JPH04131348A - High-strength aluminum alloy plate having excellent formability and production thereof - Google Patents

High-strength aluminum alloy plate having excellent formability and production thereof

Info

Publication number
JPH04131348A
JPH04131348A JP25038990A JP25038990A JPH04131348A JP H04131348 A JPH04131348 A JP H04131348A JP 25038990 A JP25038990 A JP 25038990A JP 25038990 A JP25038990 A JP 25038990A JP H04131348 A JPH04131348 A JP H04131348A
Authority
JP
Japan
Prior art keywords
range
strength
alloy
heat treatment
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25038990A
Other languages
Japanese (ja)
Inventor
Aoshi Tsuyama
青史 津山
Takeshi Fujita
毅 藤田
Shinji Mitao
三田尾 真司
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25038990A priority Critical patent/JPH04131348A/en
Publication of JPH04131348A publication Critical patent/JPH04131348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the high-strength Al alloy plate for press forming having excellent press formability and strength after coating and baking by subjecting the slab of an Al alloy having a specific compsn. to a homogenization heat treatment, then working this slab to a plate material by hot rolling and cold rolling, and further heat treating the plate material under specific conditions. CONSTITUTION:The slab of the Al alloy contg., by weight %, 1.6 to 5.5% Mg, 0.03 to 0.29% Si, 0.42 to 2.5% Cu, 0.61 to 2.0% Zr, 0.005 to 0.15% Ti, 0.0002 to 0.05% B, and 0.03 to 0.4% Fe, and one or >=2 kinds among 0.01 to 0.20% Zr, 0.01 to 0.30% Cr, 0.02 to 0.18% Mn, and 0.01 to 0.30% V, is subjected to one stage or many stages of the homogenization heat treatments in a 480 to 560 deg.C temp. range. This slab is worked to the plate material having a prescribed thickness by the hot rolling and cold rolling and is then subjected to the heat treatment consisting in heating to 440 to 560 deg.C temp. range at >=3 deg.C/sec heating rate and holding for <=120 seconds at said time, then cooling at <=2 deg.C/sec cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、圧延後熱処理のままで優れたプレス成形性
と高い塗装焼付後強度を有し、自動車車体等に好適な成
形性に優れた高強度アルミニウム合金板及びその製造方
法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention has excellent press formability and high strength after paint baking even after heat treatment after rolling, and has excellent formability suitable for automobile bodies, etc. This invention relates to a high-strength aluminum alloy plate and its manufacturing method.

[従来の技術] 従来より自動車ボディーシート等の成形加工用板材とし
て表面処理冷延鋼板が多用されているが、近年、自動車
の燃費向上のための軽量化の要望が高まっており、その
要望を満たすべく自動車ボディーシート等にアルミニウ
ム合金板が使用され始めてきている。
[Conventional technology] Surface-treated cold-rolled steel sheets have traditionally been widely used as plate materials for forming automobile body sheets, etc., but in recent years there has been an increasing demand for weight reduction in automobiles to improve fuel efficiency. In order to meet these requirements, aluminum alloy plates are beginning to be used in automobile body seats and the like.

自動車ボディーシート用アルミニウム合金としては、非
熱処理型の5182.5083等、熱処理型の2036
.6009.6010等が用いられている。また、特開
昭57−120648及び特開昭53−103914に
開示されているように、非熱処理型の5×××系にCu
やZnを微量添加し、熱処理して用いることを前提とし
たアルミニウム合金が開発されている。
As aluminum alloys for automobile body sheets, non-heat treated type 5182.5083 etc., heat treated type 2036 etc.
.. 6009.6010 etc. are used. Furthermore, as disclosed in JP-A-57-120648 and JP-A-53-103914, Cu
Aluminum alloys have been developed that are designed to be used after heat treatment and by adding trace amounts of Zn and Zn.

