JPH05220340A - Waste gas treating device - Google Patents

Waste gas treating device

Info

Publication number
JPH05220340A
JPH05220340A JP4025604A JP2560492A JPH05220340A JP H05220340 A JPH05220340 A JP H05220340A JP 4025604 A JP4025604 A JP 4025604A JP 2560492 A JP2560492 A JP 2560492A JP H05220340 A JPH05220340 A JP H05220340A
Authority
JP
Japan
Prior art keywords
gas
pulse
nox
voltage pulse
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4025604A
Other languages
Japanese (ja)
Inventor
Takashi Sakukawa
貴志 佐久川
Yasuo Kataoka
康夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4025604A priority Critical patent/JPH05220340A/en
Publication of JPH05220340A publication Critical patent/JPH05220340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain a compact and safe waste gas treating device excellent in denitrating capacity by introducing a waste gas into a plasma generation vessel, impressing a monopulse electric field on an electrode from a high-voltage pulse power source against a gas current to generate non-equilibrium plasma having a high electron temp. in the passage and further controlling the pulse repetition frequency. CONSTITUTION:An inlet pipe 2 and an outlet pipe 3 are connected to a treating vessel 1, discharge electrodes 4a and 4b are oppositely provided in the vessel, and a high-voltage pulse power source 5 contg. a trigger pulse controller 6 as the control part is connected to the discharge electrode 4. A flowmeter 7 is provided on the gas inlet side and a gas sensor 8 on the gas outlet side, and the signals are inputted to the controller 6. Gaseous NOx are introduced into the vessel 1, a monopulse high electric field is impressed to generate non- equilibrium plasma having a high electron temp. in the passage, and NOx are ionized, dissociated and removed. The high-voltage pulse string is controlled by the controller 6 to control the pulse repetition frequency proportional to the treating flow rate or NOx concn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可変繰返し周波数の短パ
ルスグロー放電を利用して、内燃機関や焼却炉等の排煙
中の窒素酸化物(NOx)を除去する排気ガス処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment device for removing nitrogen oxides (NOx) in flue gas of an internal combustion engine, an incinerator, etc. by utilizing a short pulse glow discharge with a variable repetition frequency.

【0002】[0002]

【従来の技術】ディーゼルエンジン,ガスエンジン及び
ガスタービンエンジン等の内燃機関においては燃焼によ
りNOxが発生する。このNOx低減対策としては大き
く分けると、燃料転換,燃焼改善及び排気ガス脱硝があ
る。このうち燃料転換及び燃焼改善ではNOxの低減効
果に限界があり(20%〜50%)、大気汚染防止法等
の規制強化に対応しにくい。
2. Description of the Related Art NOx is generated by combustion in an internal combustion engine such as a diesel engine, a gas engine and a gas turbine engine. The NOx reduction measures are roughly classified into fuel conversion, combustion improvement, and exhaust gas denitration. Of these, there is a limit to the NOx reduction effect in fuel conversion and combustion improvement (20% to 50%), and it is difficult to comply with stricter regulations such as the Air Pollution Control Law.

【0003】前記排気ガス脱硝技術としては乾式法と湿
式法があり、現在良く使用されているのは湿式法の選択
接触還元法(以下アンモニア脱硝法と称す)である。ア
ンモニア脱硝法は排気ガス中にアンモニアを注入して下
流に設置された脱硝触媒に接触させ、次に示す還元反応
によりNOxを無害な窒素と水に分解するものである。
触媒としてはV25−WO3−TiO3系が主流である。
As the exhaust gas denitration technology, there are a dry method and a wet method, and the selective catalytic reduction method of the wet method (hereinafter referred to as ammonia denitration method) is often used at present. The ammonia denitration method is a method in which ammonia is injected into the exhaust gas and brought into contact with a denitration catalyst installed downstream, and NOx is decomposed into harmless nitrogen and water by the following reduction reaction.
As the catalyst, V 2 O 5 —WO 3 —TiO 3 system is the mainstream.

