JPH0413250A - Magneto-optical recording element - Google Patents

Magneto-optical recording element

Info

Publication number
JPH0413250A
JPH0413250A JP11405890A JP11405890A JPH0413250A JP H0413250 A JPH0413250 A JP H0413250A JP 11405890 A JP11405890 A JP 11405890A JP 11405890 A JP11405890 A JP 11405890A JP H0413250 A JPH0413250 A JP H0413250A
Authority
JP
Japan
Prior art keywords
dielectric layer
magneto
magnetic field
optical recording
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11405890A
Other languages
Japanese (ja)
Inventor
Yoshinobu Ishii
義伸 石井
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11405890A priority Critical patent/JPH0413250A/en
Publication of JPH0413250A publication Critical patent/JPH0413250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the external magnetic field required for erasing and to decrease the coil current for erasing, etc., by forming an amorphous yttriums- SIALON (Y-SIALON) dielectric layer to 200 - 600 Angstrom thick. CONSTITUTION:The magneto-optical recording element consists of a transparent substrate 2, dielectric layer 4, magneto-optical recording layer 6, reflecting layer 10, and the dielectric layer comprising Y-Sialon is made 200 - 600 Angstrom thick. In this constitution, intensity of the external magnetic field required for erasing can be decreased without reducing the maximum C/N on recording. If the dielectric film is made >=700 Angstrom thick, the external magnetic field required for erasing increases. If the film is <200 Angstrom thick, the maximum C/N decreases, especially decreases in a higher magnetic field. This is because the Y-Sialon dielectric layer is made 200 - 600 Angstrom thick, and the erasing magnetic field for magneto-optical recording element using the amorphous Y-Sialon dielectric layer can be reduced.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、イットリウム・サイアロン誘電体層を用い
た、光磁気記録素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in a magneto-optical recording element using a yttrium-sialon dielectric layer.

[従来技術] 光磁気記録素子は一般に、透明基板上に誘電体層と光磁
気記録層と反射層とを積層する。誘電体層ハ、カーエン
ハンスメント効果によりカー回転角を増大させるための
もので、通常700〜1200A程度のものが用いられ
る。誘電体層として、非晶質のイットリウム・サイアロ
ンを用いることも周知であり、その場合には900〜1
000人程度のものが皮取られている。
[Prior Art] A magneto-optical recording element generally has a dielectric layer, a magneto-optical recording layer, and a reflective layer laminated on a transparent substrate. The dielectric layer C is for increasing the Kerr rotation angle by the Kerr enhancement effect, and is usually about 700 to 1200 A. It is also well known to use amorphous yttrium sialon as the dielectric layer;
Approximately 1,000 people have been robbed.

これに対して発明者は、誘電体層の膜厚が光磁気記録層
の特性に影響し、素子の書き込み・消去時の特性を変化
させることを見いだした。
On the other hand, the inventors have discovered that the thickness of the dielectric layer affects the characteristics of the magneto-optical recording layer, changing the writing and erasing characteristics of the element.

[発明の課題] この発明の課題は、非晶質イットリウム・サイアロン誘
電体層を用いた光磁気記録素子の、消去磁界を小さくす
ることを課題とする。
[Problem of the Invention] An object of the present invention is to reduce the erasing magnetic field of a magneto-optical recording element using an amorphous yttrium-sialon dielectric layer.

[発明の構成] この発明の光磁気記録素子は、透明基板上に、誘電体層
と光磁気記録層と反射層とを積層した、光磁気記録素子
において、前記誘電体層を厚さ200〜600人の非晶
質イットリウム・サイアロンとしたことを特徴とする。
[Structure of the Invention] A magneto-optical recording element of the present invention is a magneto-optical recording element in which a dielectric layer, a magneto-optical recording layer and a reflective layer are laminated on a transparent substrate. It is characterized by having 600 amorphous yttrium sialons.

イットリウム・サイアロン誘電体層の膜厚は、より好ま
しくは300〜550人とする。
The thickness of the yttrium-sialon dielectric layer is more preferably 300 to 550.

イットリウム・サイアロン誘電体層の膜厚を200〜6
00人とすると、記録の消去に必要な外部磁界の強さが
減少し、しかも記録時の最大CZN比はほとんど低下し
ない。これに対して膜厚を700A以上とすると、消去
に必要な外部磁界の強さが増加する。一方、膜厚を20
OA未満とすると、最大C/N比が低下し、またC/N
比は高磁場側で低下する。このため、イットリウム・サ
イアロン誘電体層の膜厚を200〜600人とする。
The thickness of the yttrium-sialon dielectric layer is 200 to 6
00 people, the strength of the external magnetic field necessary for erasing records decreases, and the maximum CZN ratio during recording hardly decreases. On the other hand, if the film thickness is 700A or more, the strength of the external magnetic field required for erasing increases. On the other hand, increase the film thickness to 20
If it is less than OA, the maximum C/N ratio will decrease and the C/N
The ratio decreases on the high field side. For this reason, the thickness of the yttrium-sialon dielectric layer is set to 200 to 600 layers.

次に膜厚は、300〜550人が好ましい。消去時の特
性は200〜600人の膜厚ではほとんど変化しないが
、膜厚を300人未満とすると高磁場側でのC/N比の
減少が生じる。このため膜厚は300〜550人が好ま
しい。
Next, the film thickness is preferably 300 to 550 people. The characteristics during erasing hardly change when the film thickness is 200 to 600, but when the film thickness is less than 300, the C/N ratio decreases on the high magnetic field side. For this reason, the film thickness is preferably 300 to 550 people.

[実施例] 第1図に、実施例の光磁気記録素子の構造を示す。図に
おいて、2はガラス基板、4は非晶質のイットリウム・
サイアロンを用いた下部誘電体層である。下部誘電体層
4の膜厚は200〜600人、より好ましくは300〜
550人とする。なお非晶質イットリウム・サイアロン
の組成は、Y、・Si、・Alc−0,・N。
[Example] FIG. 1 shows the structure of a magneto-optical recording element of an example. In the figure, 2 is a glass substrate, 4 is an amorphous yttrium
This is the lower dielectric layer using Sialon. The thickness of the lower dielectric layer 4 is 200 to 600, more preferably 300 to 600.
The number of people will be 550. The composition of the amorphous yttrium sialon is Y, .Si, .Alc-0, .N.

で表され、 0  <a<0.5゜ 0.1<b<0.8゜ 0  <c<O−5゜ 0   <d<0.5゜ 0.1<e<0.7 a+b+c+d+e31 である。It is expressed as 0   <a<0.5゜ 0.1<b<0.8゜ 0 <c<O-5゜ 0 <d<0.5゜ 0.1<e<0.7 a+b+c+d+e31 It is.

6は光磁気記録層で、基板2に垂直な磁化方向を持った
、非晶質薄膜を用いる。このような薄膜の材料には、G
dDyFeTi、GdDyFe、GdTbFe、TbF
eCo、、DyFeCo、GdTbDyFe、GdTb
FeCo、TbDyFeCo、GdDyFeCo、  
NdGdDyFe、NdDyFeCo、NdGdDyF
eCo等が有る。8は上部誘電体層で、ここでは下部誘
電体層4と同じ非晶質インドリウム・サイアロンを用い
るが、SiO,、SiO,CeO2,ZrO2,TiO
2゜BizOx、ZnS、5b2Sx、5ixN4等も
用い得る。
Reference numeral 6 denotes a magneto-optical recording layer, which is an amorphous thin film with a magnetization direction perpendicular to the substrate 2. Materials for such thin films include G
dDyFeTi, GdDyFe, GdTbFe, TbF
eCo, , DyFeCo, GdTbDyFe, GdTb
FeCo, TbDyFeCo, GdDyFeCo,
NdGdDyFe, NdDyFeCo, NdGdDyF
There are eCo etc. 8 is the upper dielectric layer, which uses the same amorphous indium sialon as the lower dielectric layer 4, but is made of SiO, SiO, CeO2, ZrO2, TiO2.
2°BizOx, ZnS, 5b2Sx, 5ixN4, etc. may also be used.

上部誘電体層8は必ずしも設けなくても良い、lOは反
射層で、A1.Ti、Cr、Cu、Ag、Au等の金属
やその低酸化物を用いる。
The upper dielectric layer 8 does not necessarily need to be provided, IO is a reflective layer, A1. Metals such as Ti, Cr, Cu, Ag, and Au and their low oxides are used.

第2図り二、ポリカーボネート樹脂基板3を用いた素子
を示す。ポリカーボネートは、エポキシ、ポリエステル
、あるいはアクリル等の任意の透明樹脂に変えることが
できる。4は、膜厚200〜600人、より好ましくは
300〜550人の下部誘電体層、6は光磁気記録層、
8は上部誘電体層、lOは反射層で、12は紫外線硬化
樹脂保護層である。保護層12には、アクリル酸エステ
ル系や、エポキシ系、ポリエステル系、アクリル系、ア
クリルウレタン系等の紫外線硬化樹脂等を用いる。保護
層12は必ずしも設けなくても良い。
The second diagram shows an element using a polycarbonate resin substrate 3. Polycarbonate can be replaced with any transparent resin such as epoxy, polyester, or acrylic. 4 is a lower dielectric layer with a film thickness of 200 to 600 layers, preferably 300 to 550 layers; 6 is a magneto-optical recording layer;
8 is an upper dielectric layer, IO is a reflective layer, and 12 is an ultraviolet curing resin protective layer. For the protective layer 12, an ultraviolet curing resin such as acrylic ester, epoxy, polyester, acrylic, or acrylic urethane is used. The protective layer 12 does not necessarily need to be provided.

実施例の素子は、次のようにして製造した。ガラス基板
2を用いる場合には、スライドガラスを用いた。基板2
,3に、マグネトロンスパッタリングで、下部誘電体層
4、光磁気記録層6、上部誘電体層8、反射層10をス
パッタリングした。
The device of the example was manufactured as follows. When using the glass substrate 2, a slide glass was used. Board 2
, 3, the lower dielectric layer 4, the magneto-optical recording layer 6, the upper dielectric layer 8, and the reflective layer 10 were sputtered by magnetron sputtering.

スパッタリング時の到達真空度は5XlO−’Torr
、基板2.3とターゲットとの間隔は120 mm、ス
パッタ電力はIKW、雰囲気はArである。
The ultimate vacuum level during sputtering is 5XlO-'Torr.
, the distance between the substrate 2.3 and the target was 120 mm, the sputtering power was IKW, and the atmosphere was Ar.

下部誘電体層4のターゲットとして、Si3N。Si3N as a target for the lower dielectric layer 4.

:AhOs二Y、Ojのモル比が86:10:4の焼結
体を用い、膜厚150〜100OAの非晶質イットリウ
ム・サイアロン下部誘電体層4を形成した。次j:Gd
DyFeTiをターゲットとし、非晶質GdDyFeT
iの垂直磁化膜の光磁気記録層6(膜厚20OA>を形
成した。更6二非晶質イットリウム・サイアロンの上部
誘電体層8(膜厚300人)を形成し、この上部に金属
AIを400人にA1の低酸化物を15OAに積層し、
反射層10としt;。
An amorphous yttrium sialon lower dielectric layer 4 having a thickness of 150 to 100 OA was formed using a sintered body having a molar ratio of :AhOs, Y, and Oj of 86:10:4. Next j: Gd
Targeting DyFeTi, amorphous GdDyFeT
A magneto-optical recording layer 6 (thickness: 20 OA) of a perpendicularly magnetized film was formed.Furthermore, an upper dielectric layer 8 (thickness: 300 OA) of amorphous yttrium sialon was formed, and a metal AI layer was formed on top of this. 400 people, laminated A1 low oxide to 15OA,
The reflective layer 10;

第2図の素子の場合、スパッタリングの終了後に、ウレ
タンアクリレートとアクリル酸エステルの共重合体系紫
外線硬化樹脂をスピンコードし、紫外線で硬化させて、
厚さ10μmの樹脂層12を形成した。
In the case of the device shown in Fig. 2, after sputtering is completed, a copolymer-based ultraviolet curable resin of urethane acrylate and acrylic acid ester is spin-coded and cured with ultraviolet rays.
A resin layer 12 with a thickness of 10 μm was formed.

第3図〜第7図に、下部誘電体層4の膜厚の影響を示す
。測定波長は800nm、書き込み周波数は3.7MH
z (270nsec周期)である。
3 to 7 show the influence of the film thickness of the lower dielectric layer 4. Measurement wavelength is 800nm, writing frequency is 3.7MH
z (270 nsec period).

第3図に、下部誘電体層4の膜厚と、MS−Hcとの関
係を示す。Msは飽和磁化、Hcは保磁力で、基板には
スライドガラス基板2を用いた。この関係はポリカーボ
ネート基板3でも、同様である。
FIG. 3 shows the relationship between the thickness of the lower dielectric layer 4 and MS-Hc. Ms is saturation magnetization, Hc is coercive force, and a slide glass substrate 2 was used as the substrate. This relationship holds true for the polycarbonate substrate 3 as well.

膜厚を800Å以下とすると、MS−HCは単調に低下
する。なお図中の記号I〜■は試料を現し、試料毎に下
部誘電体層4の膜厚が異なる。
When the film thickness is 800 Å or less, MS-HC decreases monotonically. Note that symbols I to ■ in the figure represent samples, and the thickness of the lower dielectric layer 4 differs for each sample.

第4図に、膜厚とC/N比との関係を示す。基板は、ポ
リカーボネート基板3である。MS−HCが小さい程、
記録の消去に必要な外部磁界が小さい。例えば膜厚95
0人の試料Iでは、必要な外部磁界は2000e以上で
あるが、膜厚450人の試料■や250人の試料Vでは
1500e程度、膜厚150人の試料■では1oooe
弱である。
FIG. 4 shows the relationship between film thickness and C/N ratio. The substrate is a polycarbonate substrate 3. The smaller the MS-HC,
The external magnetic field required to erase records is small. For example, film thickness 95
For sample I with 0 people, the required external magnetic field is 2000e or more, but for sample ■ with a film thickness of 450 people and sample V with 250 people, the required external magnetic field is about 1500e, and for sample ■ with a film thickness of 150 people it is 1ooooe.
It is weak.

試料Iや試料■では、書き込みに高磁場を用いた際のC
/N比の低下は小さい。しかし試料Vでは、2000e
以上での書き込みではC/N比の低下が見られ、試料■
では高磁場側のC/N比の低下はより著しい。
In Sample I and Sample ■, C when a high magnetic field was used for writing.
/N ratio decrease is small. However, in sample V, 2000e
When writing with the above conditions, a decrease in the C/N ratio was observed, and sample
In this case, the decrease in the C/N ratio on the high magnetic field side is more remarkable.

第5図に、消去に必要な外部磁界の強さや、3500e
での書き込み時のC/N比を示す(ポリカーボネート基
板)。250〜550人の膜厚で、消去磁界はほぼ一定
である。高磁場側での書き込み時のC/N比の落ち込み
は、300〜550人では僅かであるが、300A以下
ではC/N比の落ち込みが急である。そこで膜厚を30
0〜550人とすれば、高磁場側での書き込み時のC/
N比の低下を抑制し、書き込み時の外部磁界依存性を小
さくすることができる。
Figure 5 shows the strength of the external magnetic field necessary for erasing and the 3500e
The C/N ratio during writing is shown (polycarbonate substrate). For a film thickness of 250 to 550 mm, the erase magnetic field is almost constant. The drop in the C/N ratio during writing on the high magnetic field side is slight for 300 to 550 people, but the drop in the C/N ratio is steep at 300 A or less. Therefore, the film thickness was set to 30
If there are 0 to 550 people, C/ when writing on the high magnetic field side.
It is possible to suppress a decrease in the N ratio and reduce dependence on an external magnetic field during writing.

第6図に、下部誘電体層4の膜厚と、カー回転角θにや
反射率Rとの関係を示す。なお図中の800人と950
人の膜厚の試料では、上部誘電体層8の膜厚を350人
とした。また基板はスライドガラスである。
FIG. 6 shows the relationship between the thickness of the lower dielectric layer 4, the Kerr rotation angle θ, and the reflectance R. In addition, 800 people and 950 people in the figure
In the sample with a human thickness, the thickness of the upper dielectric layer 8 was 350 people. Further, the substrate is a glass slide.

第7図に、磁界変調記録を行った場合の、ジッター量と
下部誘電体層4の膜厚との関係を示す。
FIG. 7 shows the relationship between the amount of jitter and the thickness of the lower dielectric layer 4 when magnetic field modulation recording is performed.

基板はポリカーボネートである。書き込みに用いたコイ
ル電流は200mAと400mAで、書き込み周波数は
3.7MHz (270n s e c周期)、ジッタ
ー量は再生時の周波数の標準偏差をn5eC単位に換算
して示した。250〜550人の膜厚ではジッター量は
小さいが、950人でも、150人でもジッター量は大
きい。
The substrate is polycarbonate. The coil currents used for writing were 200 mA and 400 mA, the writing frequency was 3.7 MHz (270 nsec period), and the amount of jitter was expressed by converting the standard deviation of the frequency during reproduction into n5eC units. The amount of jitter is small when the film thickness is 250 to 550 people, but the amount of jitter is large even when the thickness is 950 or 150 people.

[発明の効果] この発明では、非晶質イットリウム・サイアロン誘電体
層の膜厚を200〜600人とすることにより、消去時
に必要な外部磁界を小さくし、消去時のコイル電流を小
さくすることができる。しかも、C/N比の最大値はほ
とんど低下しない。
[Effects of the Invention] In this invention, by setting the thickness of the amorphous yttrium-sialon dielectric layer to 200 to 600, the external magnetic field required during erasing is reduced, and the coil current during erasing is reduced. I can do it. Moreover, the maximum value of the C/N ratio hardly decreases.

更に磁界変調記録を行った場合の、ジッター量を小さく
することができる。
Furthermore, the amount of jitter can be reduced when magnetic field modulation recording is performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、実施例の光磁気記録素子の断面図で
ある。 第3図は下部誘電体層の厚さとMS−HCとの関係を示
す特性図、第4図は記録磁界とC/N比との関係を示す
特性図である。第5図〜第7図は下部誘電体層の厚さの
影響を示す特性図で、第5図は消去に必要な記録磁界と
3500eでのC/N比とを示し、第6図はカー回転角
と反射率とを示し、第7図はジッター量を示す。 図において、 2 ガラス基板、   3 ポリカーボネート基板、4
 下部誘電体層、 6 光磁気記録層、8 上7部誘電
体層、IO反射層。
1 and 2 are cross-sectional views of the magneto-optical recording element of the example. FIG. 3 is a characteristic diagram showing the relationship between the thickness of the lower dielectric layer and MS-HC, and FIG. 4 is a characteristic diagram showing the relationship between the recording magnetic field and the C/N ratio. Figures 5 to 7 are characteristic diagrams showing the influence of the thickness of the lower dielectric layer. Figure 5 shows the recording magnetic field required for erasing and the C/N ratio at 3500e, and Figure 6 shows the curve. The rotation angle and reflectance are shown, and FIG. 7 shows the amount of jitter. In the figure, 2 glass substrate, 3 polycarbonate substrate, 4
lower dielectric layer, 6 magneto-optical recording layer, 8 upper dielectric layer, IO reflective layer.

Claims (1)

【特許請求の範囲】[Claims] (1)透明基板上に、誘電体層と光磁気記録層と反射層
とを積層した、光磁気記録素子において、前記誘電体層
を厚さ200〜600Åの非晶質イットリウム・サイア
ロンとしたことを特徴とする、光磁気記録素子。
(1) In a magneto-optical recording element in which a dielectric layer, a magneto-optical recording layer and a reflective layer are laminated on a transparent substrate, the dielectric layer is made of amorphous yttrium sialon with a thickness of 200 to 600 Å. A magneto-optical recording element characterized by:
JP11405890A 1990-04-28 1990-04-28 Magneto-optical recording element Pending JPH0413250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11405890A JPH0413250A (en) 1990-04-28 1990-04-28 Magneto-optical recording element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11405890A JPH0413250A (en) 1990-04-28 1990-04-28 Magneto-optical recording element

Publications (1)

Publication Number Publication Date
JPH0413250A true JPH0413250A (en) 1992-01-17

Family

ID=14627978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11405890A Pending JPH0413250A (en) 1990-04-28 1990-04-28 Magneto-optical recording element

Country Status (1)

Country Link
JP (1) JPH0413250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055985A (en) * 1996-08-07 1998-02-24 Seiko Seiki Co Ltd Dicing device
JP2007155725A (en) * 2005-12-05 2007-06-21 Top Engineering Co Ltd Abrasion measuring instrument and abrasion measuring method for wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055985A (en) * 1996-08-07 1998-02-24 Seiko Seiki Co Ltd Dicing device
JP2007155725A (en) * 2005-12-05 2007-06-21 Top Engineering Co Ltd Abrasion measuring instrument and abrasion measuring method for wheel

Similar Documents

Publication Publication Date Title
JP2561130B2 (en) Magneto-optical recording medium
JPH0413250A (en) Magneto-optical recording element
JPH0550400B2 (en)
EP0475452B1 (en) Use of a quasi-amorphous or amorphous zirconia dielectric layer for optical or magneto-optic data storage media
JPS60219655A (en) Optical recording medium
JP2912725B2 (en) Magneto-optical recording medium
JP2728503B2 (en) Magneto-optical recording medium
JP2908531B2 (en) Magneto-optical recording element
JP2701963B2 (en) Optical storage element
JPS62170050A (en) Photomagnetic disk
JPS6151638A (en) Optomagnetic information recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH0660452A (en) Magneto-optical recording medium
JPS6252743A (en) Optical recording medium
JPS62285255A (en) Magneto-optical recording medium
JPH01146145A (en) Magneto-optical recording medium and its production
JPH09180277A (en) Magneto-optical disk
JPS61292246A (en) Magnetooptic recording medium
JPS62285256A (en) Magneto-optical recording medium
JPH09293284A (en) Magneto-optical disk
JPH0773517A (en) Magneto-optical recording medium
JPH10214441A (en) Magneto-optical disk
JPS62289947A (en) Magneto-optical recording medium
JPH02292753A (en) Magneto-optical recording medium
JPS60131660A (en) Magneto-optical memory element