JPH0987029A - Silicon carbide-based composite material and wear-resistant sliding part using the material - Google Patents

Silicon carbide-based composite material and wear-resistant sliding part using the material

Info

Publication number
JPH0987029A
JPH0987029A JP7276858A JP27685895A JPH0987029A JP H0987029 A JPH0987029 A JP H0987029A JP 7276858 A JP7276858 A JP 7276858A JP 27685895 A JP27685895 A JP 27685895A JP H0987029 A JPH0987029 A JP H0987029A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
based composite
carbon particles
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7276858A
Other languages
Japanese (ja)
Inventor
Chihiro Shudo
千尋 周藤
Akio Sayano
顕生 佐谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7276858A priority Critical patent/JPH0987029A/en
Publication of JPH0987029A publication Critical patent/JPH0987029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon carbide-based composite material excellent in sliding characteristics without damaging an opposite material while maintaining high hardness by dispersing carbon particles in a silicon carbide matrix. SOLUTION: A laminated body is produced by laminating a formed body of spherical high density carbon particles having >=5μm particle size and ceramic fibers. The laminated body is impregnated with molten silicon heated at 1420 to 1500 deg.C in vacuum and to effect reaction sintering to obtain a silicon carbide composite material. In the composite material, silicon layers 5 and carbon particles 6 of >=5μm average particle size are dispersed by 2-50wt.% in a silicon carbide matrix 4. Thus, the silicon carbide composite material is reinforced by the ceramic fibers 2. A wear resistance sliding part is obtd. by using this silicon carbide composite material as a sliding face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素マトリ
ックス中にカーボン粒子を分散させた炭化けい素基複合
材料および同材料を用いた耐摩耗摺動部品に関するもの
である。
TECHNICAL FIELD The present invention relates to a silicon carbide matrix composite material in which carbon particles are dispersed in a silicon carbide matrix, and a wear resistant sliding component using the same material.

【0002】[0002]

【従来の技術】一般にセラミックス焼結体は、高温まで
強度低下が少なく、金属材料に比較して硬度、耐摩耗
性、耐腐食性等の諸特性が優れており、しかも軽量であ
ることから、航空機、車両、産業機械等の構造用材料と
して、広い分野において使用されている。
2. Description of the Related Art Generally, a ceramics sintered body has less strength deterioration even at high temperatures, has various characteristics such as hardness, wear resistance, and corrosion resistance as compared with a metal material, and is lightweight. It is used in a wide range of fields as a structural material for aircraft, vehicles, industrial machines and the like.

【0003】セラミックスの中でも、炭化けい素(Si
C)材料は特に優れた耐摩耗性および耐腐食性を有する
ことから、ポンプ等のメカニカルシールあるいは各種軸
受等の摺動部品として最適とされている。
Among ceramics, silicon carbide (Si
Since the material C) has particularly excellent wear resistance and corrosion resistance, it is most suitable as a mechanical seal for pumps or sliding parts such as various bearings.

【0004】さらに最近では、炭化けい素に他の材料を
複合させて、特定の性質、機能性の向上を図った複合材
料が開発されている。例えば特開平5−163065号
では炭素質材料の多孔体中に溶融けい素を含浸させて、
けい素を含有しない炭化けい素複合材料の製造技術、お
よび炭化けい素およびけい化モリブデンの溶浸形成性複
合材料等についての技術が開示されている。そして、こ
のような複合材料によって耐酸化性、耐クリープ性また
は高温強度の向上等が図られている。
More recently, a composite material has been developed in which silicon carbide is combined with another material to improve specific properties and functionality. For example, in Japanese Unexamined Patent Publication No. 5-163065, a porous body of a carbonaceous material is impregnated with molten silicon,
A technique for producing a silicon carbide composite material containing no silicon, a technique for infiltration forming composite material of silicon carbide and molybdenum silicide, and the like are disclosed. Further, such composite materials have been improved in oxidation resistance, creep resistance or high temperature strength.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来か
ら炭化けい素基複合材料については機能性向上のために
種々の開発がなされているが、高硬度という特性が逆に
欠点となる場合がある。
As described above, various developments have been made in the past for improving the functionality of silicon carbide-based composite materials, but there is a case where the characteristic of high hardness is a drawback. is there.