【0004】4NO+4NH3+O2→4N2+6H2O NO+NO2+2NH3→2N2+3H2O アンモニア脱硝法は還元剤として有害で危険なアンモニ
アを使用し、その他炭化水素、一酸化炭素を使用してい
る。またこの反応に使用する触媒としては、Ptなど貴
金属系やAl23,TiO2などに担持させた各種金属
酸化物などがあげられ、また常にアンモニアが消費さ
れ、さらにアンモニアガスによる還元触媒性能の劣化で
高価な触媒の交換等が必要となる。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O The ammonia denitration method uses harmful and dangerous ammonia as a reducing agent, and other hydrocarbons and carbon monoxide. There is. Examples of catalysts used in this reaction include precious metal-based metals such as Pt and various metal oxides supported on Al 2 O 3 , TiO 2 and the like. Also, ammonia is constantly consumed, and the reduction catalyst performance by ammonia gas is further improved. Deterioration of the catalyst necessitates replacement of an expensive catalyst.

【0005】また乾式法としては放電プラズマを利用し
た排気ガス処理装置がある。
Further, as a dry method, there is an exhaust gas treatment device using discharge plasma.

【0006】[0006]

【発明が解決しようとする課題】上述したアンモニア脱
硝法では次に示す問題点がある。
The above-mentioned ammonia denitration method has the following problems.

【0007】(1)NOxを分解するために有害で危険
なアンモニアガスを使用しなくてはならない。
(1) Hazardous and dangerous ammonia gas must be used to decompose NOx.

【0008】(2)アンモニアガスによる還元触媒性能
が劣化するため高価な触媒の交換等を必要としてその操
作が面倒である。
(2) Since the reduction catalyst performance due to ammonia gas deteriorates, it is necessary to replace an expensive catalyst and the operation is troublesome.

【0009】(3)従来の還元法の使用温度の範囲は3
20〜450℃と制限される。即ち高温では触媒性分の
焼結が進行し、結晶の相転移により触媒性能が劣化し、
320℃以下ではアンモニアガスと水分がSOxを含む
排気ガスと反応して酸性硫安などを生じ脱硝性能の低下
を生じる。
(3) The operating temperature range of the conventional reduction method is 3
It is limited to 20 to 450 ° C. That is, at high temperatures, sintering of the catalytic component progresses, the catalytic performance deteriorates due to the phase transition of the crystal,
At 320 ° C. or lower, ammonia gas and water react with exhaust gas containing SOx to generate acidic ammonium sulfate and the like, and denitration performance is deteriorated.

【0010】(4)脱硝率に合わせてNOx量にほぼ等
しいアンモニアガスを排気ガス中へ注入するため、アン
モニアガスボンベ、触媒等が大型となり装置全体の小型
化が困難である。
(4) Since ammonia gas, which is approximately equal to the NOx amount, is injected into the exhaust gas in accordance with the denitration rate, the ammonia gas cylinder, the catalyst, etc. are large and it is difficult to downsize the entire apparatus.

【0011】また、乾式法である放電プラズマを利用し
た排気ガス処理装置では、プラズマ領域を大きくするこ
とが困難であり、したがって大流量処理には不向きであ
るとともに、排気ガスの流れの変動に対して放電状態
(コロナやグロー放電)を維持することが難しく、かつ
流量や濃度に対してプラズマを制御するのが難しいの
で、脱硝能力の向上が図れなかった。
Further, in the exhaust gas treatment apparatus using discharge plasma which is a dry method, it is difficult to enlarge the plasma region, and therefore, it is not suitable for large flow rate treatment, and the fluctuation of the exhaust gas flow is prevented. Therefore, it was difficult to maintain the discharge state (corona or glow discharge) and it was difficult to control the plasma with respect to the flow rate and the concentration, so that the denitration capacity could not be improved.

【0012】本発明は、上述の問題点に鑑み、可変繰返
し周波数の短パルスグロー放電を利用することにより、
脱硝率の向上を図ることを目的とする。
In view of the above problems, the present invention uses a short pulse glow discharge with a variable repetition frequency to
The purpose is to improve the denitration rate.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、排気ガスが内部を流通する処理容器と、
前記排気ガスの流通路にそれぞれ配設された流量計およ
びガスセンサと、前記処理容器内に取付けられる少なく
とも一対のプラズマ発生用電極とこの一対のプラズマ発
生用電極に高電圧パルスを印加する高電圧パルス電源
と、前記流量計の検出信号又はガスセンサの検出信号に
応じて前記高電圧パルス電源のパルス出力周波数を制御
するパルス制御部によって排気ガス処理装置を構成す
る。
In order to achieve the above object, the present invention provides a processing container in which exhaust gas circulates,
A flow meter and a gas sensor respectively disposed in the exhaust gas flow passage, at least a pair of plasma generating electrodes mounted in the processing container, and a high voltage pulse for applying a high voltage pulse to the pair of plasma generating electrodes. An exhaust gas treatment device is configured by a power supply and a pulse control unit that controls the pulse output frequency of the high-voltage pulse power supply according to the detection signal of the flow meter or the detection signal of the gas sensor.