[発明が解決しようとする課題] しかしながら、これらのアルミニウム合金は、引張試験
における破断伸びが30%以上、塗装焼付後の耐力が2
0 kgf/ ■2以上という上記用途に要求される両
特性を兼備しておらす、プレス成形性及び耐プント性の
いずれか、又はこれらの両方か不十分である。そして、
このことか自動車用ボディーシートとして冷延鋼板に代
えてアルミニウム合金を使用することの障害となってい
る。
[Problems to be solved by the invention] However, these aluminum alloys have an elongation at break of 30% or more in a tensile test and a yield strength of 2.
0 kgf/■2 or more, which is both of the properties required for the above-mentioned use, but either press formability and Punto resistance, or both of these are insufficient. and,
This is an obstacle to using aluminum alloys instead of cold-rolled steel sheets for automobile body sheets.

この発明はかかる事情に鑑みてなされたものであって、
引張試験における破断伸びか30%以上、かつ塗装焼付
後の耐力か20 kgf’ / am2以上の、プレス
成形性及び塗装後の耐プント性に優れた高強度アルミニ
ウム合金板及びその製造方法を提供することを目的とす
る。
This invention was made in view of such circumstances, and
To provide a high-strength aluminum alloy plate having an elongation at break of 30% or more in a tensile test and a yield strength after baking of a paint of 20 kgf'/am2 or more, excellent press formability and Punt resistance after painting, and a method for producing the same. The purpose is to

[課題を解決するための手段及び作用]本願発明者等は
、上記目的を達成するために種々検討を重ねた結果、化
学成分組成を適切に調整し、製造条件を適性化すること
により引張試験における破断伸びが30%以上、かつ塗
装焼付後の耐力が20 kgf / mtp2以上の条
件を達成することができることを見出し、本発明を完成
するに至った。特に、化学成分組成については、塗装焼
付後の高強度化の観点から、Al−Mg系合金にCuを
積極的に添加し、A、172 Cu M gの析出硬化
を狙い、さらにZnを補完的に添加したものである。
[Means and effects for solving the problem] As a result of various studies to achieve the above object, the inventors of the present application have conducted a tensile test by appropriately adjusting the chemical composition and optimizing the manufacturing conditions. The present invention was completed based on the discovery that it is possible to achieve the following conditions: an elongation at break of 30% or more and a yield strength after baking of the paint of 20 kgf/mtp2 or more. In particular, regarding the chemical composition, from the viewpoint of increasing the strength after baking the paint, Cu is actively added to the Al-Mg alloy, aiming at precipitation hardening of A, 172 Cu M g, and Zn is added as a complementary material. It was added to.

すなわち、この発明に係るプレス成形用高強度アルミニ
ウム合金板は、重量%で、Mgを1.6〜5.5%、C
uを0.42〜2.5%、Znを0,61〜2.0%、
Tiを0.005〜0.15%、Bを0.0002〜0
.05%、Siを0.03〜0.29%、Feを0.0
3〜0.4%の範囲で含有し、かつ0.01〜0.20
%のZr、0.01〜0.30%のCr。
That is, the high-strength aluminum alloy plate for press forming according to the present invention contains 1.6 to 5.5% Mg and C in weight percent.
u 0.42 to 2.5%, Zn 0.61 to 2.0%,
Ti 0.005-0.15%, B 0.0002-0
.. 05%, Si 0.03-0.29%, Fe 0.0
Contains in the range of 3 to 0.4%, and 0.01 to 0.20
% Zr, 0.01-0.30% Cr.

0.02〜0.18%のM n 、及びC1,01〜0
.30%のりのうち1種又は2種以上を含有し、残部が
Afl及び不可避的不純物からなることを特徴とする。
M n of 0.02-0.18%, and C1,01-0
.. It is characterized in that it contains one or more of 30% glue, and the remainder consists of Afl and unavoidable impurities.

