JP3705042B2 - Smoke treatment system - Google Patents

Smoke treatment system Download PDF

Info

Publication number
JP3705042B2
JP3705042B2 JP28222899A JP28222899A JP3705042B2 JP 3705042 B2 JP3705042 B2 JP 3705042B2 JP 28222899 A JP28222899 A JP 28222899A JP 28222899 A JP28222899 A JP 28222899A JP 3705042 B2 JP3705042 B2 JP 3705042B2
Authority
JP
Japan
Prior art keywords
ammonia
concentration
amount
exhaust gas
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28222899A
Other languages
Japanese (ja)
Other versions
JP2001104746A (en
Inventor
忠 大浦
貞夫 榊原
誠 小椋
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP28222899A priority Critical patent/JP3705042B2/en
Publication of JP2001104746A publication Critical patent/JP2001104746A/en
Application granted granted Critical
Publication of JP3705042B2 publication Critical patent/JP3705042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排煙処理システムに係り、特に油炊きボイラから排出される排ガスを電気集塵器で除塵する排煙処理システムに関する。
【0002】
【従来の技術】
油炊きボイラ用の排煙処理システムは、電気集塵器を備えており、この電気集塵器によって油炊きボイラから排出された排ガスが除塵されている。以前の排煙処理システムは、排ガスやダストに含まれる水分や三酸化イオウ(SO3 )のために排ガスの露点が高く、機器腐食や灰詰まりを起こしたり、酸性の強いスマットを生成するという問題があった。さらに、排ガス中のダストが非常に細かく、電気固有抵抗率が低いため、電気集塵器の電極板に捕集したダストが再飛散し易いという問題もあった。
【0003】
そこで、電気集塵器の入口側にアンモニアガスを注入してSO3 を中和することによって上記問題点の解決を図ってきた。前記アンモニアの注入量は、ボイラでのSO3 の生成量に応じて行われることが好ましいが、SO3 の生成量を求めるのに必要な排ガス中のSO3 濃度は、連続して測定することができない。そこで、SO3 濃度を仮定し、この仮定SO3 濃度によりアンモニア注入量を燃料消費量に比例注入制御していた。そして、SO3 濃度の変化に対しては、比率設定器で、燃料に含まれるイオウ分の大小によって注入比率を設定変更することによって対応していた。
【0004】
【発明が解決しようとする課題】
しかしながら、最近のボイラ設備では、運転コストの低減のために高イオウ油を燃料として使用することが多く、排ガス中のSO3 濃度の変化が大きくなってきた。この結果、電気集塵器に取り込まれる排ガスに従来の制御方法でアンモニアガスを注入すると、注入量が過不足するという問題が発生する。例えば、排ガス中のSO3 濃度が高くなった場合には、アンモニアの注入量が不足し、未反応のSO3 によって電気集塵器内に酸性硫安が発生する。そして、機器腐食や灰詰まりが発生し、結果として電気集塵器を停止せざるを得なくなる。これを防ぐには、アンモニアを予め過剰に注入すればよいが、何の目安もなくアンモニアの注入量を増加すれば、アンモニアの注入量が過剰となり、経済的に不利益となるだけでなく、電気集塵器から未反応のアンモニアが多量に排出されて新たな公害原因となる。
【0005】
本発明はこのような事情に鑑みて成されたもので、適切な量のアンモニアを注入することができる排煙処理システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は前記目的を達成するために、ボイラから排出された排ガスにアンモニアを注入して電気集塵器に供給し、該電気集塵器によって前記排ガス中のダストを除去する排煙処理システムにおいて、前記ボイラで消費された燃料消費量を測定する燃料消費量測定手段と、前記排ガスに注入されたアンモニアが電気集塵器から排出されるまでの前記排ガスにおけるアンモニア濃度変化量を測定する手段であって、前記電気集塵器に供給される排ガス量を測定する排ガス量測定手段と、前記排ガスに注入されるアンモニア注入量を測定する注入量測定手段と、前記電気集塵器から排出された排ガス中のアンモニア濃度を測定する未反応アンモニア濃度測定手段と、から成り、前記排ガス量測定手段で測定した排ガス量と、前記注入量測定手段で測定したアンモニア注入量とから、アンモニアを注入した際の排ガス中の注入アンモニア濃度を算出するとともに、該注入アンモニア濃度と、前記未反応濃度測定手段で測定した未反応アンモニア濃度との差から、前記アンモニア濃度変化量を測定する濃度変化量測定手段と、前記燃料消費量測定手段で測定した燃料消費量から基本注入量を算出し、該基本注入量に応じて前記アンモニアを注入するとともに、前記濃度変化量測定手段で測定したアンモニア濃度変化量に応じて、前記アンモニアの注入量を調整する調整手段と、を備えたことを特徴とする。