【0006】例えばメカニカルシールや軸受等の摺動部
品として適用する場合、硬度が高過ぎると相手材に対す
る攻撃性が生じて、相手材を損耗させることがある。
When applied as a sliding component such as a mechanical seal or a bearing, for example, if the hardness is too high, the mating material may be attacked and may be worn.

【0007】また、表面が炭化けい素のみであるとシー
ル性が劣るとともに、脆性材料であるため、亀裂等が生
じた場合に破壊が一気に進行してしまうという問題もあ
る。
Further, if the surface is made of only silicon carbide, the sealing property is poor, and since it is a brittle material, there is a problem that if a crack or the like occurs, the destruction will proceed at once.

【0008】本発明はこのような事情に鑑みてなされた
もので、その目的は、高硬度を維持しつつ摺動特性に優
れ、相手材に対して損傷を生じさせない炭化けい素基複
合材料を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a silicon carbide based composite material which is excellent in sliding characteristics while maintaining high hardness and which does not cause damage to a mating material. To provide.

【0009】本発明の他の目的は、上述した炭化けい素
基複合材料を用いて摺動特性およびその高強度を有する
耐摩耗摺動部品、とりわけメカニカルシールを提供する
ことにある。
Another object of the present invention is to provide a wear-resistant sliding component, especially a mechanical seal, which has sliding characteristics and high strength by using the above-mentioned silicon carbide based composite material.

【0010】[0010]

【課題を解決するための手段】本発明の炭化けい素基複
合材料は基本的に、炭化けい素マトリックス中にカーボ
ン粒子を分散させたカーボン分散型の複合材料である。
The silicon carbide based composite material of the present invention is basically a carbon dispersion type composite material in which carbon particles are dispersed in a silicon carbide matrix.

【0011】この複合材料を製造する場合には、反応焼
結法によって製造することができる。即ち、炭化けい素
の反応焼結においては、骨材としての炭化けい素粉末と
カーボン粉末(C)との混合物を成形した後に1420
〜1500℃の高温度で溶融けい素(Si)(融点14
14℃)を成形体中に含浸させる。含浸したけい素は、
一部の余剰分を残し成形体中の炭素と反応して炭化けい
素を生成し、緻密なマトリックス焼結体を形成する。こ
の際、反応焼結による寸法変化は非常に小さく、複雑形
状品に適用する複合材料の製造に有利である。
When producing this composite material, it can be produced by a reaction sintering method. That is, in the reaction sintering of silicon carbide, 1420 after molding a mixture of silicon carbide powder and carbon powder (C) as an aggregate.
Molten silicon (Si) (melting point 14
14 ° C.) is impregnated into the shaped body. The impregnated silicon is
A part of the surplus is left and reacts with carbon in the compact to form silicon carbide, thereby forming a dense matrix sintered body. At this time, the dimensional change due to the reaction sintering is very small, which is advantageous for manufacturing a composite material applied to a product having a complicated shape.