また、この発明に係るプレス成形用高強度アルミニウム
合金板の製造方法は、上記組成のアルミニウム合金に対
し、480〜560℃の範囲内の温度で1段又は多段の
均質化熱処理を施し、次いでこの合金に熱間圧延及び冷
間圧延を施して所定の厚みを有する板材とし、その後、
440〜560℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱してその温度で120秒間以下の時間保持し
、2℃/秒以上の速度で冷却する条件の熱処理を施すこ
とを特徴とする。
Further, the method for producing a high-strength aluminum alloy plate for press forming according to the present invention includes subjecting the aluminum alloy having the above composition to one or more stages of homogenization heat treatment at a temperature within the range of 480 to 560°C, and then The alloy is hot-rolled and cold-rolled to form a plate with a predetermined thickness, and then
Heat treatment is performed under the following conditions: heating to a temperature within the range of 440 to 560°C at a heating rate of 3°C/second or more, holding at that temperature for a time of 120 seconds or less, and cooling at a rate of 2°C/second or more. Features.

以下、この発明について詳細に説明する。なお、以下の
説明において%表示は重量%を表わす。
This invention will be explained in detail below. Note that in the following description, % indicates weight %.

先ず、この発明に係るアルミニウム合金の成分組成の限
定理由について説明する。
First, the reasons for limiting the composition of the aluminum alloy according to the present invention will be explained.

Mg:  Mgは本発明に係る合金における必須の基本
成分であり、適量合金されることにより合金の強度及び
成形性の向上に大きく寄与する。しかし、Mgが1.6
%未満では十分な強度か得られず、5,5%を超えると
伸びが小さくなり成形性が低下する。従って、Mgの含
有量を1.6〜5.5%の範囲に規定する。
Mg: Mg is an essential basic component in the alloy according to the present invention, and when alloyed in an appropriate amount, it greatly contributes to improving the strength and formability of the alloy. However, Mg is 1.6
If it is less than 5.5%, sufficient strength will not be obtained, and if it exceeds 5.5%, elongation will become small and moldability will deteriorate. Therefore, the Mg content is defined in the range of 1.6 to 5.5%.

Cu:  CuはAl−Mgと結びつき、All2Cu
 M gとして塗装焼付により強度を上昇させる効果を
有する。しかし、Cuが0,42%未満ではその効果が
十分でなく、逆に2.5%を超えると成形性が低下する
のみならず溶体化熱処理後の材料特性の経時変化も大き
くなる。従って、Cuの含有量を0.42〜2.5%の
範囲に規定する。
Cu: Cu combines with Al-Mg, forming All2Cu
Mg has the effect of increasing strength through paint baking. However, if Cu is less than 0.42%, the effect will not be sufficient, and if it exceeds 2.5%, not only will the formability deteriorate, but the material properties will change significantly over time after solution heat treatment. Therefore, the content of Cu is defined in the range of 0.42 to 2.5%.

Zn:  ZnはMgと結びついてM g Z n 2
を形成し、Cuと同様、塗装焼付による強度低下を抑制
する。しかしZnが0.61%未満ではその効果が十分
でなく、逆に2,0%を超えると成形性か低下する。従
って、Znの含有量を0.61〜2.0%の範囲に規定
する。
Zn: Zn combines with Mg to form M g Z n 2
Like Cu, it suppresses the decrease in strength due to paint baking. However, if the Zn content is less than 0.61%, the effect is not sufficient, and if it exceeds 2.0%, the moldability decreases. Therefore, the Zn content is defined in the range of 0.61 to 2.0%.

以上の3元素が塗装焼付後の強度を確保する上での必須
元素である。
The above three elements are essential elements to ensure strength after baking the paint.

Ti、B:  本発明では、プレス成形性のみならず、
熱間圧延時の割れ等にも影響を及はす鋳塊組織制御を目
的として上記3元素のみならずTi1Bをも必須元素と
して添加する。Ti及びBはTiB2等として存在し、
鋳塊の結晶粒を微細化する効果を有するが、過剰に添加
すると粗大な晶出物を生成し、逆に成形性を低下させる
ので、TiおよびBの含有量を、夫々0.005〜0.
15%、及び0.0002〜0.05%の範囲に規定す
る。
Ti, B: In the present invention, not only press formability but also
In addition to the above three elements, Ti1B is also added as an essential element for the purpose of controlling the structure of the ingot, which also affects cracks during hot rolling. Ti and B exist as TiB2 etc.
It has the effect of refining the crystal grains of the ingot, but if added in excess, it will produce coarse crystallized substances and conversely reduce formability, so the content of Ti and B should be adjusted to 0.005 to 0. ..
15%, and within the range of 0.0002 to 0.05%.

Si、Fe:  Si及びFeは通常不可避的にアルミ
ニウム合金に含有される不純物元素であり、成形性に悪
影響を及ぼす粗大晶出物生成を抑制する観点から、これ
らの上限をSi、Fe夫々0.29%、014%に規定
する。一方、微量の添加は成形性を向上させる効果があ
るため、Si。
Si, Fe: Si and Fe are usually impurity elements unavoidably contained in aluminum alloys, and from the viewpoint of suppressing the formation of coarse crystallized substances that adversely affect formability, the upper limits of these are set to 0.0. 29%, 014%. On the other hand, since adding a small amount of Si has the effect of improving moldability.

Feの含有量はいずれも0.03%以上であることが重
要である。従って、Si及びFeの含有量を夫々0.0
3〜0.29%、0.03〜0.29%の範囲に規定す
る。
It is important that the Fe content is 0.03% or more in all cases. Therefore, the contents of Si and Fe are each 0.0
It is defined in the range of 3 to 0.29% and 0.03 to 0.29%.

Zr、Cr、MnNV:  これらの元素は鋳塊のみな
らず溶体化熱処理後の結晶粒粗大化を抑制し、組織を均
一にし、強度上昇及び成形性向上にも寄与する。従って
、プレス成形時の肌荒れの原因となる溶体化処理後の結
晶粒粗大化を抑制し、さらに強度上昇及び成形性向上を
図るため、これら元素のうち1種又は2種以上を適量添
加する。
Zr, Cr, MnNV: These elements suppress grain coarsening not only in the ingot but also after solution heat treatment, make the structure uniform, and contribute to increased strength and formability. Therefore, one or more of these elements are added in appropriate amounts in order to suppress coarsening of crystal grains after solution treatment, which causes surface roughness during press molding, and to further increase strength and improve moldability.

しかし、これらの元素を過剰添加すると粗大な晶出物を
生成し、成形性を低下させるので、Zr。
However, excessive addition of these elements produces coarse crystallized substances and reduces formability, so Zr.

Cr、MnNVの含有量を、夫々0.01〜0、 20
%、 0.01〜0.30%、 0.02〜0.18%
、0,01〜0.30%の範囲に規定する。
The content of Cr and MnNV is 0.01 to 0, 20, respectively.
%, 0.01~0.30%, 0.02~0.18%
, 0.01% to 0.30%.

上記元素の他、通常のアルミニウム合金と同様、不可避
的不純物が含有されるが、その量は本発明の効果を損な
わない程度の範囲で許容される。例えば、Na≦0.0
01%、K≦0.001%であればこれらの元素を含ん
でいても特性上の支障はない。
In addition to the above elements, unavoidable impurities are contained as in ordinary aluminum alloys, but the amount thereof is allowed within a range that does not impair the effects of the present invention. For example, Na≦0.0
If K≦0.001% and K≦0.001%, even if these elements are contained, there will be no problem in terms of properties.

次に、この発明の合金の製造条件について説明する。Next, the manufacturing conditions for the alloy of this invention will be explained.

上記範囲に成分・組成が規定されたアルミニウム合金を
溶解・鋳造し、その鋳塊に対して480〜560℃の範
囲内の温度で1段又は多段の均質化熱処理を施す。この
ような均質化処理を施すことにより、鋳造時に晶出した
共晶化合物の拡散固溶を促進し、局部的ミクロ偏析を軽
減する。また、この処理により、最終製品の結晶粒粗大
化を抑制し、均一化を図るうえで重要な役割を果たすZ
r。
An aluminum alloy whose ingredients and composition are defined within the above range is melted and cast, and the ingot is subjected to one or more stages of homogenization heat treatment at a temperature within the range of 480 to 560°C. By performing such homogenization treatment, the diffusion solid solution of the eutectic compound crystallized during casting is promoted, and local micro-segregation is reduced. This treatment also suppresses grain coarsening in the final product and plays an important role in achieving uniformity.
r.