【0014】[0014]

【作用】排気ガスをプラズマ発生容器に導き、ガス流に
対して高圧パルス電源から電極に短パルス電界を印加
し、流路中に電子温度の高い非平衡プラズマを発生さ
せ、これにより排気ガスを電離もしくは解離してNOx
を除去する。パルス繰返し周波数は処理流量もしくはN
Ox濃度値に応じて制御する。
[Function] The exhaust gas is guided to the plasma generation container, and a short pulse electric field is applied to the electrode from the high-voltage pulse power supply to generate a non-equilibrium plasma having a high electron temperature in the flow path, thereby generating the exhaust gas. NOx after ionization or dissociation
To remove. The pulse repetition frequency is the processing flow rate or N
Control is performed according to the Ox concentration value.

【0015】[0015]

【実施例】以下に本発明の実施例を図1〜図5を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0016】図1および図2は本発明の実施例による排
気ガス処理装置を示すもので、同図において1は処理容
器であり、この処理容器1には排気ガスを導入するため
の導入管2と処理後のガスを導出する導出管3が連結さ
れている。処理容器1の内部には放電電極4aと4bが
対設されている。5は高電圧パルス電源であって、パル
ス制御部であるトリガパルスコントローラ6を内蔵して
おり、放電電極4aと4bに接続されている。7はガス
流入側に設けられた流量計であって流量検出信号を電気
信号に変換し、この電気信号をパルス電源5のトリガパ
ルスコントローラ6に導く。また、8はガス流出側に設
けたガスセンサであって検出信号を電気信号に変換し、
トリガパルスコントローラ6に導く。
1 and 2 show an exhaust gas treatment apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a treatment container, and an introduction pipe 2 for introducing exhaust gas into the treatment container 1. And a lead-out pipe 3 for leading out the treated gas. Discharge electrodes 4a and 4b are provided inside the processing container 1 so as to face each other. A high voltage pulse power source 5 has a built-in trigger pulse controller 6 which is a pulse control unit, and is connected to the discharge electrodes 4a and 4b. Reference numeral 7 denotes a flow meter provided on the gas inflow side, which converts the flow rate detection signal into an electric signal and guides this electric signal to the trigger pulse controller 6 of the pulse power source 5. Further, 8 is a gas sensor provided on the gas outflow side, which converts a detection signal into an electric signal,
It leads to the trigger pulse controller 6.

【0017】図1と図2に示す排気ガス処理装置におい
て、NOxガスを処理容器1に導き、ガス流に対して上
下もしくは両側に短パルス(200ns以下)高電界を
印加し、流路中に電子温度の高い非平衡プラズマを生成
し、これによりNOxを電離もしくは解離して除去す
る。高電圧パルス列はトリガパルスコントローラ6で処
理流量に比例したパルス繰返し周波数を制御する。
In the exhaust gas treatment apparatus shown in FIGS. 1 and 2, NOx gas is introduced into the treatment container 1 and a short pulse (200 ns or less) high electric field is applied to the upper and lower sides or both sides of the gas flow, and the NOx gas is introduced into the passage. A non-equilibrium plasma having a high electron temperature is generated, whereby NOx is ionized or dissociated and removed. With the high voltage pulse train, the trigger pulse controller 6 controls the pulse repetition frequency proportional to the processing flow rate.

【0018】放電電極4a,4bの形状は、ガスの流れ
方向に沿った細長い配置とし、電極間において電界歪の
小さいものが望ましく、例えばチャン型,ロゴスキー
型、または平行平板型などである。また、パルス電源か
らのパルスの立上りは急峻(100ns以下)であるも
のとする。繰返し周波数の制御は、流量計7の読みを電
気信号に変換して行うか、ガスセンサ8でNOx濃度の
値を電気信号に変換しその値に比例させた周波数とす
る。
The discharge electrodes 4a, 4b are preferably arranged in a slender shape along the gas flow direction and have a small electric field strain between the electrodes. For example, a Chang type, a Rogowski type, or a parallel plate type is used. The rising edge of the pulse from the pulse power supply is assumed to be steep (100 ns or less). The control of the repetition frequency is performed by converting the reading of the flow meter 7 into an electric signal or by converting the value of the NOx concentration into an electric signal by the gas sensor 8 and making the frequency proportional to the value.

【0019】すなわち、図3の処理システムに示すよう
に、NOxガスが処理容器1に導かれ、パルスプラズマ
によって処理された後に処理容器1から導出される。N
Oxガスの流入に際して、流量計7によって流量値が検
出される。この検出値は電気信号に変換された後にトリ
ガパルスコントローラ6に入力される。また、処理容器
1から導出される処理ガス中のNOx濃度の値はセンサ
8によって検出され、この検出信号はトリガパルスコン
トローラ6に入力される。
That is, as shown in the treatment system of FIG. 3, the NOx gas is introduced into the treatment container 1, treated by pulse plasma, and then discharged from the treatment container 1. N
When the Ox gas flows in, the flow rate value is detected by the flow meter 7. This detected value is input to the trigger pulse controller 6 after being converted into an electric signal. Further, the value of the NOx concentration in the processing gas derived from the processing container 1 is detected by the sensor 8, and this detection signal is input to the trigger pulse controller 6.

【0020】トリガパルスコントローラ6は、流量計7
の検出信号に応じて高電圧パルス電源5に制御信号を供
給し、流量に比例した周波数のパルス出力を発生させる
とともに、ガスセンサ8のNOx濃度に応じた周波数の
パルス出力を発生させる。ここで、パルスの繰返し周波
数は流量に比例して変化するもので、周波数は50Hz
程度から上限は高ければ高いほど良い。また、パルス発
生用のパルス電源やトリガパルスコントローラのスイッ
チング素子は、放電制御スイッチまたは電界効果型トラ
ンジスタ等が良いが、高速スイッチングができるもので
あればその他のものでもよい。
The trigger pulse controller 6 is a flow meter 7
A control signal is supplied to the high-voltage pulse power supply 5 in accordance with the detection signal of 1 to generate a pulse output having a frequency proportional to the flow rate and a pulse output having a frequency corresponding to the NOx concentration of the gas sensor 8. Here, the pulse repetition frequency changes in proportion to the flow rate, and the frequency is 50 Hz.
The higher the upper limit from the degree, the better. Further, the pulse power source for pulse generation or the switching element of the trigger pulse controller is preferably a discharge control switch, a field effect transistor, or the like, but any other element capable of high-speed switching may be used.

【0021】図1〜図3に示す実施例によれば、次のよ
うな効果が得られる。
According to the embodiment shown in FIGS. 1 to 3, the following effects can be obtained.

【0022】(1)急峻な立上りの短パルス高電圧を印
加することで電極間電圧が高い状態でグロー放電プラズ
マが生成でき、アーク放電よりもプラズマ領域が広くで
きる。
(1) By applying a short pulse high voltage having a sharp rising edge, glow discharge plasma can be generated in a state where the voltage between electrodes is high, and the plasma region can be made wider than arc discharge.

【0023】(2)急峻な立上り(100ns以下)の
グロー放電により電子温度の高いプラズマが生成でき、
処理効率が向上する。
(2) A plasma having a high electron temperature can be generated by glow discharge having a steep rise (100 ns or less),
The processing efficiency is improved.

【0024】(3)パルスの繰返し周波数を処理流量に
対して変化させることでプラズマ処理容器を変更するこ
となく少流量から大流量の処理まで行える。
(3) By changing the pulse repetition frequency with respect to the processing flow rate, it is possible to perform processing from a small flow rate to a large flow rate without changing the plasma processing container.

【0025】(4)さらに排気ガスのNOx濃度に応じ
て周波数を制御することで処理エネルギー効率が向上す
る。
(4) Further, the processing energy efficiency is improved by controlling the frequency according to the NOx concentration of the exhaust gas.

【0026】図4および図5は本発明の他の実施例によ
る排気ガス処理装置を示すもので、図1〜図3のものと
同一又は相当部分には同一符号が付されている。
FIGS. 4 and 5 show an exhaust gas treatment apparatus according to another embodiment of the present invention, in which the same or corresponding parts as those in FIGS. 1 to 3 are designated by the same reference numerals.

【0027】本実施例においては、流量計7とガスセン
サ8の双方を処理容器1のガス導入側に設けたものであ
る。すなわち、導入管2に流量計7とガスセンサ8が設
けられており、これらの流量計7の検出信号とガスセン
サ8の検出信号はトリガパルスコントローラ6に入力さ
れる。
In this embodiment, both the flow meter 7 and the gas sensor 8 are provided on the gas introduction side of the processing container 1. That is, the flowmeter 7 and the gas sensor 8 are provided in the introduction pipe 2, and the detection signals of the flowmeter 7 and the gas sensor 8 are input to the trigger pulse controller 6.

【0028】図5の処理システムに示すように、流量計
7による導入ガスの流量値検出信号とガスセンサ8によ
る導入ガスのNOx濃度値検出信号がトリガパルスコン
トローラ6に入力される。トリガパルスコントローラ6
は、これらの検出信号のいずれか一方又は双方を基に高
電圧パルス電源5を制御し、放電電極4aと4b間に発
生するパルスプラズマの周波数を制御するもので、前述
の実施例のものと同様な作用,効果が得られる。
As shown in the processing system of FIG. 5, the flow rate detection signal of the introduced gas by the flow meter 7 and the NOx concentration value detection signal of the introduced gas by the gas sensor 8 are input to the trigger pulse controller 6. Trigger pulse controller 6
Is for controlling the high-voltage pulse power supply 5 based on one or both of these detection signals to control the frequency of the pulse plasma generated between the discharge electrodes 4a and 4b. Similar actions and effects can be obtained.

【0029】[0029]

【発明の効果】本発明は、以上の如くであって、排気ガ
スをプラズマ発生容器に導き、ガス流に対して高圧パル
ス電源から電極に短パルス電界を印加し、流路中に電子
温度の高い非平衡プラズマを発生させるとともに、パル
ス繰返し周波数は処理流量もしくはNOx濃度値に応じ
て制御するものであるから、装置全体が小形にして安全
性に優れ、かつ脱硝能力に優れた排気ガス処理装置を得
ることができる。
The present invention is as described above, in which the exhaust gas is guided to the plasma generating container, a short pulse electric field is applied to the electrode from the high voltage pulse power source with respect to the gas flow, and an electron temperature of An exhaust gas treatment system that generates a high non-equilibrium plasma and controls the pulse repetition frequency according to the treatment flow rate or the NOx concentration value. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による排気ガス処理装置の構成
図。
FIG. 1 is a configuration diagram of an exhaust gas treatment device according to an embodiment of the present invention.

【図2】図1の装置のA−A線断面図。FIG. 2 is a sectional view taken along line AA of the apparatus of FIG.

【図3】図1の処理装置のブロック図。3 is a block diagram of the processing device of FIG. 1. FIG.

【図4】本発明の他の実施例による排気ガス処理装置の
構成図。
FIG. 4 is a configuration diagram of an exhaust gas treatment device according to another embodiment of the present invention.

【図5】図4の処理システムのブロック図。5 is a block diagram of the processing system of FIG.

【符号の説明】[Explanation of symbols]

1…処理容器、2…導入管、3…導出管、4a,4b…
放電電極、5…高電圧パルス電源、6…トリガパルスコ
ントローラ、7…流量計、8…ガスセンサ。
DESCRIPTION OF SYMBOLS 1 ... Processing container, 2 ... Inlet pipe, 3 ... Outlet pipe, 4a, 4b ...
Discharge electrode, 5 ... High-voltage pulse power supply, 6 ... Trigger pulse controller, 7 ... Flow meter, 8 ... Gas sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排気ガスが内部を流通する処理容器と、
前記排気ガスの流通路にそれぞれ配設された流量計およ
びガスセンサと、前記処理容器内に取付けられる少なく
とも一対のプラズマ発生用電極とこの一対のプラズマ発
生用電極に高電圧パルスを印加する高電圧パルス電源
と、前記流量計の検出信号又はガスセンサの検出信号に
応じて前記高電圧パルス電源のパルス出力周波数を制御
するパルス制御部によって構成したことを特徴とする排
気ガス処理装置。
1. A processing container in which exhaust gas flows,
A flow meter and a gas sensor respectively disposed in the exhaust gas flow passage, at least a pair of plasma generating electrodes mounted in the processing container, and a high voltage pulse for applying a high voltage pulse to the pair of plasma generating electrodes. An exhaust gas treatment device comprising a power supply and a pulse control unit that controls a pulse output frequency of the high-voltage pulse power supply according to a detection signal of the flow meter or a detection signal of a gas sensor.
JP4025604A 1992-02-13 1992-02-13 Waste gas treating device Pending JPH05220340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025604A JPH05220340A (en) 1992-02-13 1992-02-13 Waste gas treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025604A JPH05220340A (en) 1992-02-13 1992-02-13 Waste gas treating device

Publications (1)

Publication Number Publication Date
JPH05220340A true JPH05220340A (en) 1993-08-31

Family

ID=12170511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025604A Pending JPH05220340A (en) 1992-02-13 1992-02-13 Waste gas treating device

Country Status (1)

Country Link
JP (1) JPH05220340A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845287A1 (en) * 1996-11-28 1998-06-03 AEA Technology plc Process and device for plasma gas treatment
FR2762524A1 (en) * 1997-04-25 1998-10-30 Electricite De France Treating waste gas containing volatile pollutants
WO2005000450A1 (en) * 2003-06-27 2005-01-06 Ngk Insulators, Ltd. Apparatus and method of treating exhaust gas
JP2010234256A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234255A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845287A1 (en) * 1996-11-28 1998-06-03 AEA Technology plc Process and device for plasma gas treatment
FR2762524A1 (en) * 1997-04-25 1998-10-30 Electricite De France Treating waste gas containing volatile pollutants
WO2005000450A1 (en) * 2003-06-27 2005-01-06 Ngk Insulators, Ltd. Apparatus and method of treating exhaust gas
US7700051B2 (en) 2003-06-27 2010-04-20 Ngk Insulators, Ltd. Apparatus and method of treating exhaust gas
JP2010234256A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234255A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus

Similar Documents

Publication Publication Date Title
Chae Non-thermal plasma for diesel exhaust treatment
US6557340B1 (en) System and method for purifying exhaust gases
KR100273993B1 (en) FUEL INJECTION SYSTEM AND METHOD FOR TREATMENT OF NOx IN A CORONA DISCHARGE POLLUTANT DESTRUCTION APPARATUS
EP1212520A1 (en) Emission abatement system
CA2396281A1 (en) Apparatus for removing soot and nox in exhaust gas from diesel engines
JP2001525902A (en) Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
JP2005504207A (en) Apparatus and method for aftertreatment of exhaust gas
JP6085245B2 (en) Non-catalytic denitration apparatus and non-catalytic denitration method
US7121079B2 (en) System for exhaust gas treatment comprising a gas ionizing system with ionized air injection
EP0585047A2 (en) The purification of internal combustion engine exhaust emissions
Hammer Atmospheric pressure plasma application for pollution control in industrial processes
Cha et al. NOx and soot reduction using dielectric barrier discharge and NH3 selective catalytic reduction in diesel exhaust
JPH05220340A (en) Waste gas treating device
Mohapatro et al. Studies on $\hbox {NO} _ {\rm X} $ Removal From Diesel Engine Exhaust Using Duct-Type DBD Reactor
JPH06178914A (en) Waste gas treatment device
JP2006132483A (en) Exhaust emission control device, exhaust emission control method and control method
KR100355179B1 (en) Desulferrization and denitride method of exhaust gas depend on ozone and there of apparatus
JP2007016635A (en) Exhaust emission control device for internal combustion engine
KR102601482B1 (en) Apparatus for reducing nitrogen oxide for thermoelectric power plants and method for reducing nitrogen oxide by using the same
JPH04110013A (en) Exhaust gas treating device
JPH04256415A (en) Device for treating exhaust gas
Mihalcioiu et al. Design Factors for $\hbox {NO} _ {\rm x} $ Reduction in Nitrogen Plasma
JPH06292817A (en) Nox-containing gas purifying method and purifying device
JPH11169660A (en) Method and device for waste gas treatment
JP2004270539A (en) Gas treatment device