JPH04122417A - Exhaust gas treating device - Google Patents

Exhaust gas treating device

Info

Publication number
JPH04122417A
JPH04122417A JP2238897A JP23889790A JPH04122417A JP H04122417 A JPH04122417 A JP H04122417A JP 2238897 A JP2238897 A JP 2238897A JP 23889790 A JP23889790 A JP 23889790A JP H04122417 A JPH04122417 A JP H04122417A
Authority
JP
Japan
Prior art keywords
exhaust gas
plasma reactor
charge
electrodes
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238897A
Other languages
Japanese (ja)
Inventor
Satoshi Uchida
聡 内田
Shozo Kaneko
祥三 金子
Masayoshi Murata
正義 村田
Seiichi Nishida
西田 聖一
Nobuaki Murakami
信明 村上
Toshihiko Imamoto
今本 敏彦
Katsuo Hashizaki
克雄 橋崎
Takanobu Kondou
近藤 敬宣
Atsushi Morii
守井 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2238897A priority Critical patent/JPH04122417A/en
Publication of JPH04122417A publication Critical patent/JPH04122417A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components

Abstract

PURPOSE:To enhance the treatment efficiency of exhaust gas and also to reduce power consumption by regulating the charge wave-form for plasma generation which is impressed between the electrodes of a plasma reactor to either a pulse charge wave-form or a triangular charge wave-form of high voltage instead of the conventional charge wave-form of a sine wave. CONSTITUTION:Exhaust gas is introduced into a plasma reactor 5 via an exhaust pipe 4 from a cyclone collector 3. A variable power source 16 impresses optimum current, voltage, a charge interval, rising time and a triangular charge wave-form of maximum voltage between the electrodes of the plasma reactor 5 in accordance with a signal equivalent to the optimum degree of removal for the respective components (NOx, N2O, SOx) given from a program generator 10. In other words, this variable power source 16 controls the charge interval (t) of the triangular charge wave-form, the rising time tau and the maximum voltage Vp and sets the optimum value in the relation of power consumption and the degree of removal for NOx, N2O, SOx. The variable power source 16 impressed this optimum value between the electrodes of the plasma reactor 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ボイラ、ディーゼルエンジン、ガスタービン
及び各種燃焼装置など、排ガス公害対策並びにクリーン
化等が要求される装置に用いて好適な脱硝脱硫用の排ガ
ス処理装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a denitrification and desulfurization method suitable for use in equipment that requires measures against exhaust gas pollution and cleaning, such as boilers, diesel engines, gas turbines, and various combustion equipment. The present invention relates to an exhaust gas treatment device for use in a vehicle.

[従来の技術] この種の排ガス処理装置は、グロー放電プラズマにより
脱硝脱硫を行う方式を適用するのが一般的である。この
ようなグロー放電プラズマ式の従来の排ガス処理装置の
全体の構成を第5図に示す。
[Prior Art] This type of exhaust gas treatment apparatus generally employs a method of denitrification and desulfurization using glow discharge plasma. FIG. 5 shows the overall configuration of such a conventional glow discharge plasma type exhaust gas treatment apparatus.

また、第5図の排ガス処理装置の中心をなすプラズマ反
応器の内部構造を第6図に示す。ここで従来の排ガス処
理装置の動作を、第5図及び第6図を参照して、例えば
燃焼装置の排ガス中のNO8を処理する場合を例にとっ
て説明する。
Further, FIG. 6 shows the internal structure of a plasma reactor that forms the center of the exhaust gas treatment apparatus shown in FIG. 5. Here, the operation of the conventional exhaust gas treatment device will be described with reference to FIGS. 5 and 6, taking as an example the case of treating NO8 in the exhaust gas of a combustion device.

ます、第5図において燃焼装置]より発生した排ガスを
排気管2を介してサイクロンコレクタ3に通し、微粒子
を除去する。次にサイクロンコレクタ3にて微粒子か除
去された排ガスを、同サイクロンコレクタ3から排気管
4を経由してプラズマ反応器5に導入する。プラズマ反
応器5内部には、誘電体20と接して第1の電極2]が
設けられる。更に、互いに対向する誘電体20の間には
、第2の電極22か設けられる。画電極21.22間は
、電源6から変圧器23を介して給電される。
Exhaust gas generated from the combustion device shown in FIG. 5 is passed through an exhaust pipe 2 to a cyclone collector 3 to remove particulates. Next, the exhaust gas from which fine particles have been removed in the cyclone collector 3 is introduced into the plasma reactor 5 from the cyclone collector 3 via the exhaust pipe 4. Inside the plasma reactor 5, a first electrode 2] is provided in contact with a dielectric 20. Further, a second electrode 22 is provided between the dielectrics 20 facing each other. Power is supplied between the picture electrodes 21 and 22 from the power source 6 via the transformer 23.

以上の構成において、プラズマ反応器5内で排ガスをプ
ラズマ化することにより、排ガス中のNO8を下記の原
理により除去する。即ち、プラズマ反応器5の電極2]
と電極22との間に電源6を用いて一定周波数の正弦波
の高電圧交流を印加し、プラズマ反応器5内でグロー放
電を発生させる。この大気圧グロー放電現象で排ガスは
プラズマ化され、例えばNO2は次の (1)(2)式
で表わされる化学反応を起こす。
In the above configuration, NO8 in the exhaust gas is removed by turning the exhaust gas into plasma in the plasma reactor 5 according to the following principle. That is, the electrode 2 of the plasma reactor 5]
A high voltage alternating current of a sine wave with a constant frequency is applied between the plasma reactor 5 and the electrode 22 using the power source 6 to generate a glow discharge in the plasma reactor 5. This atmospheric pressure glow discharge phenomenon turns the exhaust gas into plasma, and for example, NO2 causes a chemical reaction expressed by the following equations (1) and (2).

2NO2→2 N O+02      (’J、 )
N20”N2+I/202 2NO→−〇2→N2 + 202    (2)なお
プラズマは、電界によって加速された高エネルギー電子
がガス分子と衝突し、励起分子、励起原子、遊離基、イ
オン及び中性粒子なとか混在した電離気体である。」1
記(])、  (2)式では、数eV乃至数10 e 
Vのエネルギーを得たNO8か化学的に活性な種となっ
て複雑な反応を起こした結果として、N2及び02にな
ると考えられる。
2NO2→2NO+02 ('J, )
N20"N2+I/202 2NO→-〇2→N2+202 (2) In plasma, high-energy electrons accelerated by an electric field collide with gas molecules, resulting in excited molecules, atoms, free radicals, ions, and neutral particles. It is a mixture of ionized gases.''1
In equation (2), several eV to several 10 e
It is thought that N2 and 02 are produced as a result of NO8 having obtained the energy of V becoming a chemically active species and causing a complex reaction.

さて、上記のように燃焼装置1の排ガスを大気圧グロー
放電現象を利用してプラズマ反応器5にてプラズマ化す
ると、υ1ガス中の(NO+NO2)か50−200 
ppm程度で流量か300〜60C1/min程度の範
囲では、プラズマ発生電力、即ち電源6よりプラズマ反
応器5(の電極21.22)に供給される電力か数10
W〜数100Wの範囲で、30〜40%のNo、除去率
を達成できる。このため、第5図の装置は、ボイラ、デ
ィーセルエンンン、ガスタービンなど各種燃焼装置を伴
う装置の排ノノス公害対策用の1ノ1ガス処理装置とし
て活用されつつある。
Now, when the exhaust gas of the combustion device 1 is turned into plasma in the plasma reactor 5 using the atmospheric pressure glow discharge phenomenon as described above, (NO + NO2) in the υ1 gas is 50-200
When the flow rate is approximately ppm and the flow rate is in the range of 300 to 60 C1/min, the plasma generation power, that is, the power supplied from the power source 6 to (the electrodes 21 and 22 of) the plasma reactor 5 is several tens of
In the range of W to several hundred W, a removal rate of 30 to 40% can be achieved. For this reason, the apparatus shown in FIG. 5 is being utilized as a one-of-a-kind gas treatment apparatus for the prevention of exhaust gas pollution in apparatuses involving various combustion devices such as boilers, diesel engines, and gas turbines.

[発明か解決しようとする課題] 上記した従来の01ガス処理装置では、主として次の2
つの問題かあった。
[Problem to be solved by the invention] The conventional 01 gas treatment device described above mainly has the following two problems.
There were two problems.

■ 通常の正弦波の交流電圧を印加した場合、特に50
Hzまたは60Hzの商用周波数程度(低周波)である
と、排ガス処理効率(脱硝及び脱硫効率)か低い。
■ When a normal sine wave AC voltage is applied, especially 50
If the frequency is around the commercial frequency (low frequency) of Hz or 60 Hz, the exhaust gas treatment efficiency (denitration and desulfurization efficiency) is low.

■ また高周波(高周波荷電方式)に17た場合でも、
不必要なグロー放電を発生するので、排ガス処理に必要
な電力か多くなる。
■ Also, even when using high frequency (high frequency charging method),
Since unnecessary glow discharge is generated, the power required for exhaust gas treatment increases.

本発明は上記事情に鑑みてなされたものでその目的は、
排ガス処理効率の向上か図れ、しかも消費電力を減少す
ることかできる排ガス処理装置を提供することを解決す
べき課題とする。
The present invention has been made in view of the above circumstances, and its purpose is to:
The problem to be solved is to provide an exhaust gas treatment device that can improve exhaust gas treatment efficiency and reduce power consumption.

[課題を解決するための手段] 本発明は」1記課題を解決するために、排ガスを放電に
より脱硝脱硫するためのプラズマ反応器を(6ifえた
排ガス処理装置において、プラズマ反応器の電極間に印
加するプラズマ発生荷電波形を、従来の正弦波荷電波形
に代えて高電圧のパルス荷電波形または三角荷電波形と
したことを特徴とするものである。
[Means for Solving the Problems] In order to solve the problems described in item 1, the present invention provides a plasma reactor for denitrifying and desulfurizing exhaust gas by electric discharge (in an exhaust gas treatment apparatus with 6ifs installed, between the electrodes of the plasma reactor It is characterized in that the applied plasma generation charging waveform is a high voltage pulse charging waveform or a triangular charging waveform instead of the conventional sinusoidal charging waveform.

[作用コ 正弦波荷電方式を適用する従来の排ガス処理装置では、
第2図(b)に示すように、荷電の立上り、立下り(斜
線部)で不必要なグロー放電を起こす無駄な消費電力か
加えられていたのに比べ、」1記した本発明の構成によ
れば、パルス荷電方式または三角荷電方式を適用してい
るためにN08N20.Soつの分解に寄与する瞬時高
電圧たけをガスに加えることか可能となり、同じ脱NO
x及び脱S08率(脱硝および脱硫効率)を達成するた
めの電力を、従来の1/3〜115に低減することか可
能となる。また従来のυIガス処理装置では、高周波荷
電にても分解率の向上が困難てあったN20を40%程
度まで分解することか可能となる。
[In the conventional exhaust gas treatment equipment that applies the action sine wave charging method,
As shown in FIG. 2(b), the configuration of the present invention described in 1. According to N08N20., because the pulse charging method or triangular charging method is applied. It becomes possible to apply an instantaneous high voltage to the gas that contributes to the decomposition of SO, and the same de-NO
It becomes possible to reduce the electric power required to achieve x and the removal S08 rate (denitrification and desulfurization efficiency) to 1/3 to 115 of that of the conventional method. Furthermore, in the conventional υI gas processing apparatus, it is now possible to decompose N20 to about 40%, which has been difficult to improve even with high-frequency charging.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は排ガス処理装置の構成を示すブロック図である
。なお、第5図と同一部分には同−初号を付し、[従来
の技術]の項で説明した部分については冗長さを避ける
ために説明を省略し、本発明に直接関係する部分を主体
に説明する。
FIG. 1 is a block diagram showing the configuration of an exhaust gas treatment device. Note that the same parts as in FIG. 5 are given the same initial number, the explanation of the parts explained in the [Prior Art] section is omitted to avoid redundancy, and the parts directly related to the present invention are omitted. Explain to the subject.

第1図に示すように、プラズマ反応器5の入口部には、
ザイクロンコレクタ3から排気管4を介してプラズマ反
応器5に導入されるJulガス中のNO,、N20.S
o、(各処理対象成分)の濃度を測定して、その各成分
についての濃度を示す濃度信号(入口濃度信号)を出力
する第1の計測器(No、、N、O,SO,it測器)
か設けられる。またプラズマ反応器5の出口部には、同
プラズマ反応器5から排ガス出口管7に排出される排ガ
ス中のNo、、N20.So、の濃度を測定して、その
各成分についての濃度を示す濃度需号(出口濃度信号)
を出力する第2の31測器(NO8,N、!O,S○8
51測器)8bか設けられる。
As shown in FIG. 1, at the entrance of the plasma reactor 5,
NO, N20, . S
o, a first measuring device (No, N, O, SO, IT measuring device) that measures the concentration of (each component to be processed) and outputs a concentration signal (inlet concentration signal) indicating the concentration of each component. vessel)
or may be provided. Further, at the outlet of the plasma reactor 5, No., N20. A concentration signal (outlet concentration signal) that measures the concentration of So and indicates the concentration of each component.
The second 31 instruments (NO8, N, !O, S○8
51 instrument) 8b is provided.

旧測器8a、8bの出力には演算器9か接続される。演
算器9は、計411器8a、8bから出力される濃度信
号、即ちプラズマ反応器5の人ロ部出ロ部における排カ
スの各成分(No、、N20So、)濃度を示す入口濃
度信号、出口濃度信号を人力して、各成分(No。、N
20.So、)の除去率を算出する。この演算器9の出
力信号(即ぢ、プラズマ反応器5におけるNOo。
A computing unit 9 is connected to the outputs of the old measuring instruments 8a and 8b. The calculator 9 receives concentration signals output from the total 411 units 8a and 8b, that is, an inlet concentration signal indicating the concentration of each component (No, N20So, By manually inputting the outlet concentration signal, each component (No., N
20. Calculate the removal rate of So,). The output signal of this calculator 9 (ie, NOo in the plasma reactor 5).

N20  So、の除去率を示す信号)rは、No、、
N20.So、の各成分の最適除去率を出力信号として
出力するプログラム発生器10に供給される。このプロ
グラム発生器]0には、燃焼装置1から出力され同燃焼
装置]の燃焼条件を示す信号、即ち空気流量、燃料流量
等を示す信号q、および設定器11の設定j直、具体的
には各成分(No、、N20,5oy)についての所用
除去率を示す信号pも供給される。
A signal indicating the removal rate of N20 So, r is No, .
N20. The program generator 10 outputs the optimum removal rate of each component of So as an output signal. This program generator]0 contains a signal q outputted from the combustion device 1 and indicating the combustion conditions of the combustion device, that is, a signal q indicating air flow rate, fuel flow rate, etc., and a signal q indicating the setting j of the setting device 11, specifically. is also supplied with a signal p indicating the desired removal rate for each component (No, , N20, 5oy).

しかしてプログラム発生器10は、設定器11からの各
成分についての所用除去率を示す信号p、燃焼装置1か
らの燃焼条件を示す信号q、および演算器9からの各成
分についての実際の除去率を示す信号rを受けて、その
信号p、q、rの組合わせに応して予め設定されている
各成分についての最適除去率を示す信号を出力する。こ
のプログラム発生器10の出力には、プラズマ反応器5
の電極間(第6図に示ず電極2]と電極22の間)1第
2図(a)に示すように三角荷電方式で電力を給電する
可変電源16か接続されている。この可変電源16は、
プログラム発生器10から与えられる各成分(No、、
N20  So、)についての最適除去率に相当する信
号に応し、最適な電流、電圧、荷電間隔、立上り時間、
最大電圧の角荷1−I波形をプラズマ反応器5の電極間
に印加する。即ち可変電源〕6は、第3図の荷電波形説
明図に示すように、R角荷電波形の荷電間隔t、立」ニ
リ時間τ、最大電圧V pを制御し、消費電力、脱No
、、N20.So、率との関係で最適な値を設定し、プ
ラズマ反応器5の電極間に印加する。
Thus, the program generator 10 receives a signal p indicating the required removal rate for each component from the setting device 11, a signal q indicating the combustion condition from the combustion device 1, and an actual removal rate for each component from the calculator 9. It receives a signal r indicating the rate and outputs a signal indicating the optimum removal rate for each component, which is preset according to the combination of the signals p, q, and r. The output of this program generator 10 includes a plasma reactor 5
As shown in FIG. 2(a), a variable power source 16 is connected between the electrodes (between electrode 2, not shown in FIG. 6) and electrode 22, which supplies power using a triangular charging method. This variable power supply 16 is
Each component (No, . . .
The optimum current, voltage, charge interval, rise time,
A square charge 1-I waveform of maximum voltage is applied between the electrodes of the plasma reactor 5. In other words, the variable power supply] 6 controls the charging interval t, the standing time τ, and the maximum voltage Vp of the R-angle charging waveform, as shown in the charging waveform explanatory diagram of FIG.
,,N20. An optimal value is set in relation to the So and rate, and applied between the electrodes of the plasma reactor 5.

上記した荷電制御(三角荷電制御)の結果を第4図に示
す。この第4図は、Vl)=15KV一定、t−50μ
5ec一定とし、τをパラメータとした場合の消費電力
に対する脱N20率の関係を示すもので、比較のために
、従来の高周波荷電方式を適用した場合の消費電力に対
する脱N20率の関係も示しである。図から明らかなよ
うに、従来の高周波荷電方式を適用した排ガス処理装置
では、高消費電力であっても十分な脱N20率か達成で
きないのに対し、三角荷電制御方式を適用する第1図の
排ガス処理装置では、低消費電力であっても十分な脱N
20率が得られていることがわかる。
The results of the above charge control (triangular charge control) are shown in FIG. In this Figure 4, Vl) = 15KV constant, t-50μ
This shows the relationship between the N20 removal rate and the power consumption when 5ec is constant and τ is used as a parameter.For comparison, the relationship between the N20 removal rate and the power consumption when the conventional high-frequency charging method is applied is also shown. be. As is clear from the figure, the exhaust gas treatment equipment that uses the conventional high-frequency charging method cannot achieve a sufficient N20 removal rate even with high power consumption, whereas the exhaust gas treatment equipment that uses the triangular charging control method in Figure 1 cannot achieve a sufficient deN20 rate. Exhaust gas treatment equipment provides sufficient nitrogen removal even with low power consumption.
It can be seen that a rate of 20 is obtained.

なお、第3図に示す特性は、プラズマ反応器5の人口N
20濃度か200 ppmの場合である。
Note that the characteristics shown in FIG. 3 are based on the population N of the plasma reactor 5.
20 concentration or 200 ppm.

以上はプラズマ反応器5の電極間に三角荷電波形を印加
するものとして説明したが、矩形荷電波形即ちパルス荷
電波形を印加するようにしても、同様の効果を得ること
か可能である。
Although the above description has been made on the assumption that a triangular charging waveform is applied between the electrodes of the plasma reactor 5, similar effects can be obtained by applying a rectangular charging waveform, that is, a pulse charging waveform.

また、前記実施例では、燃焼装置1より発生する排ガス
の処理に適用した場合について説明したが、本発明の排
カス処理装置は、一般の燃焼炉の排ガス処理たけてなく
、大容量の排ガス処理の装置としても適用可能であり、
この場合には大容量の01ガス処理の装置としても効率
よく働くので、産業上の利用価値か高い。
Further, in the above embodiment, a case was explained in which the exhaust gas treatment device of the present invention is applied to the treatment of exhaust gas generated from the combustion device 1, but the exhaust gas treatment device of the present invention is not capable of treating the exhaust gas of a general combustion furnace, and is suitable for large-capacity exhaust gas treatment. It can also be applied as a device for
In this case, it works efficiently as a large-capacity 01 gas processing device, so it has high industrial utility value.

U発明の効果] 以」二詳述したように本発明によれば、大気圧グロー放
電現象でV[ガスをプラズマ化するためのプラズマ反応
器の電極間に高電圧のパルス波形または三角波形で給電
する構成とすることにより、u+−ガス中の各成分(N
o、、N20.So、)の分解に寄与する瞬時高電圧た
けを印加することかでき、従来の高周波数正弦波による
給電方式(高周波荷電方式)に比へて排ガスの処理効率
を著しく向上することかできると共に、消費電力を減少
することかできる。
Effects of the Invention] As described in detail below, according to the present invention, the atmospheric pressure glow discharge phenomenon generates V [with a high voltage pulse waveform or triangular waveform between the electrodes of a plasma reactor for converting gas into plasma]. By adopting a configuration in which power is supplied, each component (N
o,,N20. It is possible to apply an instantaneous high voltage that contributes to the decomposition of So, ), and it is possible to significantly improve the processing efficiency of exhaust gas compared to the conventional power supply method using a high frequency sine wave (high frequency charging method). It is possible to reduce power consumption.

]0]0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る排ガス処理装置の構成
を示すブロック図、第2図は同実施例におけるプラズマ
発生荷電波形を従来荷電波形と比較して示す図、第3図
は同実施例におけるプラズマ発生荷電波形(三角荷電波
形)を説明するための図、第4図は同実施例で得られる
消費電力に対する脱N20率特性を従来装置における特
性と対比して示す図、第5図は従来のυ1ガス処理装置
の構成を示すブロック図、第6図は第5図に示すプラズ
マ反応器の内部構造を示す図である。 1・燃焼装置、2.4・排気管、3・サイクロンコレク
タ、5・・・プラズマ反応器、7・排ガス出口管、8a
、8b−計測器(NO,、N20;SOoま1測器)、
9・・演算器、]0・・プログラム発生器、]1・・設
定器、16・可変電源、2]22・・・電極。 出願人代理人 弁理士 鈴江武彦 収1回1 詠習己塀閤 (唯匪珂に1 (惣穣藩隙
FIG. 1 is a block diagram showing the configuration of an exhaust gas treatment device according to an embodiment of the present invention, FIG. 2 is a diagram showing a plasma generated charge waveform in the same embodiment compared with a conventional charge waveform, and FIG. 3 is the same. FIG. 4 is a diagram for explaining the plasma generated charge waveform (triangular charge waveform) in the example, FIG. The figure is a block diagram showing the configuration of a conventional υ1 gas processing apparatus, and FIG. 6 is a diagram showing the internal structure of the plasma reactor shown in FIG. 5. 1. Combustion device, 2.4. Exhaust pipe, 3. Cyclone collector, 5. Plasma reactor, 7. Exhaust gas outlet pipe, 8a
, 8b-Measuring instrument (NO,, N20; SOo ma1 measuring instrument),
9... Arithmetic unit, ] 0... Program generator, ] 1... Setting device, 16... Variable power supply, 2] 22... Electrode. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  排ガスを放電により脱硝脱硫するためのプラズマ反応
器を備えた排ガス処理装置において、上記プラズマ反応
器の電極間に印加するプラズマ発生荷電波形を高電圧の
パルス荷電波形または三角荷電波形としたことを特徴と
する排ガス処理装置。
An exhaust gas treatment device equipped with a plasma reactor for denitrifying and desulfurizing exhaust gas by electric discharge, characterized in that the plasma generation charge waveform applied between the electrodes of the plasma reactor is a high voltage pulse charge waveform or a triangular charge waveform. Exhaust gas treatment equipment.
JP2238897A 1990-09-11 1990-09-11 Exhaust gas treating device Pending JPH04122417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238897A JPH04122417A (en) 1990-09-11 1990-09-11 Exhaust gas treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238897A JPH04122417A (en) 1990-09-11 1990-09-11 Exhaust gas treating device

Publications (1)

Publication Number Publication Date
JPH04122417A true JPH04122417A (en) 1992-04-22

Family

ID=17036898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238897A Pending JPH04122417A (en) 1990-09-11 1990-09-11 Exhaust gas treating device

Country Status (1)

Country Link
JP (1) JPH04122417A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
CN1088390C (en) * 1997-03-08 2002-07-31 韩国重工业株式会社 Process for desulfurization and denitrification by use of low-temperature plasma reactor equipped with condenser
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088390C (en) * 1997-03-08 2002-07-31 韩国重工业株式会社 Process for desulfurization and denitrification by use of low-temperature plasma reactor equipped with condenser
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Similar Documents

Publication Publication Date Title
US5433832A (en) Exhaust treatment system and method
Mizuno et al. Reactive absorption of NOx using wet discharge plasma reactor
EP1425497A1 (en) Device and method for exhaust gas after-treatment
KR100239598B1 (en) Multi-stage gaseous pollutant destruction apparatus and method
WO1994006543A1 (en) Plasmachemical process for decomposing and/or destroying pollutants, in particular for cleaning exhaust fumes of internal combustion engines or other fossil fuel driven machines, and device therefor
JPH04122417A (en) Exhaust gas treating device
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
Hong et al. Interaction between NO and SO2 removal processes in a pulsed corona discharge plasma (PCDP) reactor and the mechanism
Bhattacharyya et al. Performance of helical and straight-wire corona electrodes for NOx abatement under AC/pulse energizations
JPH02211219A (en) Waste gas treatment apparatus
JPH05115746A (en) Exhaust gas treatment apparatus
Jani et al. Low-voltage operation of a plasma reactor for exhaust gas treatment by dielectric barrier discharge
Mohapatro et al. Studies on $\hbox {NO} _ {\rm X} $ Removal From Diesel Engine Exhaust Using Duct-Type DBD Reactor
JPH06178914A (en) Waste gas treatment device
JP3156185B2 (en) Exhaust gas treatment method and apparatus
Yoshioka et al. Design and testing of a prototype De-NOx system for 100 kVA diesel engine generator using a silent discharge reactor
JPH04363115A (en) Exhaust gas treating equipment
JPH1033937A (en) Multi-step type reaction apparatus for treating waste gas
JPH04338215A (en) Exhaust gas treating device
Chen et al. Application of PSO-BP neural network in NTP for diesel engine denitration experiment
JPH04247219A (en) Exhaust gas treating device
JPH05220340A (en) Waste gas treating device
JPH02258014A (en) Apparatus for treating flue gas
GB2287630A (en) Apparatus and method for treatment of gas by ionization
JPH05309231A (en) Device for treating exhaust gas