Cr、MnNVの化合物を均一かつ微細に析出させるこ
とができる。しかし、この処理の温度が480℃未満の
場合には上述したような効果が不十分であり、一方56
0℃を超えると共晶融解が生じる。従って、均質化処理
の温度を480〜560℃とした。なお、この温度範囲
内での保持時間は特に規定されないが、上述した効果が
十分に得られかつ経済性を損ねない好ましい範囲は1〜
72時間である。
Compounds of Cr and MnNV can be precipitated uniformly and finely. However, when the temperature of this treatment is less than 480°C, the above-mentioned effects are insufficient;
Above 0°C, eutectic melting occurs. Therefore, the temperature of the homogenization treatment was set at 480 to 560°C. Note that the holding time within this temperature range is not particularly defined, but the preferred range is 1 to 1, in which the above-mentioned effects can be sufficiently obtained and economical efficiency is not impaired.
It is 72 hours.

次いで、このような均質化処理が施された鋳塊に対し、
常法に従って所定の板厚を得るために熱間圧延及び冷間
圧延を行う。この際に、熱間圧延と冷間圧延との間、又
は冷間圧延と冷間圧延との間に材料軟化のための中間焼
鈍を実施してもよい。
Next, for the ingot that has been subjected to such homogenization treatment,
Hot rolling and cold rolling are performed in accordance with conventional methods to obtain a predetermined thickness. At this time, intermediate annealing for softening the material may be performed between hot rolling and cold rolling or between cold rolling.

この処理によって本発明の効果を何等損なうものではな
い。また、歪矯正及び表面粗度調整のため、5%以下の
スキンバス圧延を実施してもよい。
This treatment does not impair the effects of the present invention in any way. Further, skin bath rolling of 5% or less may be performed for distortion correction and surface roughness adjustment.

その後、このような圧延板材を440〜560℃の範囲
内の温度に3℃/秒以上の加熱速度で加熱してその温度
に120秒間以下の時間保持し、2℃/秒以上の速度で
冷却する条件で熱処理を実施する。この熱処理は強度へ
の寄与が大きいMg−5i系化合物及びAl−Mg−C
u、Mg−Zn系化合物の溶体化を図り、かつ結晶粒の
調整を行うことにより、プレス成形性及び強度の向上を
達成するものである。この場合に、加熱速度が3℃/秒
未満であったり、加熱温度が560℃を超えたり、保持
時間が120秒よりも長かったりすると結晶粒が粗大化
してしまう。また、加熱温度が440℃未満では上述の
溶体化の効果を十分に得ることができない。冷却速度が
2℃/秒未満では、冷却中に上述の化合物が粗大に析出
し、強度及びプレス成形性が不十分なものとなる。
Thereafter, such a rolled plate material is heated to a temperature within the range of 440 to 560°C at a heating rate of 3°C/second or more, held at that temperature for a time of 120 seconds or less, and cooled at a rate of 2°C/second or more. Heat treatment is carried out under the following conditions. This heat treatment is performed on Mg-5i compounds and Al-Mg-C, which have a large contribution to strength.
By making the Mg-Zn-based compound into a solution and adjusting the crystal grains, it is possible to improve press formability and strength. In this case, if the heating rate is less than 3° C./second, the heating temperature exceeds 560° C., or the holding time is longer than 120 seconds, the crystal grains will become coarse. Further, if the heating temperature is lower than 440° C., the above-mentioned solution effect cannot be sufficiently obtained. If the cooling rate is less than 2° C./sec, the above-mentioned compounds will coarsely precipitate during cooling, resulting in insufficient strength and press formability.

なお、このような熱処理が施された板材に対し、必要に
応じて歪矯正の目的で4%以下のストレッチング、レベ
リング、又はスキンバスを実施してもよい。
Note that the plate material subjected to such heat treatment may be subjected to stretching of 4% or less, leveling, or skin bath for the purpose of correcting distortion, if necessary.

このようにして得られたアルミニウム合金板は、破断伸
びが30%以上、塗装焼付後の耐力が20kgf/sv
2以上となり、優れたプレス成形性と耐テント性とを兼
備したものとなる。また、プレス後の外観に悪影響を及
ぼすストレッチャーストレインマークが発生しないこと
もこの発明の大きな利点である。
The aluminum alloy plate thus obtained has an elongation at break of 30% or more and a yield strength of 20 kgf/sv after baking the paint.
2 or more, and has both excellent press formability and tent resistance. Another great advantage of this invention is that stretcher strain marks that adversely affect the appearance after pressing do not occur.

[実施例] 以下、この発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1 第1表に示すような成分・組成を有する合金を溶解一連
続鋳造し、510℃で12時間の均質化処理を実施し、
次いで鋳片を450℃に加熱して板厚4■Iまで熱間圧
延を行い、350℃で2時間の中間焼鈍を施した後、冷
間圧延により板厚IIIMとした。なお、熱間圧延の仕
上り温度は280℃であった。このようにして形成され
た厚さ1+ugの板材を530℃まで加熱し、60秒間
保持後、強制空冷により15秒℃/秒の冷却速度で冷却
した。
Example 1 An alloy having the components and composition shown in Table 1 was melted and continuously cast, and homogenized at 510°C for 12 hours.
Next, the slab was heated to 450°C and hot rolled to a thickness of 4I, subjected to intermediate annealing at 350°C for 2 hours, and then cold rolled to a thickness of IIIM. Note that the finishing temperature of hot rolling was 280°C. The plate material having a thickness of 1+ug thus formed was heated to 530° C., held for 60 seconds, and then cooled by forced air cooling at a cooling rate of 15 seconds° C./second.

この熱処理の後25℃で3週間自然時効を行い、引張試
験(JIS5号、引張力同量圧延方向)及びコニカルカ
ップ試験(JIS  Z2249:試験工具21型)を
実施した。なお、コニカルカップ試験はプレス成形のシ
ミュレートとして行い、張出しと深絞りとの複合成形性
をCCV(+m)により評価したcccvが小さいほど
成形性に優れている) さらに、プレス加ニー焼付塗装
をシミュレートするために、2%引引張歪歪付加後18
0℃で30分間の加熱処理(焼付に対応)を行い、引張
試験(熱処理後の試験と同様)を実施した。これらの結
果も第1表に併記した。さらにまた、ストレッチャース
トレインマークの有無も併記した。
After this heat treatment, natural aging was performed at 25° C. for 3 weeks, and a tensile test (JIS No. 5, same tensile force in rolling direction) and a conical cup test (JIS Z2249: test tool type 21) were performed. The conical cup test was conducted as a simulation of press forming, and the combined formability of overhang and deep drawing was evaluated using CCV (+m). The smaller the cccv, the better the formability.) To simulate, after adding 2% tensile strain strain 18
A heat treatment (corresponding to baking) was performed at 0° C. for 30 minutes, and a tensile test (same as the test after heat treatment) was performed. These results are also listed in Table 1. Furthermore, the presence or absence of stretcher strain marks was also noted.

なお、第1表中、合金番号1〜9は本発明の組成範囲内
の実施例であり、合金番号lO〜22はその範囲から外
れる比較例である。また、比較例のうち合金番号22は
自動車ボディーシート用として実績のある5182合金
に対応するものである。
In Table 1, alloy numbers 1 to 9 are examples within the composition range of the present invention, and alloy numbers 1O to 22 are comparative examples outside of that range. Moreover, alloy number 22 among the comparative examples corresponds to 5182 alloy, which has a proven track record for use in automobile body seats.

第1表から明らかなように、実施例である合金番号1〜
9は破断伸びが30%以上、塗装焼付をシミュレートし
た加熱処理後の耐力が20kgf’/112以上と優れ
た値を示したのに対し、比較例である合金番号10〜2
2は破断伸び及び焼付後の耐力のうちいずれか又は両方
がこれらの値よりも小さい値であった。また、CCVに
ついても実施例では全て良好な値を示したのに対し、比
較例ではCCV値の劣るものか存在した。さらに、実施
例ではストレッチャーストレインマークが見られなかっ
たのに対し、比較例の中にはストレッチャーストレイン
マークが発生したものがあった。すなわち、本発明の範
囲内の成分組成であればプレス成形性(伸びとCCVに
より評価)と塗装焼付後の強度の両特性とも優れている
ことが確認された。
As is clear from Table 1, alloy numbers 1-
Alloy No. 9 showed excellent values such as elongation at break of 30% or more and yield strength after heat treatment simulating paint baking of 20 kgf'/112 or more, while comparative examples Alloy No. 10 to 2
In No. 2, either or both of elongation at break and proof stress after baking were smaller than these values. Furthermore, in terms of CCV, all of the Examples showed good values, whereas the Comparative Examples had poor or poor CCV values. Further, while no stretcher strain marks were observed in the Examples, stretcher strain marks were observed in some of the Comparative Examples. That is, it was confirmed that if the composition was within the range of the present invention, both press formability (evaluated by elongation and CCV) and strength after paint baking were excellent.

実施例2 次に、第1表に示した合金のうち、合金番号lの組成を
有する鋳塊を使用し、第2表に示す製造条件で合金板材
を製造した。なお、第2表に特に記載されていない処理
については実施例1の条件を採用した(圧延及び中間焼
鈍条件等)。なお、第2表中2号Aは本発明に係る製造
方法の範囲内の実施例であり、記号B−Gはその範囲か
ら外れる比較例である。
Example 2 Next, an alloy plate material was manufactured under the manufacturing conditions shown in Table 2 using an ingot having the composition of alloy number 1 among the alloys shown in Table 1. Note that for treatments not specifically listed in Table 2, the conditions of Example 1 were adopted (rolling and intermediate annealing conditions, etc.). Note that No. 2 A in Table 2 is an example within the range of the manufacturing method according to the present invention, and symbols BG are comparative examples outside the range.

このようにして製造した板材について実施例1と同様の
評価試験を行った。その結果も第2表に併記する。
The same evaluation test as in Example 1 was conducted on the plate material thus manufactured. The results are also listed in Table 2.

第2表から明らかなように、本発明の条件を満足しない
比較例は成形性、焼付後の強度が著しく劣ることが確認
された。特に、B、C,D、Fは特に成形性が劣ってい
た。これは、これらの条件では結晶粒が粗粒となるため
である。また、E。
As is clear from Table 2, it was confirmed that the comparative examples that did not satisfy the conditions of the present invention were significantly inferior in formability and strength after baking. In particular, B, C, D, and F were particularly poor in moldability. This is because the crystal grains become coarse under these conditions. Also, E.

Gは強度が低く、特に焼付後の耐力が著しく低いことが
確認された。これはMg、S i、Cu。
It was confirmed that G had low strength, especially extremely low yield strength after baking. These are Mg, Si, and Cu.

Zn化合物の均一微細析出が得られないためである。こ
れらに対し、実施例であるAは破断伸び30%以上でC
CVも良好で、かつ焼付後の耐力も20 kgf’ /
 si2と高く、この発明の範囲内の条件であればプレ
ス成形性と塗装焼付後の強度の両特性とも優れた板材が
得られることが確認された。
This is because uniform fine precipitation of the Zn compound cannot be obtained. In contrast, Example A has a breaking elongation of 30% or more and C
The CV is also good and the yield strength after baking is 20 kgf'/
It was confirmed that if the conditions were as high as si2 and within the scope of the present invention, a plate material excellent in both press formability and strength after paint baking could be obtained.

[発明の効果][Effect of the invention]

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、Mgを1.6〜5.5%、Cuを0.
42〜2.5%、Znを0.61〜2.0%、Tiを0
.005〜0.15%、Bを0.0002〜0.05%
、Siを0.03〜0.29%、Feを0.03〜0.
4%の範囲で含有し、かつ0.01〜0.20%のZr
、0.01〜0.30%のCr、0.02〜0.18%
のMn、及び0.01〜0.30%のVのうち1種又は
2種以上を含有し、残部がAl及び不可避的不純物から
なることを特徴とする成形性に優れた高強度アルミニウ
ム合金板。
(1) In weight%, Mg is 1.6 to 5.5%, Cu is 0.
42-2.5%, Zn 0.61-2.0%, Ti 0
.. 005-0.15%, B 0.0002-0.05%
, Si 0.03-0.29%, Fe 0.03-0.
Contains Zr in the range of 4% and 0.01 to 0.20%
, 0.01-0.30% Cr, 0.02-0.18%
A high-strength aluminum alloy plate with excellent formability, characterized by containing one or more of Mn of .
(2)重量%で、Mgを1.6〜5.5%、Cuを0.
42〜2.5%、Znを0.61〜2.0%、Tiを0
.005〜0.15%、Bを0.0002〜0.05%
、Siを0.03〜0.29%、Feを0.03〜0.
4%の範囲で含有し、かつ0.01〜0.20%のZr
、0.01〜0.30%のCr、0.02〜0.18%
のMnN及び0.01〜0.30%のりのうち1種又は
2種以上を含有し、残部がAl及び不可避的不純物から
なるアルミニウム合金に対し、480〜560℃の範囲
内の温度で1段又は多段の均質化熱処理を施し、次いで
この合金に熱間圧延及び冷間圧延を施して所定の厚みを
有する板材とし、その後、440〜560℃の範囲内の
温度に3℃/秒以上の加熱速度で加熱してその温度で1
20秒間以下の時間保持し、2℃/秒以上の速度で冷却
する条件の熱処理を施すことを特徴とする成形性に優れ
た高強度アルミニウム合金板の製造方法。
(2) In weight%, Mg is 1.6 to 5.5% and Cu is 0.
42-2.5%, Zn 0.61-2.0%, Ti 0
.. 005-0.15%, B 0.0002-0.05%
, Si 0.03-0.29%, Fe 0.03-0.
Contains Zr in the range of 4% and 0.01 to 0.20%
, 0.01-0.30% Cr, 0.02-0.18%
An aluminum alloy containing one or more of MnN and 0.01 to 0.30% of glue, with the remainder consisting of Al and unavoidable impurities, is subjected to one step at a temperature within the range of 480 to 560°C. Alternatively, the alloy is subjected to multi-stage homogenization heat treatment, then hot rolled and cold rolled to form a plate material having a predetermined thickness, and then heated to a temperature within the range of 440 to 560°C at a rate of 3°C/second or more. Heat at a speed of 1 at that temperature.
A method for producing a high-strength aluminum alloy plate with excellent formability, which comprises performing heat treatment under conditions of holding for a time of 20 seconds or less and cooling at a rate of 2° C./second or more.
JP25038990A 1990-09-21 1990-09-21 High-strength aluminum alloy plate having excellent formability and production thereof Pending JPH04131348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25038990A JPH04131348A (en) 1990-09-21 1990-09-21 High-strength aluminum alloy plate having excellent formability and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25038990A JPH04131348A (en) 1990-09-21 1990-09-21 High-strength aluminum alloy plate having excellent formability and production thereof

Publications (1)

Publication Number Publication Date
JPH04131348A true JPH04131348A (en) 1992-05-06

Family

ID=17207189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25038990A Pending JPH04131348A (en) 1990-09-21 1990-09-21 High-strength aluminum alloy plate having excellent formability and production thereof

Country Status (1)

Country Link
JP (1) JPH04131348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646655A1 (en) * 1993-09-30 1995-04-05 Nkk Corporation Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646655A1 (en) * 1993-09-30 1995-04-05 Nkk Corporation Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
US5441582A (en) * 1993-09-30 1995-08-15 Nkk Corporation Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPS626740B2 (en)
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH0547615B2 (en)
JPS61201748A (en) Rolled aluminum alloy sheet for forming and its manufacture
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH04131348A (en) High-strength aluminum alloy plate having excellent formability and production thereof
JPH0480979B2 (en)
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH04131347A (en) High-strength aluminum alloy plate for press forming and production thereof
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking