JPH02211219A - Waste gas treatment apparatus - Google Patents

Waste gas treatment apparatus

Info

Publication number
JPH02211219A
JPH02211219A JP1028784A JP2878489A JPH02211219A JP H02211219 A JPH02211219 A JP H02211219A JP 1028784 A JP1028784 A JP 1028784A JP 2878489 A JP2878489 A JP 2878489A JP H02211219 A JPH02211219 A JP H02211219A
Authority
JP
Japan
Prior art keywords
nox
plasma reactor
sox
efficiency
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028784A
Other languages
Japanese (ja)
Inventor
Satoshi Uchida
聡 内田
Tadashi Gengo
義 玄後
Masayoshi Murata
正義 村田
Nobuaki Murakami
信明 村上
Seiichi Nishida
西田 聖一
Toshihiro Yamakawa
山川 敏博
Takanobu Kondou
近藤 敬宣
Shozo Kaneko
祥三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1028784A priority Critical patent/JPH02211219A/en
Publication of JPH02211219A publication Critical patent/JPH02211219A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To enhance treatment efficiency by providing gas measuring devices to the inlet and outlet of a plasma reactor and mounting a processor which is inputted with the signals from the measuring devices to calculate an actual processing efficiency. CONSTITUTION:The first NOx/SOx measuring device 8a is provided to the inlet part of a plasma reactor 05 while the second NOx/SOx measuring device 8b is provided to the outlet part thereof. The outputs of the NOx/SOx measuring devices 8a, 8b are sent to an processor 9. A program generator 10 receives signals from the processor 9, a combustion apparatus 01 and a setting device 11 and the output thereof is sent to a variable frequency power supply 6. The output of the variable frequency power source 6 is sent to the plasma reactor 05. By this method, predetermined high treatment efficiency is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ、ディーゼルエンジン、ガスタ理装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to boilers, diesel engines, and gas turbine control equipment.

〔従来の技術〕[Conventional technology]

第6図及び第7図は従来より用いられているグロー放電
プラズマによる脱硝脱硫用の排ガス処理装置を示す構成
図である。この装置により、例えば燃焼装置の排ガス中
のNOxを処理する場合を例にとり説明する。
FIGS. 6 and 7 are configuration diagrams showing a conventionally used exhaust gas treatment apparatus for denitrification and desulfurization using glow discharge plasma. An example will be explained in which this device is used to treat NOx in exhaust gas from a combustion device.

第6図において燃焼装置o1より発生した排ガスを排気
管02を介して、サイクロンコレクタo3に通し、微粒
子を除去した後、サイクロンコレクタo3、排気管04
を経由してプラズマ反応器o5に導入する。
In FIG. 6, the exhaust gas generated from the combustion device o1 is passed through the exhaust pipe 02 to the cyclone collector o3 to remove particulates, and then passed through the cyclone collector o3 and the exhaust pipe 04.
and into the plasma reactor o5.

プラズマ反応器05は、第7図に詳細を示すように、反
応容器09の内側に誘電体2oに接して電極21を設け
る。さらに誘電体2oの間に電極22を設ける0両電極
21.22間は、電源o6がら変圧器23を経て給電さ
れる。
As shown in detail in FIG. 7, the plasma reactor 05 has an electrode 21 provided inside the reaction vessel 09 in contact with the dielectric 2o. Further, an electrode 22 is provided between the dielectric body 2o, and power is supplied between the two electrodes 21 and 22 via a transformer 23 from a power source o6.

以上の構成において、排ガスをプラズマ化することによ
り、排ガス中のNOxを下記の原理により除去する。す
なわち、電極21と電極22の間に、電源06を用いて
一定周波数の高電圧を印加し、グロー放電を発生させる
。大気圧グロー放電現象で排ガスはプラズマ化される。
In the above configuration, by converting the exhaust gas into plasma, NOx in the exhaust gas is removed according to the following principle. That is, a high voltage of a constant frequency is applied between the electrode 21 and the electrode 22 using the power source 06 to generate glow discharge. The exhaust gas is turned into plasma by the atmospheric pressure glow discharge phenomenon.

そして例えばNOtは次の(1)、 C2)式の化学反
応を起こす。
For example, NOt causes the following chemical reaction (1), C2).

