JP3731471B2 - Smoke treatment method for high sulfur oil fired boiler - Google Patents

Smoke treatment method for high sulfur oil fired boiler Download PDF

Info

Publication number
JP3731471B2
JP3731471B2 JP2000394756A JP2000394756A JP3731471B2 JP 3731471 B2 JP3731471 B2 JP 3731471B2 JP 2000394756 A JP2000394756 A JP 2000394756A JP 2000394756 A JP2000394756 A JP 2000394756A JP 3731471 B2 JP3731471 B2 JP 3731471B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
fired boiler
injection
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394756A
Other languages
Japanese (ja)
Other versions
JP2002191935A (en
Inventor
忠 大浦
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP2000394756A priority Critical patent/JP3731471B2/en
Publication of JP2002191935A publication Critical patent/JP2002191935A/en
Application granted granted Critical
Publication of JP3731471B2 publication Critical patent/JP3731471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高イオウ油焚きボイラの排煙処理方法に係わり、特に、イオウ分の含有率の高い高イオウ燃料(以下「高S油燃料」と称す)を燃料とする高イオウ油焚きボイラ(以下「高S油焚きボイラ」と称す)の排煙処理方法に関する。
【0002】
【従来の技術】
従来、油炊きボイラ用の電気集塵器では、取り扱う排ガス及び排ガス中のダストに含有する水分や三酸化イオウ(SO3 )のために排ガスの露点が高く、機器腐食や灰詰まりを起こしたり、酸性の強いスマットを生成するという問題があった。さらに、排ガス中のダストが非常に細かく、電気固有抵抗率が低いため、電気集塵器の電極板に捕集したダストが再飛散し易いという問題もあった。
【0003】
そこで、電気集塵器の入口側にアンモニアガスを注入してSO3 を中和することによって上記問題点の解決を図ってきた。前記アンモニアの注入量は、ボイラでのSO3 の生成量に応じて行われることが好ましいが、SO3 の生成量を求めるのに必要な排ガス中のSO3 濃度は、連続して測定することができない。そこで、アンモニア注入量は、手動又は試運転時等の排ガス中のSO3 濃度の測定結果に基づき、燃料消費量に比例した比例注入制御を行なっていた。また、SO3 濃度の変化に対しては、燃料に含まれるイオウ分の大小によって注入比率を設定変更することによって対応していた。
【0004】
ところで、最近のボイラ設備では、運転コストの低減のために高S油燃料、例えばオイルコークスや残渣油と呼ばれる超重質油(燃料中のイオウ分が通常3%程度以上)を使用することが多くなってきている。
【0005】
【発明が解決しようとする課題】
しかしながら、高S油焚きボイラからの排ガスの場合には、排ガス中のSO3 発生濃度の変化は、ボイラ負荷(ボイラ出力)とは必ずしも一致せず不安定になり易い。この結果、電気集塵器に取り込まれる排ガスに従来の制御方法でアンモニアガスを注入すると、注入量が過不足するという問題が発生する。例えば、SO3 濃度が高くなった場合には、アンモニア注入量が不足し、未反応のSO3 によって電気集塵器内に酸性イオウが発生し、電気集塵器内での機器腐食や灰詰まりが生じやすいという欠点がある。
【0006】
この結果、電気集塵器を停止せざるを得ないような問題が生じる。これを防ぐには、アンモニアを予め過剰に注入すればよいが、何の目安もなくアンモニアの注入量を増加すれば、アンモニアの注入量が過剰となり、経済的に不利益となるだけでなく、電気集塵器から未反応のアンモニアが多量に排出されて新たな公害原因となる。
【0007】
本発明はこのような事情に鑑みて成されたもので、排ガスへ適切な量のアンモニアを注入することのできる高イオウ油焚きボイラの排煙処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の請求項1は前記目的を達成するために、イオウ分の高い高イオウ油を燃料とする高イオウ油焚きボイラから排出された排ガスにアンモニアを注入してから電気集塵器に送気して前記排ガス中のダストを除去する高イオウ油焚きボイラの排煙処理方法において、前記アンモニアが注入される排ガス中の燃焼酸素濃度の変化に応じて該アンモニアの注入量を調整するのに際し、前記排ガス中の燃焼酸素濃度の変化に応じて注入比率を求め、該注入比率を前記高イオウ油燃料の燃料消費量に比例した基本アンモニア注入量に乗算することにより、前記排ガス中に注入するアンモニアの注入量を調整することを特徴とする。
【0009】
本発明は、アンモニアが注入される排ガス中の燃焼酸素濃度の変化が、排ガス中のSO3 濃度に影響することに着目して成されたもので、排ガス中の燃焼酸素濃度の変化に応じてアンモニアの注入量を調整するようにしたので、排ガスへのアンモニア注入量が過不足することがない。これにより、電気集塵器内での機器腐食や灰詰まりが生じにくくできる。
【0010】
本発明の請求項2は、請求項1における排ガス中の燃焼酸素濃度の変化に応じてアンモニアの注入量を調整する仕方を、排ガス中の燃焼酸素濃度の変化に対応した注入比率を求め、該注入比率を前記高イオウ油燃料の燃料消費量に比例した比例アンモニア注入量に乗算するようにしたものである。
【0011】
また、本発明の請求項3は、請求項2において、注入比率の設定を、燃焼酸素濃度が定格値のときを1としたときの該定格値に対する比率で行うようにしたものである。ここで、燃焼酸素濃度が定格値とは、ボイラが定常運転での燃焼酸素濃度の値をいう。
【0012】
【発明の実施の形態】
以下添付図面に従って、本発明に係る高イオウ油焚きボイラの排煙処理方法の好ましい実施の形態について説明する。
【0013】
図1は、本発明の高イオウ油焚きボイラの排煙処理方法を適用する排煙処理システム10の概略構造を示す構成図である。
【0014】
同図に示すように、排煙処理システム10は主として、高S油焚きボイラ12、空気予熱器14、電気集塵器16、煙突18から構成され、高S油焚きボイラ12から排出された排ガスが、空気予熱器14を経た後、電気集塵器16で脱塵され、煙突18から大気に放出されるようになっている。
【0015】
電気集塵器16の入口側には、アンモニアの注入手段22が設けられ、この注入手段22によってガス状のアンモニアが排ガス中に注入される。これにより、排ガスに含まれるSO3 は、アンモニアによって中和されて硫酸アンモニウムを生成し、この硫酸アンモニウムが電気集塵器16によって捕集される。
【0016】
注入手段22から排ガスに注入するアンモニアの注入量は制御装置26によって制御される。制御装置26には、高S油焚きボイラ12からの信号として、高S油燃料消費量信号100、燃焼酸素濃度信号101がそれぞれ入力される。
【0017】
ここで、燃焼酸素濃度とは、高S油焚きボイラ12から排出される排ガス中の酸素濃度であって、アンモニアが注入される前の酸素濃度をいう。
【0018】
そして、制御装置26は、これらの入力された信号100、101からの情報に基づいて演算されたアンモニア注入量を注入量指令信号36として注入手段22に出力する。
【0019】
ところで、発明者は、高S油焚きボイラ12の負荷上昇時又は下降時にSO3 濃度の変化が特に大きいことに着目し、その原因を検討したところ、負荷変化時には排ガス中の燃焼酸素濃度の変化が大きく、この燃焼酸素濃度の変化が排ガス中のSO3 濃度の変化に大きく影響しているという知見を得た。
【0020】
本発明は、上記知見に基づいて成されたもので、イオウ分の高い高イオウ油を燃料とする高イオウ油焚きボイラから排出された排ガスにアンモニアを注入してから電気集塵器16に送気して排ガス中のダストを除去する高イオウ油焚きボイラの排煙処理方法において、アンモニアが注入される排ガス中の燃焼酸素濃度の変化に応じて該アンモニアの注入量を調整するようにしたものである。
【0021】
図2は、本発明を行うための制御装置26の制御系統図である。
【0022】
制御装置26には、高S油焚きボイラ12からの燃料消費量信号100による燃料消費量に対してどの程度のアンモニア注入量を排ガス中に注入すればよいかの演算式FX1が設けられている。即ち、演算式FX1によって排ガス中のSO3 を中和するのに最低限必要な基本のアンモニア注入量が求められ、求められた基本アンモニア注入量が演算器37に出力される。
【0023】
図3は、FX1演算式を図で表したもので、高S油燃料における燃料消費量に対する基本アンモニア注入量を、FX1の特性に基づいた比例注入制御を示したものである。比例注入制御は、燃料消費量が一定以上、即ち排ガス中のSO3 濃度が高S油焚きボイラ12の負荷(ボイラ出力)に比例し易い安定状態での注入制御で、燃料消費量に比例した注入制御を行う。
【0024】
一般にアンモニアとSO3 との反応は、SO3 +2NH3 +H2 O→(NH42 SO4 で表される。従って、排ガス中のSO3 を中和するために最低限必要な基本アンモニア注入量は、次式(1)で求められ、図3のFX1特性線は、この(1)式に基づいて構成したものである。
【0025】
【数1】

Figure 0003731471
また、制御装置26には、図2に示すように、高S油焚きボイラ12からの燃焼酸素濃度信号101による燃焼酸素濃度の変化に応じて基本アンモニア注入量をどの程度調整すればよいかの演算式FX2が設けられている。即ち、演算式FX2によって、排ガス中の燃焼酸素濃度の変化に対応した注入比率が求められて演算器37に出力される。そして、演算器37では、演算式FX1から求められた基本アンモニア注入量に、演算式FX2から求められた注入比率が乗算演算されて求められた乗算アンモニア注入量がコントローラ44に出力される。コントローラ44では、この乗算アンモニア注入量を排ガスに注入する注入量指令信号36としてポジショナ46を介して注入弁31に出力する。また、注入管33を流れるアンモニア流量は、検出器32で検出されてカスケード制御信号35として制御装置26のコントローラ44に出力される。
【0026】
図4は、FX2演算式の好ましい一例を図で示したもので、排ガス中の燃焼酸素濃度の変化に対する注入比率を、燃焼酸素濃度が定格値(OT )の場合を1としたときに該定格値に対する比率として設定したものである。例えば、排ガス中の燃焼酸素濃度が定格値の場合には注入比率は1となり、排ガスに注入する乗算アンモニア注入量は基本アンモニア注入量に1を乗算した注入量となる。また、排ガス中の燃焼酸素濃度が定格値の2倍の場合には注入比率は2となり、排ガスに注入する乗算アンモニア注入量は基本アンモニア注入量に2を乗算した注入量となる。
【0027】
このように、本発明では、排ガス中の燃焼酸素濃度の変化に対応した注入比率を求め、該注入比率を燃料消費量に比例した基本アンモニア注入量に乗算した値である乗算アンモニア注入量を排ガスに注入するようにしたので、高S油燃料を使用した油焚きボイラ12からの排ガスの場合にも排ガスへのアンモニア注入量が不足することがない。これにより、電気集塵器16内での機器腐食や灰詰まりが生じにくくできる。
【0028】
【発明の効果】
以上説明したように、本発明の高イオウ油焚きボイラの排煙処理方法によれば、高イオウ油を燃料とする排ガスの場合にも、適切な量のアンモニアを注入することができる。特に、高S油焚きボイラの負荷変化時、特に高S油焚きボイラの燃焼酸素変化時における排ガスへのアンモニア注入量を適切に制御できる。これにより、電気集塵器内での機器腐食や灰詰まりを生じにくくできる。
【図面の簡単な説明】
【図1】本発明の高イオウ油焚きボイラの排煙処理方法を適用する排煙処理システムの構成図
【図2】制御装置の制御系統を説明する説明図
【図3】アンモニア注入量の比例制御を説明する説明図
【図4】燃焼酸素濃度と注入比率との関係を説明する説明図
【符号の説明】
10…排煙処理システム、12…高S油焚きボイラ、14…空気予熱器、16…電気集塵器、18…煙突、22…注入手段、26…制御装置、31…注入弁、32…検出器、33…注入管、35…カスケード制御信号、36…注入量指令信号、37…演算器、44…コントローラ、100…高S油燃料消費量信号、101…燃焼酸素濃度信号[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating smoke from a high-sulfur oil-fired boiler, and in particular, a high-sulfur oil-fired boiler using a high-sulfur fuel having a high sulfur content (hereinafter referred to as “high-S oil fuel”) as a fuel. The present invention relates to a flue gas treatment method (hereinafter referred to as “high S oil fired boiler”).
[0002]
[Prior art]
Conventionally, in electric dust collectors for oil-fired boilers, the dew point of exhaust gas is high due to the moisture and sulfur trioxide (SO 3 ) contained in the exhaust gas handled and dust in the exhaust gas, causing equipment corrosion and ash clogging, There was a problem of producing a strongly acidic smut. Furthermore, since the dust in the exhaust gas is very fine and the electrical resistivity is low, there is also a problem that the dust collected on the electrode plate of the electrostatic precipitator easily rescatters.
[0003]
Therefore, the above problems have been solved by injecting ammonia gas into the inlet side of the electrostatic precipitator to neutralize SO 3 . The ammonia injection amount is preferably performed in accordance with the amount of SO 3 produced in the boiler, but the SO 3 concentration in the exhaust gas required to determine the amount of SO 3 produced should be measured continuously. I can't. Therefore, the ammonia injection amount is controlled by proportional injection control in proportion to the fuel consumption amount based on the measurement result of the SO 3 concentration in the exhaust gas during manual operation or trial operation. Also, the change in SO 3 concentration was dealt with by changing the setting of the injection ratio depending on the amount of sulfur contained in the fuel.
[0004]
By the way, in recent boiler facilities, high S oil fuel, for example, super heavy oil called oil coke or residual oil (the sulfur content in the fuel is usually about 3% or more) is often used to reduce the operation cost. It has become to.
[0005]
[Problems to be solved by the invention]
However, in the case of exhaust gas from a high-S oil-fired boiler, the change in the SO 3 generation concentration in the exhaust gas does not always coincide with the boiler load (boiler output) and tends to be unstable. As a result, when ammonia gas is injected into the exhaust gas taken into the electrostatic precipitator by the conventional control method, there arises a problem that the injection amount becomes excessive or insufficient. For example, when the SO 3 concentration becomes high, the ammonia injection amount becomes insufficient, and unreacted SO 3 generates acidic sulfur in the electrostatic precipitator, causing equipment corrosion and ash clogging in the electrostatic precipitator. There is a drawback that is likely to occur.
[0006]
As a result, there arises a problem that the electric dust collector must be stopped. In order to prevent this, it is sufficient to inject ammonia in advance excessively, but if the amount of ammonia injected is increased without any indication, the amount of ammonia injected becomes excessive, which is not economically disadvantageous, A large amount of unreacted ammonia is discharged from the electrostatic precipitator, causing new pollution.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a smoke treatment method for a high sulfur oil-fired boiler that can inject an appropriate amount of ammonia into exhaust gas.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 of the present invention injects ammonia into exhaust gas discharged from a high-sulfur oil-fired boiler using high-sulfur oil with a high sulfur content as a fuel, and then supplies the air to an electrostatic precipitator. In the smoke treatment method of the high sulfur oil-fired boiler for removing dust in the exhaust gas, when adjusting the injection amount of the ammonia according to the change of the combustion oxygen concentration in the exhaust gas into which the ammonia is injected, Ammonia injected into the exhaust gas by obtaining an injection ratio according to a change in the combustion oxygen concentration in the exhaust gas, and multiplying the injection ratio by a basic ammonia injection amount proportional to the fuel consumption of the high sulfur oil fuel It is characterized by adjusting the injection amount.
[0009]
The present invention was made by paying attention to the fact that the change in the combustion oxygen concentration in the exhaust gas into which ammonia is injected affects the SO 3 concentration in the exhaust gas, and according to the change in the combustion oxygen concentration in the exhaust gas. Since the amount of ammonia injected is adjusted, the amount of ammonia injected into the exhaust gas does not become excessive or insufficient. Thereby, apparatus corrosion and ash clogging in an electric dust collector can be made difficult to occur.
[0010]
According to a second aspect of the present invention, the method for adjusting the injection amount of ammonia according to the change in the combustion oxygen concentration in the exhaust gas according to the first aspect is obtained by obtaining an injection ratio corresponding to the change in the combustion oxygen concentration in the exhaust gas. The injection ratio is multiplied by the proportional ammonia injection amount proportional to the fuel consumption of the high-sulfur oil fuel.
[0011]
According to claim 3 of the present invention, in claim 2, the injection ratio is set at a ratio with respect to the rated value when the combustion oxygen concentration is 1 as the rated value. Here, the rated value of the combustion oxygen concentration means the value of the combustion oxygen concentration when the boiler is in steady operation.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a high sulfur oil fired boiler flue gas treatment method according to the present invention will be described below with reference to the accompanying drawings.
[0013]
FIG. 1 is a configuration diagram showing a schematic structure of a flue gas treatment system 10 to which the high sulfur oil-fired boiler flue gas treatment method of the present invention is applied.
[0014]
As shown in the figure, the flue gas treatment system 10 is mainly composed of a high S oil fired boiler 12, an air preheater 14, an electric dust collector 16, and a chimney 18, and exhaust gas discharged from the high S oil fired boiler 12. However, after passing through the air preheater 14, it is dedusted by the electrostatic precipitator 16, and discharged from the chimney 18 to the atmosphere.
[0015]
An ammonia injection means 22 is provided on the inlet side of the electrostatic precipitator 16, and gaseous ammonia is injected into the exhaust gas by the injection means 22. Thereby, SO 3 contained in the exhaust gas is neutralized by ammonia to generate ammonium sulfate, and this ammonium sulfate is collected by the electric dust collector 16.
[0016]
The amount of ammonia injected into the exhaust gas from the injection means 22 is controlled by the control device 26. A high S oil fuel consumption signal 100 and a combustion oxygen concentration signal 101 are input to the control device 26 as signals from the high S oil fired boiler 12, respectively.
[0017]
Here, the combustion oxygen concentration is the oxygen concentration in the exhaust gas discharged from the high S oil-fired boiler 12 and refers to the oxygen concentration before ammonia is injected.
[0018]
Then, the control device 26 outputs the ammonia injection amount calculated based on the information from the input signals 100 and 101 to the injection means 22 as the injection amount command signal 36.
[0019]
By the way, the inventor noticed that the change in the SO 3 concentration is particularly large when the load of the high S oil-fired boiler 12 is increased or decreased, and examined the cause thereof. When the load is changed, the change in the combustion oxygen concentration in the exhaust gas is observed. It was found that the change in the combustion oxygen concentration greatly affects the change in the SO 3 concentration in the exhaust gas.
[0020]
The present invention has been made on the basis of the above-mentioned knowledge. Ammonia is injected into exhaust gas discharged from a high-sulfur oil-fired boiler using high-sulfur oil with a high sulfur content as fuel, and then sent to the electrostatic precipitator 16. A method for flue gas treatment of a high-sulfur oil-fired boiler that removes dust in exhaust gas by adjusting the injection amount of ammonia according to changes in the combustion oxygen concentration in the exhaust gas into which ammonia is injected It is.
[0021]
FIG. 2 is a control system diagram of the control device 26 for carrying out the present invention.
[0022]
The control device 26 is provided with an arithmetic expression FX1 indicating how much ammonia injection amount should be injected into the exhaust gas with respect to the fuel consumption by the fuel consumption signal 100 from the high S oil-fired boiler 12. . That is, the minimum basic ammonia injection amount required to neutralize SO 3 in the exhaust gas is obtained by the arithmetic expression FX 1, and the obtained basic ammonia injection amount is output to the calculator 37.
[0023]
FIG. 3 is a diagram showing the FX1 arithmetic expression, and shows the proportional injection control based on the characteristic of FX1 for the basic ammonia injection amount with respect to the fuel consumption amount in the high S oil fuel. Proportional injection control is injection control in a stable state in which the fuel consumption is more than a certain value, that is, the SO 3 concentration in the exhaust gas tends to be proportional to the load (boiler output) of the high S oil-fired boiler 12, and is proportional to the fuel consumption. Perform injection control.
[0024]
In general, the reaction between ammonia and SO 3 is represented by SO 3 + 2NH 3 + H 2 O → (NH 4 ) 2 SO 4 . Therefore, the basic ammonia injection amount required to neutralize SO 3 in the exhaust gas is obtained by the following equation (1), and the FX1 characteristic line in FIG. 3 is configured based on this equation (1). Is.
[0025]
[Expression 1]
Figure 0003731471
Further, as shown in FIG. 2, the control device 26 determines how much the basic ammonia injection amount should be adjusted in accordance with the change in the combustion oxygen concentration by the combustion oxygen concentration signal 101 from the high S oil-fired boiler 12. An arithmetic expression FX2 is provided. That is, the injection ratio corresponding to the change in the combustion oxygen concentration in the exhaust gas is obtained by the arithmetic expression FX2, and is output to the calculator 37. Then, the computing unit 37 multiplies the basic ammonia injection amount obtained from the arithmetic expression FX1 by the injection ratio obtained from the arithmetic expression FX2, and outputs the multiplied ammonia injection amount obtained to the controller 44. The controller 44 outputs the multiplied ammonia injection amount to the injection valve 31 via the positioner 46 as an injection amount command signal 36 for injecting into the exhaust gas. The ammonia flow rate flowing through the injection pipe 33 is detected by the detector 32 and output as a cascade control signal 35 to the controller 44 of the control device 26.
[0026]
FIG. 4 is a diagram showing a preferred example of the FX2 arithmetic expression. The injection ratio with respect to the change in the combustion oxygen concentration in the exhaust gas is set to 1 when the combustion oxygen concentration is the rated value (O T ). It is set as a ratio to the rated value. For example, when the combustion oxygen concentration in the exhaust gas is a rated value, the injection ratio is 1, and the multiplying ammonia injection amount injected into the exhaust gas is an injection amount obtained by multiplying the basic ammonia injection amount by 1. Further, when the combustion oxygen concentration in the exhaust gas is twice the rated value, the injection ratio is 2, and the multiplied ammonia injection amount injected into the exhaust gas is an injection amount obtained by multiplying the basic ammonia injection amount by 2.
[0027]
Thus, in the present invention, the injection ratio corresponding to the change in the combustion oxygen concentration in the exhaust gas is obtained, and the multiplied ammonia injection amount, which is a value obtained by multiplying the injection ratio by the basic ammonia injection amount proportional to the fuel consumption, is determined as the exhaust gas. Therefore, the amount of ammonia injected into the exhaust gas does not become insufficient even in the case of the exhaust gas from the oil-fired boiler 12 using high S oil fuel. Thereby, apparatus corrosion and ash clogging in the electrostatic precipitator 16 can be made difficult to occur.
[0028]
【The invention's effect】
As described above, according to the high sulfur oil fired boiler flue gas treatment method of the present invention, an appropriate amount of ammonia can be injected even in the case of exhaust gas using high sulfur oil as fuel. In particular, it is possible to appropriately control the amount of ammonia injected into the exhaust gas when the load of the high S oil-fired boiler changes, particularly when the combustion oxygen of the high S oil-fired boiler changes. Thereby, the apparatus corrosion and ash clogging in an electrostatic precipitator can be made difficult to occur.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a flue gas treatment system to which a flue gas treatment method for a high sulfur oil fired boiler according to the present invention is applied. FIG. 2 is an explanatory diagram for explaining a control system of a control device. Explanatory drawing explaining control [FIG. 4] Explanatory drawing explaining the relationship between combustion oxygen concentration and injection ratio [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Smoke treatment system, 12 ... High S oil fired boiler, 14 ... Air preheater, 16 ... Electric dust collector, 18 ... Chimney, 22 ... Injection means, 26 ... Control device, 31 ... Injection valve, 32 ... Detection 33 ... injection pipe, 35 ... cascade control signal, 36 ... injection amount command signal, 37 ... calculator, 44 ... controller, 100 ... high S oil fuel consumption signal, 101 ... combustion oxygen concentration signal

Claims (2)

イオウ分の高い高イオウ油を燃料とする高イオウ油焚きボイラから排出された排ガスにアンモニアを注入してから電気集塵器に送気して前記排ガス中のダストを除去する高イオウ油焚きボイラの排煙処理方法において、
前記アンモニアが注入される排ガス中の燃焼酸素濃度の変化に応じて該アンモニアの注入量を調整するのに際し、
前記排ガス中の燃焼酸素濃度の変化に応じて注入比率を求め、該注入比率を前記高イオウ油燃料の燃料消費量に比例した基本アンモニア注入量に乗算することにより、前記排ガス中に注入するアンモニアの注入量を調整することを特徴とする高イオウ油焚きボイラの排煙処理方法。
A high-sulfur oil fired boiler that injects ammonia into the exhaust gas discharged from a high-sulfur oil fired boiler that uses high-sulfur oil with a high sulfur content as a fuel and then sends it to an electric dust collector to remove dust in the exhaust gas. In the exhaust gas treatment method of
In adjusting the injection amount of the ammonia according to the change of the combustion oxygen concentration in the exhaust gas into which the ammonia is injected,
Ammonia injected into the exhaust gas by obtaining an injection ratio according to a change in combustion oxygen concentration in the exhaust gas, and multiplying the injection ratio by a basic ammonia injection amount proportional to the fuel consumption of the high sulfur oil fuel flue gas treating process of high sulfur oil-fired boiler you and adjusting the amount of injection.
前記注入比率は、前記燃焼酸素濃度が定格値の場合を1としたときの該定格値に対する比率であることを特徴とする請求項に記載の高イオウ油焚きボイラの排煙処理方法。The method for exhaust gas treatment of a high sulfur oil fired boiler according to claim 1 , wherein the injection ratio is a ratio to the rated value when the combustion oxygen concentration is a rated value of 1.
JP2000394756A 2000-12-26 2000-12-26 Smoke treatment method for high sulfur oil fired boiler Expired - Fee Related JP3731471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394756A JP3731471B2 (en) 2000-12-26 2000-12-26 Smoke treatment method for high sulfur oil fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394756A JP3731471B2 (en) 2000-12-26 2000-12-26 Smoke treatment method for high sulfur oil fired boiler

Publications (2)

Publication Number Publication Date
JP2002191935A JP2002191935A (en) 2002-07-10
JP3731471B2 true JP3731471B2 (en) 2006-01-05

Family

ID=18860334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394756A Expired - Fee Related JP3731471B2 (en) 2000-12-26 2000-12-26 Smoke treatment method for high sulfur oil fired boiler

Country Status (1)

Country Link
JP (1) JP3731471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010727B1 (en) * 2008-12-19 2011-01-24 재단법인 포항산업과학연구원 System and method for removing sulfur oxides from combustion gas

Also Published As

Publication number Publication date
JP2002191935A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
AU765408B2 (en) Mercury removal in utility wet scrubber using a chelating agent
US4987839A (en) Removal of particulate matter from combustion gas streams
CA1315709C (en) So -flue gas conditioning system
US8828341B1 (en) Sulfite control to reduce mercury re-emission
JPS62250931A (en) Wet exhaust gas desulfurization control device
EP1040864A2 (en) Control of mercury in a wet scrubber
CN104684627B (en) Flue gas treatment method and flue gas treatment device
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
JP2006075758A (en) Desalination controlling apparatus and desalination controlling method
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
US7226570B2 (en) Fly ash conditioning systems
JPS5936559A (en) Controlling method of electrostatic precipitator
JP3705042B2 (en) Smoke treatment system
JP3705041B2 (en) Smoke treatment system
JPH02211219A (en) Waste gas treatment apparatus
JPH04122417A (en) Exhaust gas treating device
JP3449060B2 (en) Method for removing sulfur oxides from flue gas
JP3611026B2 (en) Smoke removal equipment
JPH09303714A (en) Boiler equipment and operating method thereof
JP3702094B2 (en) Ammonia injection equipment
JP2984933B2 (en) Method and apparatus for controlling wet flue gas desulfurization
CN106338061B (en) A method of preparing low oxygen content gas
JP2695654B2 (en) Control device for ammonia gas injection volume
JPH02265618A (en) Capture of sulfur trioxide in waste gas
JP3578327B2 (en) Smoke exhaust treatment method for high sulfur oil fired boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees