウム、
ハフニウム、タングステンの酸化物および炭化物から選
ばれる少なくとも1種の化合物を0.1〜4重量%の範
囲で含むことを特徴とする窒化けい素焼結体。
4. The silicon nitride sintered body according to claim 3, wherein the ceramic mixture further comprises titanium,
A silicon nitride sintered body comprising at least one compound selected from oxides and carbides of hafnium and tungsten in a range of 0.1 to 4% by weight.
【請求項5】 請求項1ないし4のいずれかに記載の窒
化けい素焼結体から成ることを特徴とする耐薬品性部
材。
5. A chemical resistant member comprising the silicon nitride sintered body according to any one of claims 1 to 4.
【請求項6】 請求項1ないし4のいずれかに記載の窒
化けい素焼結体から成ることを特徴とする軸受部材。
6. A bearing member comprising the silicon nitride sintered body according to any one of claims 1 to 4.
JP7166518A 1995-06-30 1995-06-30 Sintered silicon nitride Pending JPH0920563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166518A JPH0920563A (en) 1995-06-30 1995-06-30 Sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166518A JPH0920563A (en) 1995-06-30 1995-06-30 Sintered silicon nitride

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006259070A Division JP2007039331A (en) 2006-09-25 2006-09-25 Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member

Publications (1)

Publication Number Publication Date
JPH0920563A true JPH0920563A (en) 1997-01-21

Family

ID=15832812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166518A Pending JPH0920563A (en) 1995-06-30 1995-06-30 Sintered silicon nitride

Country Status (1)

Country Link
JP (1) JPH0920563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335369A (en) * 2000-05-23 2001-12-04 Toshiba Corp Silicon nitride ceramic sintered compact and wear resistant member using the same
WO2003010113A1 (en) * 2001-07-24 2003-02-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method for manufacture thereof
US7521388B2 (en) 2003-09-25 2009-04-21 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335369A (en) * 2000-05-23 2001-12-04 Toshiba Corp Silicon nitride ceramic sintered compact and wear resistant member using the same
JP4642971B2 (en) * 2000-05-23 2011-03-02 株式会社東芝 Silicon nitride ceramic sintered body and wear-resistant member using the same
WO2003010113A1 (en) * 2001-07-24 2003-02-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method for manufacture thereof
US7056850B2 (en) 2001-07-24 2006-06-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method of manufacture thereof
US7521388B2 (en) 2003-09-25 2009-04-21 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same

Similar Documents

Publication Publication Date Title
JP4744704B2 (en) Method for manufacturing wear-resistant member
CN100473627C (en) Wear-resistance silicon nitride member and method for manufacturing thereof
JP5002155B2 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0680470A (en) Production of silicon nitride sintered compact
JPH09268072A (en) Production of silicon nitride sintered compact
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP5362758B2 (en) Wear resistant parts
JPH0920563A (en) Sintered silicon nitride
JP2004002067A (en) Wear-resistant member and its production process
JP2663028B2 (en) Silicon nitride sintered body
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
JP3810806B2 (en) Sintered silicon nitride ceramics
JPH10259058A (en) Sialon complex and its production
JP2007039331A (en) Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH1143372A (en) Silicon nitride-based ceramic and its production
JP3773080B2 (en) Rolling bearing
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
JP4869171B2 (en) Method for producing wear-resistant member made of silicon nitride
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2958731B2 (en) Aluminum oxide based sintered body and method for producing the same
JP2007326745A (en) Wear resistant member, wear resistant equipment and method of manufacturing wear resistant member
JPH10231174A (en) Composite ceramic including dispersed solid lubricant and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061101

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208