2NO□→2NO+O,(1) 2NO+Off→Nx+2oz     (2)なおプ
ラズマは、電界によって加速された高エネルギー電子が
ガス分子と衝突し、励起分子、励起原子、遊離基、イオ
ン及び中性粒子などが混在した電離気体である。上記(
1)、 (2)式では数evないし数10evのエネル
ギーを得たNOxが化学的に活性な種となって、複雑な
反応を起こした結果として、N2及び0□になると考え
られる。
2NO□→2NO+O, (1) 2NO+Off→Nx+2oz (2) In plasma, high-energy electrons accelerated by an electric field collide with gas molecules, resulting in a mixture of excited molecules, atoms, free radicals, ions, and neutral particles. It is an ionized gas. the above(
In equations 1) and (2), it is thought that NOx, which has obtained an energy of several ev to several tens of ev, becomes a chemically active species and becomes N2 and 0□ as a result of a complex reaction.

さて上記のように、燃焼装置の排ガスを大気圧グロー放
電現象を利用して、プラズマ化すると、(NO+NOい
が50〜200pp鴎程度及び流l300ないし600
ffi/sin程度の範囲では、プラズマ発生電力すな
わち、電源06より供給される電力が数10Wないし数
100Wの範囲でNOx除去率が30ないし40%を達
成できる。
Now, as mentioned above, when the exhaust gas of a combustion device is turned into plasma using the atmospheric pressure glow discharge phenomenon, (NO
In a range of approximately ffi/sin, a NOx removal rate of 30 to 40% can be achieved when the plasma generation power, that is, the power supplied from the power source 06 is in the range of several tens of W to several hundreds of W.

したがって、ボイラー、ガスタービン及びディーゼルエ
ンジンなど各種燃焼を伴う装置の排気ガス公害対策用の
排ガス処理装置として活用されつつある。
Therefore, it is being used as an exhaust gas treatment device for exhaust gas pollution control of various combustion devices such as boilers, gas turbines, and diesel engines.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の装置では次のような問題点があった。 The conventional device described above has the following problems.

(1)  周波数が一定(50Hz or 60Hz)
であると排ガス処理効率(脱硝及び脱硫効率)が低い。
(1) Frequency is constant (50Hz or 60Hz)
If so, the exhaust gas treatment efficiency (denitrification and desulfurization efficiency) is low.

(2)また排ガス流量が低下したとき、不必要なグロー
を発生するので、排ガス処理に必要な電力が太くなる。
(2) Furthermore, when the exhaust gas flow rate decreases, unnecessary glow is generated, which increases the electric power required for exhaust gas treatment.

(3)上記(1)、 (2)の理由により負荷変動の大
きい燃焼ガスの処理装置として利用できない。
(3) Due to the reasons (1) and (2) above, it cannot be used as a treatment device for combustion gas with large load fluctuations.

C課題を解決するための手段】 本発明は上記課題を解決するため次の手段を講する。Measures to solve problem C】 The present invention takes the following measures to solve the above problems.

すなわち、排ガス処理装置として、処理対象の燃焼装置
より発生する排ガスをグロー放電により脱硝脱硫するプ
ラズマ反応器を備える装置において、上記プラズマ反応
器の入口に設けられる第1のNOx、SOx計測器と、
同プラズマ反応器の出口に設けられる第2のNOx、S
Ox計測器と、同第1および第2のNOx、 SOx計
測器より信号を入力し実効率信号を算出する演算器と、
目標効率を設定する設定器と、上記演算器および設定器
の信号ならびに上記燃焼装置から実負荷信号を入力し、
実効率が設定効率になるような周波数の制御信号を演算
出力するプログラム発生器と、同プログラム発生器の制
御信号を人力し上記プラズマ反応器へ同制御信号に応じ
た周波数の電力を供給する可変周波電源とを設ける。
That is, in an apparatus including a plasma reactor that denitrates and desulfurizes exhaust gas generated from a combustion device to be treated by glow discharge as an exhaust gas treatment apparatus, a first NOx, SOx measuring device provided at the inlet of the plasma reactor;
A second NOx, S provided at the outlet of the plasma reactor
An arithmetic unit that inputs signals from the Ox measuring device and the first and second NOx and SOx measuring devices and calculates an effective efficiency signal;
Inputting a setting device for setting the target efficiency, signals from the arithmetic unit and setting device, and an actual load signal from the combustion device,
A program generator that calculates and outputs a control signal with a frequency that makes the actual efficiency equal to the set efficiency, and a variable generator that manually inputs the control signal of the program generator and supplies power to the plasma reactor with a frequency according to the control signal. A frequency power source is provided.

なお、電源の周波が増加すれば、プラズマ反応器の処理
効率がある程度までは増加することにもとずいて、上記
手段を設けた。
The above means was provided based on the fact that as the frequency of the power source increases, the processing efficiency of the plasma reactor increases to a certain extent.

〔作用〕[Effect]

上記手段により、第1および第2のNOx、SOx計測
器から排ガス処理の前と後のNOx、 SOx濃度が演
算器へ送られる。演算器はNOx+SOxOx上り実効
率信号を算出する。プログラム発生器は設定器からの目
標効率信号、燃焼装置からの実負荷信号、および演算器
からの実効率信号を受けて、実効率が目標効率になるよ
うな周波数の制御信号を演算出力して、可変周波電源へ
入力する。可変周波電源は入力の制御信号に従って、周
波数を変えてプラズマ反応器へ給電する。
By the above means, the NOx and SOx concentrations before and after exhaust gas treatment are sent from the first and second NOx and SOx measuring instruments to the computing unit. The arithmetic unit calculates the NOx+SOxOx upstream effective efficiency signal. The program generator receives the target efficiency signal from the setting device, the actual load signal from the combustion device, and the actual efficiency signal from the computing unit, and calculates and outputs a control signal with a frequency that makes the actual efficiency equal to the target efficiency. , input to variable frequency power supply. The variable frequency power source changes the frequency and supplies power to the plasma reactor according to the input control signal.

このようにして、実負荷が変動しても常にNOx。In this way, NOx is always maintained even if the actual load fluctuates.

SOx処理の実効率が目標効率に維持されるようになる
The effective efficiency of SOx processing is maintained at the target efficiency.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第5図により説明する
。第1図は構成ブロック図、第2図はプログラム発生器
部のブロック図、第3図ないし第5図は作用説明図であ
る。
An embodiment of the present invention will be explained with reference to FIGS. 1 to 5. FIG. 1 is a block diagram of the configuration, FIG. 2 is a block diagram of the program generator section, and FIGS. 3 to 5 are diagrams for explaining the operation.

なお、従来例で説明した部分は、冗長さをさせるため説
明を省略し、この発明に関する部分を主体に説明する。
Note that the description of the parts explained in the conventional example will be omitted for the sake of redundancy, and the parts related to the present invention will be mainly explained.

第1図において、プラズマ反応器o5の入口部に第1の
NOx、SOx計測器8aが設けられる。また出口部に
第2のNOx、 SOx計測器8bが設けられる。NO
X。
In FIG. 1, a first NOx and SOx measuring device 8a is provided at the inlet of the plasma reactor o5. A second NOx and SOx measuring device 8b is also provided at the outlet. NO
X.

SOx計測器8a、8bの出力は演算器9へ送られる。The outputs of the SOx measuring devices 8a and 8b are sent to a computing unit 9.

プログラム発生器10は演算器9、燃焼装置Of、およ
び設定器11から信号を受け、出力を可変周波数電源6
へ送る。また可変周波数電源6の出力はプラズマ反応器
05へ送られる。
The program generator 10 receives signals from the computing unit 9, the combustion device Of, and the setting device 11, and outputs the output from the variable frequency power supply 6.
send to Further, the output of the variable frequency power supply 6 is sent to the plasma reactor 05.

以上の構成において、以下作用を説明する。In the above configuration, the operation will be explained below.

プラズマ反応器05の排ガス処理効率は、排ガスの流速
と、電源の周波数により第3図に示すようにある周波数
までは周波数が高まれば、処理効率も増加することがわ
かった。また消費電力は第4図に示すように周波数にほ
ぼ比例することがわかった。本実施例は以上の結果にも
とすくものである。
It has been found that the exhaust gas treatment efficiency of the plasma reactor 05 increases as the frequency increases up to a certain frequency, as shown in FIG. 3, depending on the flow rate of the exhaust gas and the frequency of the power source. It was also found that the power consumption is almost proportional to the frequency as shown in FIG. The present example is also notable for the above results.

演算器9は第1および第2のNOx、 SOx計測器8
a+8bから信号を受けて次の(1)、 (2)式の演
算により実効率信号tを出力する。
The computing unit 9 includes first and second NOx and SOx measuring instruments 8
It receives a signal from a+8b and outputs an effective efficiency signal t by calculating the following equations (1) and (2).

(入口NOx−出口N0x) /入口NOx  −−−
(1)(入口5Ox−出口5OX) /入口SOx  
−−−(2)設定器11は予め設定された目標効率信号
rを出力する。プログラム発生器10は第2図に示すよ
うに目標効率信号rと、実効率信号もおよび燃焼装置0
1から実効率信号Sを受けて実効率が目標効率になるよ
う周波数の制御信号を発生し、可変周波数電源6の周波
数と出力を制御する。第5図に本実施例の消費電力の゛
曲&’ilaと従来例の曲線すとを示す。
(Inlet NOx - Outlet NOx) /Inlet NOx ---
(1) (Inlet 5Ox - Outlet 5OX) /Inlet SOx
---(2) The setting device 11 outputs a preset target efficiency signal r. As shown in FIG. 2, the program generator 10 also generates a target efficiency signal r, an actual efficiency signal, and a combustion device
1 receives the effective efficiency signal S, generates a frequency control signal so that the effective efficiency becomes the target efficiency, and controls the frequency and output of the variable frequency power supply 6. FIG. 5 shows the power consumption curve &'ila of this embodiment and the curve of the conventional example.

以上のようにして、燃焼装置01の負荷が変動しても所
定の高い設定効率で、効率よ< NOx、SOxが自動
的に除去されるようになる。
As described above, even if the load on the combustion device 01 fluctuates, NOx and SOx are automatically removed at a predetermined high set efficiency.

なおプラズマ反応器05の前に反応用のアンモニアの注
入装置を設けた場合も同様に効率よく運転される。
Note that even if an ammonia injection device for reaction is provided in front of the plasma reactor 05, the system can be operated efficiently as well.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明は次の効果を奏する。 As explained above, the present invention has the following effects.

(1)  従来の一定周波数の給電方法では排ガスの処
理効率が低くかったが、本発明では非常に高い処理効率
かえられる。
(1) The conventional constant frequency power supply method had low exhaust gas processing efficiency, but the present invention can achieve extremely high processing efficiency.

(2)排ガスが変動しても所定の高い処理効率が常にえ
られる。
(2) A predetermined high treatment efficiency can always be obtained even if the exhaust gas fluctuates.

(3)消費電力が従来の装置に比べ減少する。(3) Power consumption is reduced compared to conventional devices.

(4)  一般の燃焼炉の排ガス処理だけでなく大容量
の排ガス処理の装置として効率よく働くので、産業上の
利用価値が高い。
(4) Since it works efficiently not only for exhaust gas treatment of general combustion furnaces but also as a large-capacity exhaust gas treatment device, it has high industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例に係る排ガス処理装置の構成
ブロック図、第2図は同実施例のプログラム発生器部の
ブロック図、第3図、第4図、第5図は同実施例の作用
説明図、第6図は従来例の構成ブロック図、第7図は同
従来例のプラズマ反応器部の構成図である。 Ol・・・燃焼装置、     02−・−排気管、0
3・・−サイクロンコレクタ、O4−排気管、05・・
−プラズマ反応器、  06−電源、07・・−排ガス
出口管、   6−・可変周波数電源、3a、8b−4
0x、SOx計測器、9−・演算器、lO−プログラム
発生器。 第2図 第5図 負 荷 (%)
Fig. 1 is a block diagram of the configuration of an exhaust gas treatment device according to an embodiment of the present invention, Fig. 2 is a block diagram of a program generator section of the same embodiment, and Figs. 3, 4, and 5 are the same implementation. FIG. 6 is a block diagram of the configuration of the conventional example, and FIG. 7 is a configuration diagram of the plasma reactor section of the conventional example. Ol... Combustion device, 02--Exhaust pipe, 0
3...-cyclone collector, O4-exhaust pipe, 05...
- Plasma reactor, 06- Power source, 07...- Exhaust gas outlet pipe, 6-- Variable frequency power source, 3a, 8b-4
0x, SOx measuring instrument, 9--operating unit, lO- program generator. Figure 2 Figure 5 Load (%)

Claims (1)

【特許請求の範囲】[Claims] 処理対象の燃焼装置より発生する排ガスをグロー放電に
より脱硝脱硫するプラズマ反応器を備える装置において
、上記プラズマ反応器の入口に設けられる第1のNOx
、SOx計測器と、同プラズマ反応器の出口に設けられ
る第2のNOx、SOx計測器と、同第1および第2の
NOx、SOx計測器より信号を入力し実効率信号を算
出する演算器と、目標効率を設定する設定器と、上記演
算器および設定器の信号ならびに上記燃焼装置から実負
荷信号を入力し、実効率が設定効率になるような周波数
の制御信号を演算出力するプログラム発生器と、同プロ
グラム発生器の制御信号を入力し上記プラズマ反応器へ
同制御信号に応じた周波数の電力を供給する可変周波電
源とを備えてなることを特徴とする排ガス処理装置。
In an apparatus including a plasma reactor for denitrifying and desulfurizing exhaust gas generated from a combustion device to be treated by glow discharge, a first NOx provided at an inlet of the plasma reactor;
, an SOx measuring device, a second NOx, SOx measuring device provided at the outlet of the plasma reactor, and an arithmetic unit that inputs signals from the first and second NOx, SOx measuring devices and calculates an effective efficiency signal. and a setting device for setting the target efficiency, and a program generation that inputs the signals of the arithmetic unit and the setting device, and the actual load signal from the combustion device, and calculates and outputs a control signal with a frequency that makes the actual efficiency equal to the set efficiency. and a variable frequency power source that inputs a control signal of the program generator and supplies power at a frequency according to the control signal to the plasma reactor.
JP1028784A 1989-02-09 1989-02-09 Waste gas treatment apparatus Pending JPH02211219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028784A JPH02211219A (en) 1989-02-09 1989-02-09 Waste gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028784A JPH02211219A (en) 1989-02-09 1989-02-09 Waste gas treatment apparatus

Publications (1)

Publication Number Publication Date
JPH02211219A true JPH02211219A (en) 1990-08-22

Family

ID=12258047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028784A Pending JPH02211219A (en) 1989-02-09 1989-02-09 Waste gas treatment apparatus

Country Status (1)

Country Link
JP (1) JPH02211219A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7291935B2 (en) * 2005-06-02 2007-11-06 Denso Corporation Vehicle generator control device
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146599A (en) * 1999-02-24 2000-11-14 Seagate Technology Llc Dielectric barrier discharge system and method for decomposing hazardous compounds in fluids
US6451252B1 (en) 2000-01-20 2002-09-17 Regents Of The University Of Minnesota Odor removal system and method having ozone and non-thermal plasma treatment
US6562386B2 (en) 2001-05-07 2003-05-13 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization
US6911225B2 (en) 2001-05-07 2005-06-28 Regents Of The University Of Minnesota Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
US7011790B2 (en) 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US7291935B2 (en) * 2005-06-02 2007-11-06 Denso Corporation Vehicle generator control device
US7931811B2 (en) 2006-10-27 2011-04-26 Regents Of The University Of Minnesota Dielectric barrier reactor having concentrated electric field

Similar Documents

Publication Publication Date Title
Gentile et al. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams
Mukkavilli et al. Modeling of the electrostatic corona discharge reactor
Mok et al. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide
SE9904295L (en) Device for Hybrid Plasma Processing
DE69523488D1 (en) Method and device for igniting plasmas in a process module
EP0825694A2 (en) Fuel injection system and method for treatment of no x in a corona discharge pollutant destruction apparatus
JPH02211219A (en) Waste gas treatment apparatus
KR102522762B1 (en) Plasma scrubber supplying reaction water to the reaction chamber and method for treating waste gas using the same
JPH04122417A (en) Exhaust gas treating device
Amirov et al. Removal of NOx and SO2 from air excited by streamer corona: experimental results and modeling
JP2007029862A (en) Activated gas forming method, forming apparatus, and exhaust gas treatment system
JPH05115746A (en) Exhaust gas treatment apparatus
JPH1033937A (en) Multi-step type reaction apparatus for treating waste gas
Bai et al. Flue gas desulfurization by dielectric barrier discharge
JP4690597B2 (en) Combustion type abatement system
JPH06178914A (en) Waste gas treatment device
JPH11300159A (en) Dioxins treating device
JP2554161B2 (en) Exhaust gas treatment device
JPH07116460A (en) Apparatus for treating exhaust gas
JPH047019A (en) Exhaust gas treating device
JPH04100516A (en) Method and apparatus for treating exhaust gas
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
JPH05309231A (en) Device for treating exhaust gas
JPH04247219A (en) Exhaust gas treating device
JPH0611073Y2 (en) Denitration / desulfurization equipment