【0012】ここで反応焼結セラミックスマトリックス
の靭性を高めるためにセラミックス繊維を所定量複合す
ることが有効である。その場合、セラミックス繊維と、
炭化けい素およびカーボン粉末との積層体に、溶融シリ
コンを含浸させるようにする。また、セラミックス繊維
の材質は、特に限定されるものではなく、マトリックス
の構成材料と同様なセラミックス材料を用いることがで
きる。このようなセラミックス繊維の具体例としては、
炭化けい素系繊維(SiC,Si−C−O,Si−Ti
−C−O等),SiC被覆繊維(芯線は例えばC),ア
ルミナ繊維,ジルコニア繊維,炭素繊維,ボロン繊維,
窒化けい素系繊維,Si3 4 被覆繊維(芯線は例えば
C)およびムライト繊維等から選択された少なくとも一
種を使用するとよい。
Here, in order to enhance the toughness of the reaction-sintered ceramic matrix, it is effective to compound a predetermined amount of ceramic fibers. In that case, with ceramic fibers,
A laminated body of silicon carbide and carbon powder is impregnated with molten silicon. The material of the ceramic fiber is not particularly limited, and the same ceramic material as the constituent material of the matrix can be used. Specific examples of such ceramic fibers include:
Silicon carbide based fibers (SiC, Si-C-O, Si-Ti
-CO, etc.), SiC coated fiber (core wire is C, for example), alumina fiber, zirconia fiber, carbon fiber, boron fiber,
It is preferable to use at least one selected from silicon nitride fibers, Si 3 N 4 coated fibers (core wire is C, for example) and mullite fibers.

【0013】このように、炭素成分の表面が反応焼結に
よって炭化けい素に転化し、例えばSiC−C複合材ま
たはSiC−C−Si複合材料が得られる。
In this way, the surface of the carbon component is converted into silicon carbide by reaction sintering to obtain, for example, a SiC-C composite material or a SiC-C-Si composite material.

【0014】ここで本発明では、炭化けい素マトリック
スの炭素割合が2%以上50%以下の重量パーセントで
あるようにする。
In the present invention, the carbon content of the silicon carbide matrix is 2% or more and 50% or less by weight.

【0015】即ち、炭素成分は硬度を低下させて接合材
とのシール性を高める要素となるものであり、この炭素
成分が2%を下回るとシール性が劣化する。また、炭素
成分が50%を超えると複合材料の強度が低下する。
That is, the carbon component serves as an element that lowers the hardness and enhances the sealing property with the bonding material, and if the carbon component is less than 2%, the sealing property deteriorates. Further, when the carbon content exceeds 50%, the strength of the composite material decreases.

【0016】本発明において、特に望ましい炭素成分割
合は10%以上20%以下である。これによって最も優
れたシール性と高強度が得られる。
In the present invention, a particularly desirable carbon component ratio is 10% or more and 20% or less. As a result, the best sealability and high strength can be obtained.

【0017】また、本発明の複合材料において、炭化け
い素マトリックス中に分散するカーボン粒子の粒径は、
5μm以上に設定する。ここで、カーボン粒子は出発原
料としての炭素粉末の粒径を5μm以上とすることで得
られるものであり、球状黒鉛として炭化けい素マトリッ
クス中に分散状態で残存する。粒径が5μm未満である
と、良好なシール特性が得られない。
In the composite material of the present invention, the particle size of the carbon particles dispersed in the silicon carbide matrix is
Set to 5 μm or more. Here, the carbon particles are obtained by setting the particle size of carbon powder as a starting material to 5 μm or more, and remain as spherical graphite in a dispersed state in the silicon carbide matrix. If the particle size is less than 5 μm, good sealing properties cannot be obtained.

【0018】なお、以上の本発明に係る炭化けい素基複
合材料においては、炭素割合が多くなると強度が低下す
る。そこで、本発明では、炭素割合が多い場合には複合
材料中にセラミックス繊維を配列して、繊維強化複合材
料とすることが望ましい。
In the silicon carbide-based composite material according to the present invention, the strength decreases as the carbon content increases. Therefore, in the present invention, when the carbon content is high, it is desirable to arrange ceramic fibers in the composite material to form a fiber-reinforced composite material.

【0019】逆に炭化けい素基複合材料中の炭素割合が
少ない場合には、繊維を含まないモノリシック材料とし
ても十分な強度を得ることができる。
On the contrary, when the carbon content in the silicon carbide based composite material is low, sufficient strength can be obtained even as a monolithic material containing no fiber.

【0020】以上のカーボン粒子が分散した炭化けい素
基複合材料は、シール製および潤滑性の優れたものであ
り、しかも十分な硬度を有するので、摺動面をこの材料
で構成した場合に他部材との摺動時に相手材料に対する
攻撃性が小さく、耐摩耗摺動部品として有効に適用でき
る。
The above-mentioned silicon carbide based composite material in which carbon particles are dispersed has excellent sealing properties and lubricity, and has sufficient hardness. Therefore, when the sliding surface is made of this material, It is less aggressive to the mating material when sliding with a member, and can be effectively applied as a wear-resistant sliding part.

【0021】特にポンプ等におけるメカニカルシール、
または軸受等として適用することにより、優れた効果が
奏される。
Mechanical seals, especially in pumps,
Alternatively, when applied as a bearing or the like, an excellent effect can be obtained.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1(図1および図2))本実施例では、多孔質
炭素成形体を出発原料としたものである。
(Example 1 (FIGS. 1 and 2)) In this example, a porous carbon compact was used as a starting material.

【0023】即ち、図1に模式的に示したように、粒径
10μmの球状の高密度炭素粒子の成形体1と、セラミ
ックス繊維(SiC繊維)2とを積層して積層体3を作
成した。
That is, as schematically shown in FIG. 1, a laminated body 3 was prepared by laminating a compact 1 of spherical high-density carbon particles having a particle diameter of 10 μm and a ceramic fiber (SiC fiber) 2. .

【0024】次に、上記の積層体3に、真空中で148
0℃に加熱した溶融けい素を含浸させ、この状態を1時
間保持した。
Next, the above laminated body 3 is 148 in vacuum.
The molten silicon heated to 0 ° C. was impregnated, and this state was maintained for 1 hour.

【0025】これによって、溶融けい素が積層体3中に
含浸しつつ、炭素成分表面で反応焼結して炭化けい素に
転化し、SiC−C−Si複合材料を得た。
As a result, while the molten silicon was impregnated in the laminate 3, it was reaction-sintered on the surface of the carbon component and converted into silicon carbide to obtain a SiC-C-Si composite material.

【0026】この結果、拡大図である図2に示したよう
に、SiCマトリックス4中に、Si層5と、炭素粒子
6とが分散し、セラミックス繊維2で強化された材料が
得られた。この得られた複合材料の特性を調べた結果、
硬度はHv=970kg/mm2、また摩擦係数は0.0
2、曲げ強度は100MPaであった。
As a result, as shown in FIG. 2, which is an enlarged view, a material in which the Si layer 5 and the carbon particles 6 were dispersed in the SiC matrix 4 and which was reinforced with the ceramic fibers 2 was obtained. As a result of examining the characteristics of the obtained composite material,
Hardness is Hv = 970kg / mm 2 , and friction coefficient is 0.0
2. The bending strength was 100 MPa.

【0027】(実施例2(図3))本実施例では、セラ
ミックス繊維(SiC繊維)を複数層積み重ねた積層体
に、炭化けい素粉末および粒径10μmの球状炭素粒子
を配合したスリップを、真空もしくは加圧含浸によって
浸透させ、石こう型で一定形状の固形体として成形し
た。
Example 2 (FIG. 3) In this example, a slip prepared by mixing silicon carbide powder and spherical carbon particles having a particle size of 10 μm was added to a laminate obtained by stacking a plurality of layers of ceramic fibers (SiC fibers). It was impregnated by vacuum or pressure impregnation and molded into a gypsum-shaped solid body of a certain shape.

【0028】この成形体に、真空中1480℃に加熱し
た溶融けい素を含浸させて1時間保持するとともに、炭
素成分表面および炭化けい素成分の反応焼結を行わせて
炭化けい素に転化させ、SiC−C複合材料を得た。
This molded body was impregnated with molten silicon heated to 1480 ° C. in a vacuum and held for 1 hour, and at the same time, the surface of the carbon component and the silicon carbide component were subjected to reaction sintering to be converted into silicon carbide. , SiC-C composite material was obtained.

【0029】得られた材料は、図3に模式的に示すよう
に、SiCマトリックス4中に、炭素粒子6が分散し、
セラミックス繊維2で強化されていた。得られた製品の
特性を調べた結果、硬度はHv=1080kg/mm2 、摩
擦係数は0.02、曲げ強度は180MPaであった。
The obtained material has carbon particles 6 dispersed in a SiC matrix 4, as schematically shown in FIG.
It was reinforced with ceramic fiber 2. As a result of examining the properties of the obtained product, the hardness was Hv = 1080 kg / mm 2 , the friction coefficient was 0.02, and the bending strength was 180 MPa.

【0030】(実施例3〜6(図4〜図11))これら
の実施例3〜6では実施例2と略同様の方法で炭化けい
素複合材料を製造した。この場合、実施例3では炭素粒
子の粒径を150μmとした。得られた材料の顕微鏡写
真を図4および図5に示す。図4は実物の6倍、図5は
24倍である。これらの図に示すように、白色部分であ
る炭化けい素マトリックス(SiC,Si)中に、黒色
部分であるカーボン粒子が分散配置していた。
(Examples 3 to 6 (FIGS. 4 to 11)) In these Examples 3 to 6, a silicon carbide composite material was manufactured by substantially the same method as in Example 2. In this case, in Example 3, the particle size of the carbon particles was 150 μm. Micrographs of the obtained material are shown in FIGS. 4 and 5. FIG. 4 is 6 times that of the real thing, and FIG. 5 is 24 times. As shown in these drawings, carbon particles, which are black portions, were dispersed and arranged in a silicon carbide matrix (SiC, Si), which was white portions.

【0031】実施例4では、炭素粒子の粒径を300μ
mとした。得られた材料の顕微鏡写真を図6および図7
に示す。各図の倍率は実施例3と同様である。
In Example 4, the carbon particles had a particle size of 300 μm.
m. Micrographs of the obtained material are shown in FIGS. 6 and 7.
Shown in The magnification of each figure is the same as that of the third embodiment.

【0032】実施例5では、炭素粒子の粒径を650μ
mとした。得られた材料の顕微鏡写真を図8および図9
に示す。各図の倍率は実施例3と同様である。
In Example 5, the particle size of the carbon particles was 650 μm.
m. 8 and 9 are micrographs of the obtained material.
Shown in The magnification of each figure is the same as that of the third embodiment.

【0033】実施例6では、炭素粒子の粒径を1mmとし
た。得られた材料の顕微鏡写真を図10および図11に
示す。各図の倍率は実施例3と同様である。
In Example 6, the particle size of the carbon particles was 1 mm. Micrographs of the obtained material are shown in FIGS. 10 and 11. The magnification of each figure is the same as that of the third embodiment.

【0034】以上の実施例に係る炭化けい素基複合材料
によれば、炭化けい素マトリックス中に残留する炭素源
として炭素粉末を採用することで、反応焼結条件によ
り、材料中に任意の粒径および分散状態の炭素成分を得
ることができ、得られた材料の摺動特性が向上できるこ
とが確認された。
According to the silicon carbide-based composite materials according to the above-mentioned examples, by adopting carbon powder as the carbon source remaining in the silicon carbide matrix, it is possible to obtain arbitrary particles in the material depending on the reaction sintering conditions. It was confirmed that the diameter and dispersion state of the carbon component can be obtained, and the sliding characteristics of the obtained material can be improved.

【0035】また、カーボン粒子の分散による強度低下
は、繊維補強によって向上できた。
Further, the strength reduction due to the dispersion of the carbon particles could be improved by the fiber reinforcement.

【0036】[0036]

【発明の効果】以上で詳述したように、本発明によれ
ば、高硬度を維持しつつ摺動特性に優れ、相手材に対し
て損傷を生じさせない炭化けい素基複合材料を提供する
ことができる。
As described above in detail, according to the present invention, it is possible to provide a silicon carbide based composite material which maintains a high hardness, has an excellent sliding property and does not cause damage to a mating material. You can

【0037】また、上述した炭化けい素基複合材料を用
いて摺動特性およびその高強度を有する耐摩耗摺動部
品、とりわけメカニカルシールを提供することができ
る。
Further, by using the above-mentioned silicon carbide based composite material, it is possible to provide a wear resistant sliding component having sliding characteristics and high strength thereof, especially a mechanical seal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の成形前状態を示す模式図。FIG. 1 is a schematic diagram showing a pre-molding state of Example 1 of the present invention.

【図2】上記実施例1の成形後の状態を示す拡大図。FIG. 2 is an enlarged view showing a state after molding of the first embodiment.

【図3】本発明の実施例2の模式図。FIG. 3 is a schematic diagram of a second embodiment of the present invention.

【図4】本発明の実施例3の顕微鏡写真。FIG. 4 is a micrograph of Example 3 of the present invention.

【図5】本発明の実施例3の顕微鏡写真。FIG. 5 is a micrograph of Example 3 of the present invention.

【図6】本発明の実施例4の顕微鏡写真。FIG. 6 is a micrograph of Example 4 of the present invention.

【図7】本発明の実施例4の顕微鏡写真。FIG. 7 is a micrograph of Example 4 of the present invention.

【図8】本発明の実施例5の顕微鏡写真。FIG. 8 is a micrograph of Example 5 of the present invention.

【図9】本発明の実施例5の顕微鏡写真。FIG. 9 is a micrograph of Example 5 of the present invention.

【図10】本発明の実施例6の顕微鏡写真。FIG. 10 is a micrograph of Example 6 of the present invention.

【図11】本発明の実施例6の顕微鏡写真。FIG. 11 is a micrograph of Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

1 成形体 2 セラミックス繊維 3 積層体 4 SiCマトリックス 5 Si層 6 炭素粒子 1 Molded Body 2 Ceramics Fiber 3 Laminated Body 4 SiC Matrix 5 Si Layer 6 Carbon Particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化けい素マトリックス中に、平均粒径
が5μm以上のカーボン粒子を重量パーセントで2%以
上50%以下の割合で分散させてなることを特徴とする
炭化けい素基複合材料。
1. A silicon carbide-based composite material, characterized in that carbon particles having an average particle size of 5 μm or more are dispersed in a silicon carbide matrix at a ratio of 2% to 50% by weight.
【請求項2】 請求項1記載の炭化けい素基複合材料に
おいて、その内部にセラミックス繊維を配列したことを
特徴とする炭化けい素基複合材料。
2. The silicon carbide based composite material according to claim 1, wherein ceramic fibers are arranged inside the silicon carbide based composite material.
【請求項3】 請求項1または請求項2記載の炭化けい
素基複合材料で摺動面を構成したことを特徴とする耐摩
耗摺動部品。
3. A wear-resistant sliding component having a sliding surface made of the silicon carbide based composite material according to claim 1 or 2.
【請求項4】 請求項1記載の炭化けい素基複合材料で
摺動面を構成し、他の部分を請求項2記載の材料で構成
したことを特徴とする耐摩耗摺動部品。
4. A wear-resistant sliding component, characterized in that a sliding surface is made of the silicon carbide based composite material according to claim 1 and other parts are made of the material according to claim 2.
【請求項5】 請求項3または4記載の耐摩耗摺動部品
で構成したことを特徴とするメカニカルシール。
5. A mechanical seal comprising the wear resistant sliding component according to claim 3 or 4.
JP7276858A 1995-09-29 1995-09-29 Silicon carbide-based composite material and wear-resistant sliding part using the material Pending JPH0987029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7276858A JPH0987029A (en) 1995-09-29 1995-09-29 Silicon carbide-based composite material and wear-resistant sliding part using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7276858A JPH0987029A (en) 1995-09-29 1995-09-29 Silicon carbide-based composite material and wear-resistant sliding part using the material

Publications (1)

Publication Number Publication Date
JPH0987029A true JPH0987029A (en) 1997-03-31

Family

ID=17575399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7276858A Pending JPH0987029A (en) 1995-09-29 1995-09-29 Silicon carbide-based composite material and wear-resistant sliding part using the material

Country Status (1)

Country Link
JP (1) JPH0987029A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
WO2009091061A1 (en) * 2008-01-18 2009-07-23 Kyocera Corporation Vacuum holding nozzle
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
US8193109B2 (en) * 2006-06-08 2012-06-05 Audi Ag Ceramic materials containing spherical shaped carbon particles
CN104355621A (en) * 2014-10-29 2015-02-18 安徽省皖捷液压科技有限公司 Nanometer silicon carbide toughened ceramic nozzle and preparation method thereof
WO2016093360A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
US8193109B2 (en) * 2006-06-08 2012-06-05 Audi Ag Ceramic materials containing spherical shaped carbon particles
US8668865B2 (en) 2006-06-08 2014-03-11 Audi Ag Ceramic materials containing spherical shaped carbon particles
WO2009091061A1 (en) * 2008-01-18 2009-07-23 Kyocera Corporation Vacuum holding nozzle
CN104355621A (en) * 2014-10-29 2015-02-18 安徽省皖捷液压科技有限公司 Nanometer silicon carbide toughened ceramic nozzle and preparation method thereof
WO2016093360A1 (en) * 2014-12-12 2016-06-16 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material
JPWO2016093360A1 (en) * 2014-12-12 2017-10-05 国立大学法人京都大学 Silicon carbide fiber reinforced silicon carbide composite material
EP3527547A3 (en) * 2014-12-12 2019-11-20 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
JP2020100559A (en) * 2014-12-12 2020-07-02 国立大学法人京都大学 Silicon carbide fiber-reinforced silicon carbide composite
US11142483B2 (en) 2014-12-12 2021-10-12 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material

Similar Documents

Publication Publication Date Title
US5945166A (en) Method for forming fiber reinforced composite bodies with graded composition and stress zones
EP0286127B1 (en) Ceramic composite and process for production thereof
AU640107B1 (en) Coated ceramic filler materials
JP2002356381A (en) METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE
EP0318239A2 (en) Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic and metal matrices
EP0678083B1 (en) Thermostructural composite articles and method for making same
JPH1149570A (en) Silicon carbide fiber reinforced silicon carbide composite material
JPH0987029A (en) Silicon carbide-based composite material and wear-resistant sliding part using the material
JP2000247745A (en) Ceramics-base fiber composite material, its production and gas turbine part
KR100321939B1 (en) Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof
Raju et al. Silicon nitride/SiAlON ceramics—a review
D'Angio Microwave enhanced chemical vapour infiltration of silicon carbide fibre preforms
Udayakumar et al. Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites: Processing and Characterization When Fabricated by CVI and Hybrid Technique
JP3673011B2 (en) Ceramic-based fiber composite material and manufacturing method thereof
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2570739B2 (en) Fiber reinforced silicon carbide ceramics and method for producing the same
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JP3969106B2 (en) High heat resistant inorganic fiber bonded ceramic bonded body and bonding method thereof
JP2512942B2 (en) Manufacturing method of tough ceramic material for gas turbine
JPH06272167A (en) Fiber for composite material
JP3367165B2 (en) Ceramic sliding member
JPH01142215A (en) Supercharger for internal combustion engine
JP4427914B2 (en) Interlayer direction reinforced inorganic fiber-bonded ceramics and method for producing the same
JPH04342471A (en) Reacted sintered composite ceramic, its production and sliding member using the same
Petrak Ceramic matrices