【0007】
本発明によれば、濃度変化量測定手段によって、アンモニアが注入されてから電気集塵器排出時までのアンモニア濃度変化量を測定することができる。アンモニア濃度変化量は、アンモニアと反応するSO3 の濃度に依存するので、アンモニア濃度変化量に応じて前記アンモニアの注入量を調節すれば、SO3 濃度が変動した場合であっても、適切な量のアンモニアを注入することができる。
【0008】
【発明の実施の形態】
以下添付図面に従って、本発明に係る排煙処理システムの好ましい実施の形態について説明する。
【0009】
図1は、本実施の形態の排煙処理システム10の概略構造を示す構成図である。
【0010】
同図に示すように、排煙処理システム10は主として、油炊きボイラ12、空気予熱器14、電気集塵器16、煙突18から構成され、ボイラ12から排出された排ガスが、空気予熱器14を経た後、電気集塵器16で脱塵され、煙突18から大気に放出されるようになっている。
【0011】
ボイラ12は、該ボイラ12で消費された燃料消費量と、ボイラ12から排出される排ガス量とを測定できるようになっており、燃料消費量信号31と排ガス量信号32を形成して、後述する制御装置26に送信する。
【0012】
電気集塵器16の入口側には、注入手段22が設けられ、この注入手段22によってアンモニアガスが注入される。これにより、排ガスに含まれるSO3 は、アンモニアガスによって中和されて硫酸アンモニウムを生成し、この硫酸アンモニウムが電気集塵器16によって捕集される。
【0013】
電気集塵器16の出口側には、アンモニアの濃度測定手段24が設けられ、この濃度測定手段24によって電気集塵器16から排出された未反応のアンモニアの濃度が測定される。濃度測定手段24で形成された未反応アンモニア濃度信号34は、制御装置26に送信される。
【0014】
図2は、排煙処理システム10の系統図である。
【0015】
同図に示すように、前記注入手段22は、ガス遮断手段42、ガス流量検知手段44、ガス流量調節弁46、逆止弁48、逆火防止器50、及び混合器52を備えており、気化されたアンモニアガス40が、ガス遮断手段42、ガス流量検知手段44、ガス流量調節弁46、逆止弁48、及び逆火防止器50を経て混合器52に送気されるように、管路が連結されている。混合器52に送気されたアンモニアガスは、加熱空気56と混合されて約15〜30倍に希釈され、注入ノズル(図示せず)によって図1の電気集塵器16の入口煙道内に注入される。
【0016】
前記ガス流量検知手段44は、注入されるアンモニアガスの流量を測定する手段であり、アンモニア注入量信号35を制御装置26に送信する。また、前記ガス流量調節弁46は、注入されるアンモニアガスの流量を調節する手段であり、信号変換器(ポジショナ)54を介して制御装置26に接続されている。
【0017】
一方、制御装置26は、前記アンモニア注入量信号35の他に、燃料消費量信号31、排ガス量信号32、未反応アンモニア濃度信号34を取り込んで、アンモニアの適切な注入量を算出するとともに、アンモニア注入量制御信号36を形成して、これを注入手段22の信号変換器54に出力する。信号変換器54に出力された信号36は、空気信号に変換され、これによって、ガス流量調節弁46の開度調整が行われ、注入手段22によるアンモニア注入量が調節される。
【0018】
ところで、アンモニアの適切な注入量は、以下のようにして求められる。
【0019】
一般にアンモニアの反応は、SO3 +2NH3 +H2 O→(NH42 SO4 で表され、アンモニアの適切な注入量は、次式で求められる。
【0020】
【数1】
アンモニアの注入量(kg/h)=〔2モル×SO3 濃度(ppm) +必要過剰アンモニア濃度(ppm) 〕×排ガス量(m3N/h dry) ×アンモニア分子量(=17)/1モルの標準体積(=22.4)×10-6 …式(1)
ここで、前記必要過剰アンモニア濃度は、生成された硫安を再分解させないために必要であるとともに、排ガス煙道断面でのSO3 分布のばらつき等に対応するために必要である。即ち、アンモニア注入量は、SO3 を中和するのに最低限必要な基本アンモニア注入量と、中和反応を安定して行うために必要な必要過剰アンモニア注入量とを加算することによって求められる。
【0021】
基本アンモニア注入量は、SO3 濃度と排ガス量を測定することによって求められるが、現状技術では、SO3 濃度を連続して測定する測定計が存在しない。そこで、制御装置26は、アンモニアの濃度変化を測定して、このアンモニア濃度変化をSO3 濃度に換算し、該換算SO3 濃度に応じて基本アンモニア注入量を算出する。即ち、制御装置26は、注入された際の排ガス中のアンモニア濃度(以下、注入アンモニア濃度と称す)と、濃度測定手段24で測定された排ガス中のアンモニア濃度(以下、未反応アンモニア濃度と称す)を測定するとともに、以下の式(2)を用いて換算SO3 濃度を算出する。
【0022】
換算SO3 濃度=(注入アンモニア濃度−未反応アンモニア濃度)/2
…式(2)
基本アンモニア注入量は、この式(2)で求めた換算SO3 濃度により、燃料消費量に比例制御される。制御装置26は、換算SO3 濃度を求めると、換算SO3 濃度信号37を濃度指示計38に出力する。また、制御装置26には、図示しない比率設定器を備えており、該比例設定器によってアンモニアの注入比率を設定変更することができる。
【0023】
次に上記の如く構成された排煙処理システム10の制御方法について説明する。
【0024】
まず、制御装置26は、ボイラ12から燃料消費量信号31を取り込み、この燃料消費量を乗算演算することによって、基本注入量を算出する。そして、制御装置26は、この基本アンモニア注入量に過剰アンモニア注入量を加算演算し、アンモニア注入量を算出した後、制御装置26の調節器(図示せず)によってPI制御し、アンモニア注入量制御信号36を形成する。これにより、アンモニア注入量の制御信号36が注入手段22に出力され、注入手段22が適量のアンモニアを注入する。
【0025】
また、制御装置26は、前記PI制御信号に対して、アンモニア注入量信号35を取り込むことによってカスケード制御を行う。
【0026】
また、制御装置26は、アンモニア注入量信号35、排ガス量信号32、未反応アンモニア濃度信号34から換算SO3 濃度を求め、この換算SO3 濃度からアンモニアの注入比率を設定変更する。即ち、制御装置26は、アンモニア注入量信号35と排ガス量信号32から、注入アンモニア濃度(=アンモニア注入量/排ガス流量)を求め、さらに、この注入アンモニア濃度と未反応アンモニア濃度信号34から、式(2)より、換算SO3 濃度を算出する。そして、算出した換算SO3 濃度の信号37を濃度指示計38に出力する。これにより、濃度指示計38に換算SO3 濃度が表示されるので、作業者が濃度指示計38を見ながら制御装置26の比率設定器を操作してアンモニアの注入比率を設定変更することによって、適量のアンモニアを注入することができる。
【0027】
このように本実施の形態の排煙処理システム10によれば、アンモニアの濃度変化量からSO3 濃度を換算し、この換算SO3 濃度に基づいてアンモニアの注入比率を設定するので、SO3 濃度が変化した場合であっても、適量のアンモニアを注入することができる。したがって、アンモニアの注入量が不足して電気集塵器16で硫安が発生したり、アンモニアの注入量が多過ぎて、未反応のアンモニアが多量排出されることを防止することができる。
【0028】
また、排煙処理システム10において、換算SO3 濃度を求める式(2)は、アンモニア濃度の減少分が全てSO3 の中和に用いられたと仮定して、SO3 濃度を換算している。したがって、換算SO3 濃度は、実測のSO3 濃度よりも若干高く算出される。これにより、換算SO3 濃度に応じてアンモニアを注入すると、アンモニアが若干多めに注入されるので、アンモニア注入不足の発生を確実に防止することができる。
【0029】
なお、上述した実施の形態では、制御装置26に演算機能を有するワンループ形調節器を採用したが、デジタル制御装置としてもよい。
【0030】
また、上述した実施の形態では、換算SO3 濃度を濃度指示計38に表示することにより、手動で注入比率を設定変更したが、比率設定器の設定倍率を自動設定してもよい。これにより、アンモニア注入制御を全自動化することも可能である。
【0031】
【発明の効果】
以上説明したように、本発明の排煙処理システムによれば、濃度変化量測定手段でアンモニア濃度変化量を測定し、該アンモニア濃度変化量に応じて前記アンモニアの注入量を調節したので、SO3 濃度が変動した場合であっても、適切な量のアンモニアを注入することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の排煙処理システムの全体構成を示す概略構成図
【図2】図1の排煙処理システムの制御系統を示す系統図
【符号の説明】
10…排煙処理システム、12…ボイラ、16…電気集塵器、22…注入手段、24…濃度測定手段、26…制御装置、31…燃料消費量信号、32…排ガス量信号、34…未反応アンモニア濃度信号、35…アンモニア注入量信号、36…アンモニア注入量制御信号、37…換算SO3 濃度信号、38…濃度指示計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flue gas treatment system, and more particularly to a flue gas treatment system that removes exhaust gas discharged from an oil cooking boiler with an electric dust collector.
[0002]
[Prior art]
An exhaust gas treatment system for an oil cooking boiler includes an electric dust collector, and the exhaust gas discharged from the oil cooking boiler is dedusted by the electric dust collector. Previous smoke treatment systems have high exhaust gas dew points due to moisture and sulfur trioxide (SO 3 ) contained in the exhaust gas and dust, causing equipment corrosion and ash clogging, and generating highly acidic smut. was there. Furthermore, since the dust in the exhaust gas is very fine and the electrical resistivity is low, there is also a problem that the dust collected on the electrode plate of the electrostatic precipitator easily rescatters.
[0003]
Therefore, the above problems have been solved by injecting ammonia gas into the inlet side of the electrostatic precipitator to neutralize SO 3 . The ammonia injection amount is preferably performed in accordance with the amount of SO 3 produced in the boiler, but the SO 3 concentration in the exhaust gas required to determine the amount of SO 3 produced should be measured continuously. I can't. Therefore, assuming the SO 3 concentration, the ammonia injection amount was proportional injected control the fuel consumption by the assumption SO 3 concentration. The change in the SO 3 concentration has been dealt with by changing the setting of the injection ratio according to the amount of sulfur contained in the fuel with a ratio setting device.
[0004]
[Problems to be solved by the invention]
However, in recent boiler facilities, high sulfur oil is often used as a fuel in order to reduce operating costs, and the change in SO 3 concentration in exhaust gas has become large. As a result, when ammonia gas is injected into the exhaust gas taken into the electrostatic precipitator by the conventional control method, there arises a problem that the injection amount becomes excessive or insufficient. For example, when the SO 3 concentration in the exhaust gas becomes high, the amount of ammonia injected becomes insufficient, and acidic ammonium sulfate is generated in the electrostatic precipitator due to unreacted SO 3 . And apparatus corrosion and ash clogging generate | occur | produce, and as a result, an electrostatic precipitator must be stopped. In order to prevent this, it is sufficient to inject ammonia in advance excessively, but if the amount of ammonia injected is increased without any indication, the amount of ammonia injected becomes excessive, which is not economically disadvantageous, A large amount of unreacted ammonia is discharged from the electrostatic precipitator, causing new pollution.
[0005]
The present invention has been made in view of such circumstances, and an object thereof is to provide a flue gas treatment system capable of injecting an appropriate amount of ammonia.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a flue gas treatment system in which ammonia is injected into exhaust gas discharged from a boiler and supplied to an electric dust collector, and dust in the exhaust gas is removed by the electric dust collector. A fuel consumption measuring means for measuring the amount of fuel consumed by the boiler, and a means for measuring the amount of ammonia concentration change in the exhaust gas until the ammonia injected into the exhaust gas is discharged from the electric dust collector. The exhaust gas amount measuring means for measuring the amount of exhaust gas supplied to the electric dust collector, the injection amount measuring means for measuring the ammonia injection amount injected into the exhaust gas, and the exhaust gas discharged from the electric dust collector Unreacted ammonia concentration measuring means for measuring ammonia concentration in the exhaust gas, and measuring the exhaust gas amount measured by the exhaust gas amount measuring means and the injection amount measuring means. From the amount of ammonia injected, the ammonia concentration injected into the exhaust gas when ammonia is injected is calculated, and from the difference between the injected ammonia concentration and the unreacted ammonia concentration measured by the unreacted concentration measuring means, the ammonia A concentration change amount measuring means for measuring a concentration change amount, a basic injection amount is calculated from the fuel consumption amount measured by the fuel consumption amount measuring means, the ammonia is injected according to the basic injection amount, and the concentration change Adjusting means for adjusting the amount of ammonia injected according to the amount of change in ammonia concentration measured by the amount measuring means.
[0007]
According to the present invention, it is possible to measure the amount of change in ammonia concentration from when ammonia is injected to when the electrostatic precipitator is discharged by the concentration change amount measuring means. The amount of change in ammonia concentration depends on the concentration of SO 3 that reacts with ammonia. Therefore, if the amount of ammonia injected is adjusted according to the amount of change in ammonia concentration, even if the concentration of SO 3 fluctuates, An amount of ammonia can be injected.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a flue gas treatment system according to the present invention will be described below with reference to the accompanying drawings.
[0009]
FIG. 1 is a configuration diagram showing a schematic structure of a flue gas treatment system 10 of the present embodiment.
[0010]
As shown in the figure, the flue gas treatment system 10 is mainly composed of an oil cooking boiler 12, an air preheater 14, an electric dust collector 16, and a chimney 18, and the exhaust gas discharged from the boiler 12 is converted into the air preheater 14. Then, the dust is removed by the electric dust collector 16 and discharged from the chimney 18 to the atmosphere.
[0011]
The boiler 12 can measure the amount of fuel consumed by the boiler 12 and the amount of exhaust gas discharged from the boiler 12, and forms a fuel consumption signal 31 and an exhaust gas amount signal 32 to be described later. To the control device 26.
[0012]
An injection means 22 is provided on the inlet side of the electrostatic precipitator 16, and ammonia gas is injected by the injection means 22. Thereby, SO 3 contained in the exhaust gas is neutralized by ammonia gas to produce ammonium sulfate, and this ammonium sulfate is collected by the electrostatic precipitator 16.
[0013]
On the outlet side of the electrostatic precipitator 16, ammonia concentration measuring means 24 is provided, and the concentration measuring means 24 measures the concentration of unreacted ammonia discharged from the electrostatic precipitator 16. The unreacted ammonia concentration signal 34 formed by the concentration measuring unit 24 is transmitted to the control device 26.
[0014]
FIG. 2 is a system diagram of the flue gas treatment system 10.
[0015]
As shown in the figure, the injection means 22 includes a gas shutoff means 42, a gas flow rate detection means 44, a gas flow rate adjustment valve 46, a check valve 48, a backfire preventer 50, and a mixer 52. A pipe is formed so that the vaporized ammonia gas 40 is sent to the mixer 52 via the gas shutoff means 42, the gas flow rate detection means 44, the gas flow rate control valve 46, the check valve 48, and the backfire preventer 50. Roads are connected. The ammonia gas sent to the mixer 52 is mixed with the heated air 56 and diluted about 15 to 30 times, and injected into the inlet flue of the electrostatic precipitator 16 of FIG. 1 by an injection nozzle (not shown). Is done.
[0016]
The gas flow rate detection means 44 is a means for measuring the flow rate of the injected ammonia gas, and transmits an ammonia injection amount signal 35 to the control device 26. The gas flow rate adjusting valve 46 is a means for adjusting the flow rate of the injected ammonia gas, and is connected to the control device 26 via a signal converter (positioner) 54.
[0017]
On the other hand, in addition to the ammonia injection amount signal 35, the control device 26 takes in the fuel consumption amount signal 31, the exhaust gas amount signal 32, and the unreacted ammonia concentration signal 34 to calculate an appropriate injection amount of ammonia, An injection amount control signal 36 is formed and output to the signal converter 54 of the injection means 22. The signal 36 output to the signal converter 54 is converted into an air signal, whereby the opening degree of the gas flow rate adjustment valve 46 is adjusted, and the ammonia injection amount by the injection means 22 is adjusted.
[0018]
By the way, the appropriate injection amount of ammonia is obtained as follows.
[0019]
In general, the reaction of ammonia is represented by SO 3 + 2NH 3 + H 2 O → (NH 4 ) 2 SO 4 , and an appropriate injection amount of ammonia is obtained by the following equation.
[0020]
[Expression 1]
Ammonia injection amount (kg / h) = [2 mol × SO 3 concentration (ppm) + necessary excess ammonia concentration (ppm)] × exhaust gas amount (m 3 N / h dry) × ammonia molecular weight (= 17) / 1 mol Standard volume (= 22.4) × 10 −6 Formula (1)
Here, the necessary excess ammonia concentration is necessary not to re-decompose the produced ammonium sulfate and is necessary to cope with variations in the SO 3 distribution in the cross section of the exhaust gas flue. That is, the ammonia injection amount is obtained by adding the basic ammonia injection amount necessary for neutralizing SO 3 and the necessary excess ammonia injection amount necessary for stably performing the neutralization reaction. .
[0021]
Although the basic ammonia injection amount is obtained by measuring the SO 3 concentration and the exhaust gas amount, there is no measuring instrument that continuously measures the SO 3 concentration in the current technology. Therefore, the control device 26 measures a change in ammonia concentration, converts the ammonia concentration change into an SO 3 concentration, and calculates a basic ammonia injection amount according to the converted SO 3 concentration. That is, the control device 26 determines the ammonia concentration in the exhaust gas when injected (hereinafter referred to as injected ammonia concentration) and the ammonia concentration in the exhaust gas measured by the concentration measuring means 24 (hereinafter referred to as unreacted ammonia concentration). ) And a converted SO 3 concentration is calculated using the following equation (2).
[0022]
Converted SO 3 concentration = (injected ammonia concentration-unreacted ammonia concentration) / 2
... Formula (2)
The basic ammonia injection amount is proportionally controlled to the fuel consumption amount by the converted SO 3 concentration obtained by the equation (2). When obtaining the converted SO 3 concentration, the control device 26 outputs a converted SO 3 concentration signal 37 to the concentration indicator 38. Further, the control device 26 includes a ratio setter (not shown), and the setting ratio of the ammonia injection ratio can be changed by the proportional setter.
[0023]
Next, a control method of the smoke emission processing system 10 configured as described above will be described.
[0024]
First, the control device 26 calculates the basic injection amount by taking in the fuel consumption signal 31 from the boiler 12 and multiplying this fuel consumption. Then, the control device 26 calculates the ammonia injection amount by adding the excess ammonia injection amount to the basic ammonia injection amount, and then performs PI control by a controller (not shown) of the control device 26 to control the ammonia injection amount. A signal 36 is formed. As a result, the ammonia injection amount control signal 36 is output to the injection means 22, and the injection means 22 injects an appropriate amount of ammonia.
[0025]
Further, the control device 26 performs cascade control by taking in the ammonia injection amount signal 35 with respect to the PI control signal.
[0026]
Further, the control device 26 obtains a converted SO 3 concentration from the ammonia injection amount signal 35, the exhaust gas amount signal 32, and the unreacted ammonia concentration signal 34, and changes the setting of the ammonia injection ratio from the converted SO 3 concentration. That is, the control device 26 obtains the injection ammonia concentration (= ammonia injection amount / exhaust gas flow rate) from the ammonia injection amount signal 35 and the exhaust gas amount signal 32, and further calculates the equation from the injection ammonia concentration and the unreacted ammonia concentration signal 34. From (2), the converted SO 3 concentration is calculated. Then, the calculated converted SO 3 concentration signal 37 is output to the concentration indicator 38. Thereby, since the converted SO 3 concentration is displayed on the concentration indicator 38, the operator operates the ratio setting device of the control device 26 while looking at the concentration indicator 38 to change the setting of the ammonia injection ratio. An appropriate amount of ammonia can be injected.
[0027]
According to the flue gas treatment system 10 of the present embodiment, by converting the SO 3 concentration from the concentration variation of the ammonia, so setting the injection ratio of the ammonia based on the terms of SO 3 concentration, SO 3 concentration Even when is changed, an appropriate amount of ammonia can be injected. Accordingly, it is possible to prevent an ammonia injection amount from being insufficient and ammonium sulfate from being generated in the electrostatic precipitator 16, or an excessive amount of ammonia injection to discharge a large amount of unreacted ammonia.
[0028]
Further, in the flue gas treatment system 10, the formula (2) for obtaining the converted SO 3 concentration, assuming decrease in ammonia concentration was used to neutralize all SO 3, are converted to SO 3 concentration. Therefore, the converted SO 3 concentration is calculated to be slightly higher than the actually measured SO 3 concentration. Thereby, when ammonia is injected according to the converted SO 3 concentration, a little more ammonia is injected, so that it is possible to reliably prevent the occurrence of insufficient ammonia injection.
[0029]
In the above-described embodiment, the control device 26 employs a one-loop type controller having a calculation function, but may be a digital control device.
[0030]
In the embodiment described above, the injection ratio is manually changed by displaying the converted SO 3 concentration on the concentration indicator 38. However, the setting magnification of the ratio setting device may be automatically set. Thereby, ammonia injection control can be fully automated.
[0031]
【The invention's effect】
As described above, according to the flue gas treatment system of the present invention, the ammonia concentration change amount is measured by the concentration change amount measuring means, and the ammonia injection amount is adjusted according to the ammonia concentration change amount. 3 Even if the concentration varies, an appropriate amount of ammonia can be injected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an overall configuration of a smoke emission processing system according to an embodiment of the present invention. FIG. 2 is a system diagram showing a control system of the smoke emission processing system of FIG.
DESCRIPTION OF SYMBOLS 10 ... Flue gas processing system, 12 ... Boiler, 16 ... Electric dust collector, 22 ... Injection | pouring means, 24 ... Concentration measurement means, 26 ... Control apparatus, 31 ... Fuel consumption signal, 32 ... Exhaust gas signal, 34 ... Not yet The reaction of ammonia concentration signal, 35 ... ammonia injection amount signal, 36 ... ammonia injection rate control signal, 37 ... in terms of SO 3 concentration signal, 38 ... concentration indicator

Claims (2)

ボイラから排出された排ガスにアンモニアを注入して電気集塵器に供給し、該電気集塵器によって前記排ガス中のダストを除去する排煙処理システムにおいて、
前記ボイラで消費された燃料消費量を測定する燃料消費量測定手段と、
前記排ガスに注入されたアンモニアが電気集塵器から排出されるまでの前記排ガスにおけるアンモニア濃度変化量を測定する手段であって、前記電気集塵器に供給される排ガス量を測定する排ガス量測定手段と、前記排ガスに注入されるアンモニア注入量を測定する注入量測定手段と、前記電気集塵器から排出された排ガス中のアンモニア濃度を測定する未反応アンモニア濃度測定手段と、から成り、前記排ガス量測定手段で測定した排ガス量と、前記注入量測定手段で測定したアンモニア注入量とから、アンモニアを注入した際の排ガス中の注入アンモニア濃度を算出するとともに、該注入アンモニア濃度と、前記未反応濃度測定手段で測定した未反応アンモニア濃度との差から、前記アンモニア濃度変化量を測定する濃度変化量測定手段と、
前記燃料消費量測定手段で測定した燃料消費量から基本注入量を算出し、該基本注入量に応じて前記アンモニアを注入するとともに、前記濃度変化量測定手段で測定したアンモニア濃度変化量に応じて、前記アンモニアの注入量を調整する調整手段と、を備えたことを特徴とする排煙処理システム。
In a flue gas treatment system for injecting ammonia into exhaust gas discharged from a boiler and supplying it to an electric dust collector, and removing dust in the exhaust gas by the electric dust collector,
Fuel consumption measuring means for measuring the fuel consumption consumed in the boiler;
A means for measuring the amount of ammonia concentration change in the exhaust gas until the ammonia injected into the exhaust gas is discharged from the electric dust collector, and measuring the amount of exhaust gas supplied to the electric dust collector Means, an injection amount measuring means for measuring the amount of ammonia injected into the exhaust gas, and an unreacted ammonia concentration measuring means for measuring the ammonia concentration in the exhaust gas discharged from the electric dust collector, From the exhaust gas amount measured by the exhaust gas amount measuring means and the ammonia injection amount measured by the injection amount measuring means, the injected ammonia concentration in the exhaust gas when ammonia is injected is calculated, and the injected ammonia concentration and the uninjected ammonia concentration are calculated. from the difference between the unreacted ammonia concentration measured at reaction concentration measurement means, density variation measuring means for measuring the ammonia concentration variation ,
The basic injection amount is calculated from the fuel consumption measured by the fuel consumption measuring means, and the ammonia is injected according to the basic injection amount, and according to the ammonia concentration change amount measured by the concentration change amount measuring means. And an adjusting means for adjusting the ammonia injection amount.
前記調整手段は、前記濃度変化量測定手段で測定したアンモニア濃度変化量を、前記排ガス中に存在した硫黄酸化物の濃度に換算し、該換算値に基づいて前記アンモニアの注入量を調整することを特徴とする請求項1記載の排煙処理システム。  The adjusting means converts the ammonia concentration change amount measured by the concentration change measuring means into the concentration of sulfur oxides present in the exhaust gas, and adjusts the ammonia injection amount based on the converted value. The flue gas treatment system according to claim 1.
JP28222899A 1999-10-04 1999-10-04 Smoke treatment system Expired - Fee Related JP3705042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28222899A JP3705042B2 (en) 1999-10-04 1999-10-04 Smoke treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28222899A JP3705042B2 (en) 1999-10-04 1999-10-04 Smoke treatment system

Publications (2)

Publication Number Publication Date
JP2001104746A JP2001104746A (en) 2001-04-17
JP3705042B2 true JP3705042B2 (en) 2005-10-12

Family

ID=17649733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28222899A Expired - Fee Related JP3705042B2 (en) 1999-10-04 1999-10-04 Smoke treatment system

Country Status (1)

Country Link
JP (1) JP3705042B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614006B (en) * 2014-12-25 2017-05-17 吉林省电力科学研究院有限公司 Method for measuring CO2 emission factors of power station boiler
CN209317336U (en) * 2018-11-06 2019-08-30 源柏樑 A kind of air cleaning system and Internet of Things artificial intelligence control device
FI130699B1 (en) * 2020-06-16 2024-01-24 Valmet Technologies Oy Multiple inlet for wet electrostatic precipitator for a vehicle

Also Published As

Publication number Publication date
JP2001104746A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
CN103697946B (en) A kind of computing method of coal fired boiler of power plant flue gas flow and the control method of pollutant discharge amount
CN104722203B (en) A kind of SCR denitration control system of flue gas of heating furnace and method
CN104684627B (en) Flue gas treatment method and flue gas treatment device
CN107398162A (en) Wet flue gas desulfurization oxidation Fan Energy-saving method
JP3705042B2 (en) Smoke treatment system
EP0715167A3 (en) Apparatus for analyzing air/fuel ratio sensor characteristics
JP3705041B2 (en) Smoke treatment system
CN108051117A (en) A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system and method
CN106139899A (en) SCR denitration control system and method of garbage incinerator
JP5302618B2 (en) Nitrogen oxide treatment equipment
CN207946179U (en) A kind of SCR denitration continuously sprays ammonia on-line temperature monitoring and control system
JP4690597B2 (en) Combustion type abatement system
ATE175770T1 (en) METHOD AND DEVICE FOR CONTROLLING THE AMOUNT OF AIR DURING AFTER-COMMERCTION IN AN EXHAUST GAS COLLECTOR OF A METALLURGICAL REACTOR
JP3565607B2 (en) Method and apparatus for controlling amount of ammonia injection into denitration device
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
JPH112403A (en) Boiler apparatus
JPH0545767B2 (en)
JPH0771619B2 (en) Exhaust gas denitration control device
JP3611026B2 (en) Smoke removal equipment
CN217829526U (en) High-efficient regulation and control of flue gas denitration spouts ammonia grid
JP2004141754A (en) Apparatus and method for denitrifying stack gas
CN115105938A (en) Efficient regulation and control ammonia injection grid for flue gas denitration and ammonia injection amount calculation method
JP3449060B2 (en) Method for removing sulfur oxides from flue gas
JP2009279490A (en) Ammonia-injecting system and ammonia-injecting method
JPH09303714A (en) Boiler equipment and operating method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees