JPH09303714A - Boiler equipment and operating method thereof - Google Patents

Boiler equipment and operating method thereof

Info

Publication number
JPH09303714A
JPH09303714A JP12372896A JP12372896A JPH09303714A JP H09303714 A JPH09303714 A JP H09303714A JP 12372896 A JP12372896 A JP 12372896A JP 12372896 A JP12372896 A JP 12372896A JP H09303714 A JPH09303714 A JP H09303714A
Authority
JP
Japan
Prior art keywords
boiler
concentration
sulfur
boiler furnace
furnace outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12372896A
Other languages
Japanese (ja)
Inventor
Yuji Fukuda
祐治 福田
Kazuto Sakai
和人 酒井
Shunichi Tsumura
俊一 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12372896A priority Critical patent/JPH09303714A/en
Publication of JPH09303714A publication Critical patent/JPH09303714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the concentration of SO3 at a boiler, furnace outlet at a low value even in the case when fuel of a high sulfur content is used. SOLUTION: An SO2 gas analyzer 12 is provided at a boiler furnace outlet 18 and a gas analyzer 13 of SO2 in combustion gas is provided at a portion positioned on the upstream side of the gas analyzer 12, in the vicinity of an upper-stage coil 8 of a low-temperature superheater, for instance. The difference between measured values of the two gas analyzers 12 and 13 is monitored during the operation of a boiler, and when the difference between the concentrations of the SO2 in the combustion gas at the two spots becomes a certain prescribed value or above, an ash removing device such as a soot blower 14 is operated. This is based on the finding that the rate of conversion of the SO2 into SO3 has a close relationship with the portion of sticking of ashes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭や石油等の化
石燃料を燃焼するボイラに係わり、特にボイラ排ガス中
の無水硫酸濃度を低減するのに好適なボイラ装置及びそ
の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler that burns fossil fuels such as coal and petroleum, and more particularly to a boiler apparatus suitable for reducing the concentration of anhydrous sulfuric acid in boiler exhaust gas and a method for operating the boiler apparatus.

【0002】[0002]

【従来の技術】石炭や重油等に含まれる硫黄化合物は、
燃焼等に大部分のものが二酸化硫黄(以下SO2と称す
る)となり、その一部は(1)式の反応で三酸化硫黄ま
たは無水硫酸(以下SO3と称する)となる。
2. Description of the Related Art Sulfur compounds contained in coal, heavy oil, etc.
Most of what is burnt or the like becomes sulfur dioxide (hereinafter referred to as SO 2 ), and a part thereof becomes sulfur trioxide or sulfuric anhydride (hereinafter referred to as SO 3 ) in the reaction of the formula (1).

【0003】SO2+1/2O2=SO3
(1) SO3は燃焼火炎中で生成する場合と、燃焼ガスと接触
するV25等の金属酸化物によって生成する場合の両方
があるが、排ガス中のSO3は水分と結合して硫酸とな
り、これが装置材料表面に凝縮して腐食を発生させる。
また硫酸はダストを固化する作用もあるため、装置の目
詰まりの原因ともなる。こうしたSO3による障害が問
題となるのは空気予熱器、排ガスダクト、集塵装置など
の比較的温度の低い装置である。
SO 2 + 1 / 2O 2 = SO 3
(1) There are both cases where SO 3 is produced in combustion flames and cases where it is produced by metal oxides such as V 2 O 5 that come into contact with combustion gas, but SO 3 in exhaust gas is combined with moisture. It becomes sulfuric acid, which condenses on the surface of the equipment material and causes corrosion.
Further, since sulfuric acid also has a function of solidifying dust, it also causes clogging of the device. The problem due to such SO 3 is a device having a relatively low temperature such as an air preheater, an exhaust gas duct, and a dust collector.

【0004】SO3の凝縮温度(酸露点)は排ガス中の
SO3濃度の増加とともに上昇するため、硫黄含有量の
多い燃料やSO2をSO3に酸化させる触媒作用をするバ
ナジウム(V)を多量に含む燃料、例えば重質油をボイ
ラで使用すると、ボイラ排ガスには高濃度のSO3が含
まれるようになる。SO3濃度は、一般のC重油では排
ガス中の10ppm以下であるが、高硫黄、高バナジウ
ム含有重質油燃料では数10〜100ppmまで上昇す
る可能性がある。したがって、こうした高硫黄、高バナ
ジウム燃料を燃焼する場合には排ガス中のSO3濃度の
増加に対する対策が必要不可欠となっている。
[0004] condensation temperature (acid dew point) of the SO 3 is to increase with increasing SO 3 concentration in the exhaust gas, the vanadium to catalyze the oxidation of the fuel and SO 2 high sulfur content in SO 3 (V) When a large amount of fuel, for example, heavy oil, is used in the boiler, the boiler exhaust gas contains a high concentration of SO 3 . The SO 3 concentration is 10 ppm or less in the exhaust gas in general C heavy oil, but may increase to several tens to 100 ppm in heavy oil fuel containing high sulfur and vanadium. Therefore, when burning such high-sulfur and high-vanadium fuels, measures against the increase in SO 3 concentration in the exhaust gas are indispensable.

【0005】排ガス中のSO3濃度を低下させる方法と
して従来より (1)ガス中のSO3を化学的に中和する方法、(2)
ガス中の酸素濃度を低下させる方法などが知られてお
り、実際に用いられている。
Conventional methods for reducing the concentration of SO 3 in exhaust gas include (1) a method of chemically neutralizing SO 3 in gas, (2)
A method of lowering the oxygen concentration in gas is known and is actually used.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術のうち、
(1)の方法としてはマグネシウム(Mg)、カルシウ
ム(Ca)などのアルカリ土類金属成分などを燃料中に
添加したり、燃料とは別に炉内に注入する方法が行われ
ているが、この場合は燃焼灰以外にSO2と反応して生
成した硫酸マグネシウム(MgSO4)等が同時に伝熱
管へ付着するため、伝熱管付着灰量及びばいじん量の増
加原因となる。
Of the above-mentioned conventional techniques,
As the method (1), a method of adding an alkaline earth metal component such as magnesium (Mg) or calcium (Ca) to the fuel or injecting it into the furnace separately from the fuel is used. In this case, in addition to combustion ash, magnesium sulfate (MgSO 4 ) and the like generated by reaction with SO 2 are simultaneously attached to the heat transfer tube, which causes an increase in the ash and ash quantity adhering to the heat transfer tube.

【0007】また、集塵器等の装置入口でアンモニア
(NH3)を注入し、SO3を硫安((NH42SO4
として固定する方法も広く用いられているが、この場合
は、アンモニア注入装置の増設やNH3購入費用が必要
であり、プラントのランニングコスト増となる。また、
硫安の析出による灰詰まりの問題も生じる。
Ammonia (NH 3 ) is injected at the entrance of a dust collector or the like to convert SO 3 into ammonium sulfate ((NH 4 ) 2 SO 4 ).
However, in this case, additional ammonia injection equipment and NH 3 purchase costs are required, which increases the running cost of the plant. Also,
There is also a problem of ash clogging due to the precipitation of ammonium sulfate.

【0008】また、上記(2)の方法ではSO2のSO3
への転化率は低下するが、排ガス中の一酸化炭素(C
O)濃度が増加するおそれがある。
In the method (2), SO 2 is replaced with SO 3
Conversion to carbon monoxide (C
O) Concentration may increase.

【0009】したがって、上記した従来技術でボイラ排
ガス中のSO3濃度を低減しようとした場合に別の問題
が新たに発生するという欠点があった。
Therefore, there is a drawback that another problem is newly generated when the SO 3 concentration in the boiler exhaust gas is reduced by the above-mentioned conventional technique.

【0010】本発明の課題は、上記した従来技術の欠点
をなくし、硫黄含有量の高い燃料を使用する場合にも、
ボイラ火炉出口のSO3濃度を低い値に維持できるボイ
ラ装置及びその運転方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to use a fuel having a high sulfur content.
It is an object of the present invention to provide a boiler device capable of maintaining a low SO 3 concentration at the boiler furnace outlet and an operating method thereof.

【0011】[0011]

【課題を解決するための手段】本発明の上記課題は次の
構成によって達成される。すなわち、化石燃料を燃焼さ
せて、ボイラ火炉内に設けられたボイラ伝熱管群を加熱
するボイラ装置において、ボイラ火炉出口と、それより
も前流側の少なくとも2箇所で燃焼ガス中の硫黄酸化物
の濃度を計測し、その計測値の差に基づきSO2のSO3
への転化率を監視するボイラ装置の運転方法である。
The above object of the present invention is achieved by the following constitution. That is, in a boiler device that burns fossil fuel to heat a boiler heat transfer tube group provided in a boiler furnace, in a boiler furnace outlet and at least two points on the upstream side thereof, sulfur oxides in combustion gas the concentration measurement, SO 3 of SO 2 based on the difference between the measured value
It is a method of operating a boiler device that monitors the conversion rate to water.

【0012】本発明の上記ボイラ装置の運転方法におい
て、ボイラ火炉出口の硫黄酸化物濃度の計測値と、それ
よりも前流側の硫黄酸化物濃度の計測値との差が、所定
値以上になったらボイラ伝熱管群に設けられた灰除去装
置を作動させることでボイラ火炉出口のSO3濃度を低
い値に維持できる。本発明においては、硫黄酸化物の濃
度として燃焼ガス中のSO2またはSO3の濃度を計測す
る。
In the method for operating the boiler apparatus of the present invention, the difference between the measured value of the sulfur oxide concentration at the boiler furnace outlet and the measured value of the sulfur oxide concentration on the upstream side of the boiler furnace is not less than a predetermined value. Then, by operating the ash removal device provided in the boiler heat transfer tube group, the SO 3 concentration at the boiler furnace outlet can be maintained at a low value. In the present invention, the concentration of SO 2 or SO 3 in the combustion gas is measured as the concentration of sulfur oxides.

【0013】また、本発明の上記課題は次の構成によっ
て達成される。すなわち、化石燃料を燃焼させて、ボイ
ラ火炉内に設けられたボイラ伝熱管群を加熱するボイラ
装置において、ボイラ火炉出口と、それよりも前流側の
ボイラ火炉内と少なくとも2箇所に燃焼ガス中の硫黄酸
化物濃度計を設け、またボイラ伝熱管群には灰除去装置
を設け、さらに、前記ボイラ火炉出口の硫黄酸化物濃度
計の計測値とボイラ火炉出口よりも前流側のボイラ火炉
内に設けられた硫黄酸化物濃度計の計測値の差が所定値
以上になったら灰除去装置を作動させる制御装置を設け
たボイラ装置である。
The above object of the present invention can be achieved by the following constitution. That is, in a boiler device that burns fossil fuel to heat a group of boiler heat transfer tubes provided in a boiler furnace, in a boiler furnace outlet and in a boiler furnace on the upstream side of the boiler furnace, at least two places in the combustion gas Is installed in the boiler heat transfer tube group, and further, the measured value of the sulfur oxide concentration meter at the boiler furnace outlet and the inside of the boiler furnace on the upstream side of the boiler furnace outlet The boiler device is provided with a control device that activates the ash removal device when the difference between the measurement values of the sulfur oxide concentration meter provided in the above is greater than or equal to a predetermined value.

【0014】上記本発明のボイラ装置において、複数の
ボイラ伝熱管毎にそれぞれ一対の硫黄酸化物濃度計と灰
除去装置を設け、ボイラ火炉出口の硫黄酸化物濃度計の
計測値と、各々の硫黄酸化物濃度計の計測値との差が、
所定値以上になったら各々の硫黄酸化物濃度計に対応す
る灰除去装置を作動させる制御装置を設けることができ
る。上記硫黄酸化物濃度計としてはSO2濃度計または
SO3濃度計を用いることができる。また、上記灰除去
装置としてスートブロア方式または音響方式の装置を用
いることができる。
In the boiler apparatus of the present invention described above, a pair of sulfur oxide concentration meters and an ash removing device are provided for each of the plurality of boiler heat transfer tubes, and the measured values of the sulfur oxide concentration meters at the boiler furnace outlet and the respective sulfur are measured. The difference from the measured value of the oxide concentration meter,
It is possible to provide a control device for activating the ash removal device corresponding to each sulfur oxide concentration meter when the value exceeds a predetermined value. An SO 2 concentration meter or an SO 3 concentration meter can be used as the sulfur oxide concentration meter. A soot blower type or an acoustic type device can be used as the ash removing device.

【0015】石炭や石油等の化石燃料を燃焼するボイラ
装置において、少なくともボイラ火炉出口とそれより前
流に位置する部位、例えば低温過熱器入口の2箇所に燃
焼ガス中のSO2濃度またはSO3濃度を計測する装置を
設置し、両者の差を運転中監視し、当該2箇所における
燃焼ガス中のSO2濃度またはSO3濃度の差が、ある一
定値以上になったらスートブロア等の灰除去装置を作動
させる運転を行うものである。
In a boiler apparatus for burning fossil fuels such as coal and petroleum, the SO 2 concentration or SO 3 in the combustion gas should be present at least at the two locations of the boiler furnace outlet and the upstream thereof, for example, the low temperature superheater inlet. A device for measuring the concentration is installed, and the difference between the two is monitored during operation, and when the difference between the SO 2 concentration or SO 3 concentration in the combustion gas at the two locations becomes a certain value or more, an ash removal device such as soot blower. The operation is to operate.

【0016】SO3の生成は燃焼ガス中のSO2と酸素が
反応して生成するもので、酸化触媒作用をするバナジウ
ム(V)や鉄(Fe)を含む炉内付着灰がSO3転化率
の変化に影響することは容易に推測される。しかし、ボ
イラ炉内付着物の性状とSO3転化率の関係は従来不明
であった。そこで、本発明者等が種々検討した結果、S
2のSO3への転化率は灰の付着部位と密接な関係にあ
ることが判明した。
SO 3 is produced by the reaction of SO 2 and oxygen in the combustion gas, and the in-furnace ash containing vanadium (V) and iron (Fe), which act as an oxidation catalyst, is converted into SO 3. It is easily inferred that it will affect the change of. However, the relationship between the property of deposits in the boiler furnace and the SO 3 conversion rate has not been known so far. Therefore, as a result of various examinations by the present inventors, S
It was found that the conversion rate of O 2 to SO 3 is closely related to the attachment site of ash.

【0017】すなわち、図6に示すように高硫黄、高バ
ナジウム含有燃料を使用したボイラの種々の場所に付着
した灰を採取し、そのSO3転化率を測定した結果、ガ
ス温度が低い部位、すなわち低温過熱器や節炭器に付着
した灰は非常にSO3転化率が高いことが判明した。
That is, as shown in FIG. 6, ash attached to various places of a boiler using high sulfur and high vanadium content fuel was sampled and the SO 3 conversion rate was measured. That is, it was found that the ash attached to the low temperature superheater and the economizer has a very high SO 3 conversion rate.

【0018】ボイラの低温部位に付着した灰でSO3
化率が高くなるメカニズムとしては、灰中のVの量・存
在形態や硫酸根(SO4 2-)の量が多いこと等が考えら
れる。なお、SO3転化率は450℃に過熱された付着
灰に500ppmSO2−3%O2−bal.N2ガスを
1リットル/minで流しながら、付着灰の前流と後流
のSO2濃度を測定し、その差をSO3濃度とする方法で
求めた。
As a mechanism for increasing the SO 3 conversion rate in the ash attached to the low temperature portion of the boiler, it is considered that the amount and form of V in the ash and the amount of sulfate radical (SO 4 2− ) are large. . The SO 3 conversion was 500 ppm SO 2 -3% O 2 -bal. While flowing N 2 gas at 1 liter / min, the SO 2 concentration of the adhering ash before and after was measured, and the difference was taken as the SO 3 concentration.

【0019】本発明により、低温過熱器や節炭器に付着
した灰を効率的に除去することによってボイラ火炉出口
のSO3転化率を低下させることが可能となる。
According to the present invention, it is possible to reduce the SO 3 conversion rate at the boiler furnace outlet by efficiently removing the ash attached to the low temperature superheater and the economizer.

【0020】本発明ではボイラ火炉出口とそれより前流
側の少なくともボイラ火炉内の2箇所の燃焼ガス中のS
2濃度またはSO3濃度差が許容できる値以上となった
場合に伝熱管に付着した灰を除去する装置、例えばスー
トブロアや音響式灰除去装置を作動させ、伝熱管群に付
着した灰を除去し、ボイラ火炉出口のSO2からのSO3
転化率が許容値以下になるようにした。この結果、ボイ
ラ火炉の下流に設置される空気予熱器や電気集塵器の腐
食やダスト付着を効果的に防止することができる。
In the present invention, the S in the combustion gas at the boiler furnace outlet and at least at two locations in the boiler furnace on the upstream side of the boiler furnace outlet.
When the O 2 concentration or SO 3 concentration difference exceeds an allowable value, a device that removes ash attached to the heat transfer tube, such as a soot blower or an acoustic ash removal device, is activated to remove the ash attached to the heat transfer tube group. And SO 3 from SO 2 at the boiler furnace outlet
The conversion rate was set to be below the allowable value. As a result, it is possible to effectively prevent corrosion and dust adhesion of the air preheater and the electrostatic precipitator installed downstream of the boiler furnace.

【0021】[0021]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 以下、本発明の実施例について図面を用いて説明する。
図1は本発明の一実施例を適用したボイラの側面図であ
る。図1において、バーナ1で燃焼した燃焼灰は燃焼ガ
スの流れに従って、プラトン過熱器4、スクリーン管
5、高温過熱器6、高温再熱器7、低温過熱器8〜10
および節炭器11を経由してボイラ火炉出口18に至
る。ボイラ火炉を出た排ガスは脱硝装置19、空気予熱
器20、集塵器21および脱硫装置22を経て煙突23
から排出される。ボイラ火炉出口18と低温過熱器上段
8の上流とには燃焼ガス中のSO2濃度を計測する装置
12、13が設置され、また各伝熱管群にはスートブロ
ア14が複数個設置されている。
Example 1 An example of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view of a boiler to which an embodiment of the present invention is applied. In FIG. 1, the combustion ash burned by the burner 1 follows the flow of the combustion gas, the Plato superheater 4, the screen tube 5, the high temperature superheater 6, the high temperature reheater 7, and the low temperature superheaters 8 to 10.
And the boiler furnace outlet 18 via the economizer 11. The exhaust gas discharged from the boiler furnace passes through a denitration device 19, an air preheater 20, a dust collector 21, and a desulfurization device 22, and then a chimney 23.
Emitted from. Devices 12 and 13 for measuring the SO 2 concentration in the combustion gas are installed at the boiler furnace outlet 18 and upstream of the low temperature superheater upper stage 8, and a plurality of soot blowers 14 are installed in each heat transfer tube group.

【0022】ボイラ火炉出口18のSO2濃度計測装置
12と低温過熱器上段コイル8の上流のSO2濃度計測
装置13及びスートブロア14の流量調節弁15はコン
ピュータ17に接続されており、各SO2濃度計測装置
12、13からコンピュータ17に入力された信号によ
り、コンピュータ17は各スートブロア14の流量調節
弁15の開閉及び流量調整を行うようになっている。
The SO 2 concentration measuring device 12 at the boiler furnace outlet 18, the SO 2 concentration measuring device 13 upstream of the upper coil 8 of the low-temperature superheater, and the flow control valve 15 of the soot blower 14 are connected to the computer 17, and each SO 2 concentration is measured. The computer 17 opens and closes the flow rate adjusting valve 15 of each sootblower 14 and adjusts the flow rate according to signals input from the concentration measuring devices 12 and 13 to the computer 17.

【0023】次に上記のように構成された本実施例での
運転方法を説明する。図2は低温過熱器上段コイル8の
上流のSO2濃度とボイラ火炉出口18のSO2濃度の差
(=ボイラ火炉出口のSO3濃度)と運転時間の関係を
示したものである。運転開始時(a)は各伝熱管群とも
表面はきれいで、SO3濃度はほぼ零であるが、運転と
ともに徐々に燃焼灰が各伝熱管群に付着し始め、SO3
濃度が増加していく。このSO3濃度がある設定値A以
上になるとスートブロア14の流量調節弁15が開とな
り、蒸気または空気がボイラ火炉2内に供給される
(b)。その結果、伝熱管に付着した灰は除去され、S
3濃度は低下しはじめる。そして、SO3濃度がある設
定値A以下になったらスートブロア14の流量調節弁1
5が閉となる(c)。この動作を繰り返すことにより、
ボイラ火炉出口18のSO3濃度を常にある設定値A以
下に保つことが可能となる。
Next, the operation method in the present embodiment configured as described above will be explained. FIG. 2 shows the relationship between the difference between the SO 2 concentration upstream of the low temperature superheater upper coil 8 and the SO 2 concentration at the boiler furnace outlet 18 (= SO 3 concentration at the boiler furnace outlet) and the operating time. At the start of the operation (a), the surface of each heat transfer tube group is clean and the SO 3 concentration is almost zero, but as the operation starts, the combustion ash gradually begins to adhere to each heat transfer tube group, and SO 3
The concentration increases. When this SO 3 concentration exceeds a certain set value A, the flow rate control valve 15 of the soot blower 14 opens and steam or air is supplied into the boiler furnace 2 (b). As a result, the ash attached to the heat transfer tube is removed and S
The O 3 concentration begins to drop. When the SO 3 concentration falls below a certain set value A, the flow control valve 1 of the soot blower 14
5 is closed (c). By repeating this operation,
It is possible to always keep the SO 3 concentration at the boiler furnace outlet 18 below a certain set value A.

【0024】SO2濃度計測に使用する装置12、13
としては赤外線ガス分析やガスクロマト等の市販装置が
使用される。特に、赤外線ガス分析計は10ppm〜1
00%までの広範囲のSO2濃度の測定が可能であり、
かつ応答性が0.1〜20秒と比較的速いので本実施例
のようにほぼ連続で使用する場合に好適な方法である。
Devices 12 and 13 used for SO 2 concentration measurement
A commercially available device such as an infrared gas analyzer or a gas chromatograph is used. Especially, the infrared gas analyzer is 10 ppm to 1
It is possible to measure a wide range of SO 2 concentrations up to 00%,
In addition, since the response is relatively fast at 0.1 to 20 seconds, it is a suitable method when used almost continuously as in this embodiment.

【0025】スートブロア14を起動させる設定SO3
濃度は、ボイラ火炉2の後流に設置される装置の使用材
質や使用温度によって種々変化させる必要があるため、
特に限定するものではない。
Setting SO 3 for activating the soot blower 14
Since the concentration needs to be variously changed depending on the material used and the operating temperature of the device installed in the downstream of the boiler furnace 2,
It is not particularly limited.

【0026】実施例2 図3に本発明になるその他の実施例を示す。本実施例で
はSO2計測装置13を低温過熱器8〜10の各段の中
間、低温過熱器8の上段、節炭器11の中間及びボイラ
火炉出口18の計5箇所に位置した例である。図4に各
部位と節炭器出口のSO2計測装置の差の運転時間変化
を示す。図中でBは低温過熱器上段コイル8の上段、C
は低温過熱器上段コイル8と中段コイル9の中間、Dは
低温過熱器中段コイル9と下段コイル10の中間、Eは
低温過熱器下段コイル10と節炭器11の中間にそれぞ
れ設置したSO2濃度計測装置13とボイラ火炉出口1
8に設置したSO2濃度計測装置12の差分を示す線で
ある。伝熱管群の位置によって温度、灰の付着量及び灰
組成は異なるため、SO2のSO3への転化率も各部位に
よって変化する。
Embodiment 2 FIG. 3 shows another embodiment according to the present invention. In the present embodiment, the SO 2 measuring device 13 is an example positioned at the middle of each stage of the low-temperature superheaters 8 to 10, the upper stage of the low-temperature superheater 8, the middle of the economizer 11, and the boiler furnace outlet 18 at a total of 5 positions. . Figure 4 shows the change in operating time due to the difference between the SO 2 measuring device at each part and the outlet of the economizer. In the figure, B is the upper stage of the low temperature superheater upper coil 8 and C
Is an intermediate between the low temperature superheater upper coil 8 and the middle coil 9, D is an intermediate between the low temperature superheater middle coil 9 and the lower coil 10, and E is an SO 2 installed between the low temperature superheater lower coil 10 and the economizer 11. Concentration measuring device 13 and boiler furnace outlet 1
8 is a line showing a difference between the SO 2 concentration measuring devices 12 installed in FIG. Since the temperature, the amount of ash deposited, and the ash composition differ depending on the position of the heat transfer tube group, the conversion rate of SO 2 to SO 3 also changes depending on each part.

【0027】このため、本実施例では、複数位置のSO
2のSO3への転化率の変化をモニタすることにより、複
数のスートブロア14を個々に作動(b)・停止(c)
させ、ボイラ火炉出口18のSO3濃度を設定値A以下
になるようにしている。
Therefore, in this embodiment, SOs at a plurality of positions are set.
By monitoring the change in the conversion rate of 2 to SO 3 , a plurality of soot blowers 14 are individually operated (b) and stopped (c).
The SO 3 concentration at the boiler furnace outlet 18 is set to be the set value A or less.

【0028】本実施例2は前記実施例1に比べて、SO
2濃度計測装置13の設置費用は高くなるが、必要最小
限のスートブロア14のみを作動させるようにしている
ため、スートブロア14のランニングコストは安価にな
り、かつボイラ火炉出口18のSO3濃度の制御精度は
良くなる利点がある。
The second embodiment is different from the first embodiment in SO
2 Although the installation cost of the concentration measuring device 13 is high, the running cost of the soot blower 14 is low because only the minimum necessary soot blower 14 is operated, and the SO 3 concentration at the boiler furnace outlet 18 is controlled. It has the advantage of improving accuracy.

【0029】なお、本実施例でのSO2濃度計測装置1
3の数は4箇所であるが、設置数や設置場所はボイラの
サイズや構造によって種々変化させる必要があるので、
特に限定するものではない。ただし、ボイラ火炉出口1
8のSO2濃度計測装置12とその前流側に位置する少
なくとも1箇所に配置されるSO2濃度計測装置13の
最低2つは必ず必要である。
The SO 2 concentration measuring device 1 of this embodiment
The number of 3 is 4 but the number of installations and the installation locations need to be changed depending on the size and structure of the boiler.
It is not particularly limited. However, boiler furnace outlet 1
At least two of the SO 2 concentration measuring device 12 and the SO 2 concentration measuring device 13 arranged at least one position on the upstream side of the SO 2 concentration measuring device 8 are required.

【0030】実施例3 図5に本発明になるその他の実施例を示す。本実施例は
SO2計測装置13の設置位置は実施例1と同じである
が、灰除去方法が実施例1または実施例2で用いたスー
トブロア14ではなく、音響式の灰除去装置24を使用
している。
Embodiment 3 FIG. 5 shows another embodiment according to the present invention. In this embodiment, the installation position of the SO 2 measuring device 13 is the same as that of the first embodiment, but the ash removing method uses an acoustic ash removing device 24 instead of the soot blower 14 used in the first or second embodiment. are doing.

【0031】灰除去装置24は音波で炉内の燃焼ガスを
振動させ、伝熱管に付着した灰を除去するものである。
本方式の灰除去装置24は伝熱管に強固に付着した灰の
場合は除去困難であるが、低温バンクにおける付着力の
弱い灰に対しては効果的にその除去ができる。本方法の
メリットはスートブロア方式に比べて、設備費が安く、
また蒸気や空気等のガスを使用しないためランニングコ
ストも安くできることである。
The ash removing device 24 removes the ash attached to the heat transfer tube by vibrating the combustion gas in the furnace with a sound wave.
The ash removing device 24 of this system is difficult to remove ash that is strongly adhered to the heat transfer tube, but can effectively remove ash that has a weak adhesive force in the low temperature bank. The advantage of this method is that the equipment cost is lower than the soot blower method,
In addition, running costs can be reduced because no gas such as steam or air is used.

【0032】[0032]

【発明の効果】本発明によれば、高硫黄燃料を燃焼する
場合に問題となるボイラ火炉出口のSO3濃度を大幅に
低減することができるので、ボイラ後流に設置される空
気予熱器や電気集塵器の腐食や灰による詰まりを防止す
ることができる。また、電気集塵器入口でのNH3添加
も不使用となり、プラントのランニングコストを低減で
きる。さらに、本発明では灰除去装置は必要に応じて作
動させているため、常時灰除去装置を作動させる場合に
比べ、灰を巻き込んだ蒸気による伝熱管の磨耗の軽減を
図ることができ、また、使用蒸気の節約も可能となる。
According to the present invention, the SO 3 concentration at the boiler furnace outlet, which is a problem when burning high-sulfur fuel, can be significantly reduced. Therefore, an air preheater installed downstream of the boiler or It is possible to prevent corrosion of the electrostatic precipitator and clogging due to ash. Further, the addition of NH 3 at the entrance of the electrostatic precipitator is not used, and the running cost of the plant can be reduced. Furthermore, in the present invention, since the ash removing device is operated as necessary, it is possible to reduce the wear of the heat transfer tube due to the vapor containing the ash, as compared with the case of operating the ash removing device at all times. The steam used can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係わるボイラ装置の側面
図である。
FIG. 1 is a side view of a boiler device according to an embodiment of the present invention.

【図2】 図1のボイラのスートブロア作動を示す線図
である。
2 is a diagram showing a soot blower operation of the boiler of FIG. 1. FIG.

【図3】 本発明の一実施例に係わるボイラ装置の側面
図である。
FIG. 3 is a side view of a boiler device according to an embodiment of the present invention.

【図4】 図3のボイラのスートブロア作動を示す線図
である。
FIG. 4 is a diagram showing a soot blower operation of the boiler of FIG.

【図5】 本発明の一実施例に係わるボイラ装置の側面
図である。
FIG. 5 is a side view of a boiler device according to an embodiment of the present invention.

【図6】 高硫黄燃料を燃焼した際に各バンク(伝熱管
群)に付着する灰のSO3転化率を示した図である。
FIG. 6 is a diagram showing the SO 3 conversion rate of ash attached to each bank (heat transfer tube group) when burning high-sulfur fuel.

【符号の説明】[Explanation of symbols]

1 バーナ 2 火炉 3 水壁 4 プラトン過熱器 5 スクリーン 6 高温過熱器 7 再熱器 8 低温過熱器上段
コイル 9 低温過熱器中段コイル 10 低温過熱器下
段コイル 11 節炭器 12 ボイラ火炉出
口SO2濃度測定器 13 炉内SO2濃度測定器 14 スートブロア 15 流量調整弁 16 蒸気配管 17 コンピュータ 18 火炉出口 19 脱硝装置 20 空気予熱器 21 集塵装置 22 脱硫装置 23 煙突 24 音響式灰除去
装置
1 burner 2 furnace 3 water wall 4 Plato superheater 5 screen 6 high temperature superheater 7 reheater 8 low temperature superheater upper coil 9 low temperature superheater middle coil 10 low temperature superheater lower coil 11 economizer 12 boiler boiler outlet SO 2 concentration Measuring instrument 13 SO 2 concentration measuring instrument 14 Soot blower 15 Flow rate control valve 16 Steam piping 17 Computer 18 Furnace outlet 19 Denitration device 20 Air preheater 21 Dust collector 22 Desulfurization device 23 Chimney 24 Acoustic ash removal device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23N 5/24 107 F23N 5/24 107Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F23N 5/24 107 F23N 5/24 107Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 化石燃料を燃焼させて、ボイラ火炉内に
設けられたボイラ伝熱管群を加熱するボイラ装置におい
て、ボイラ火炉出口と、それよりも前流側の少なくとも
2箇所で燃焼ガス中の硫黄酸化物の濃度を計測し、その
計測値の差に基づき二酸化硫黄の三酸化硫黄への転化率
を監視することを特徴とするボイラ装置の運転方法。
1. A boiler apparatus for burning fossil fuel to heat a group of boiler heat transfer tubes provided in a boiler furnace, comprising: a boiler furnace outlet; and at least two points on the upstream side of the boiler furnace. A method for operating a boiler device, comprising measuring the concentration of sulfur oxides and monitoring the conversion rate of sulfur dioxide to sulfur trioxide based on the difference between the measured values.
【請求項2】 ボイラ火炉出口の硫黄酸化物濃度の計測
値と、それよりも前流側の硫黄酸化物濃度の計測値との
差が、所定値以上になったらボイラ伝熱管群に設けられ
た灰除去装置を作動させることを特徴とする請求項1記
載のボイラ装置の運転方法。
2. The boiler heat transfer tube group is provided when the difference between the measured value of the sulfur oxide concentration at the boiler furnace outlet and the measured value of the sulfur oxide concentration on the upstream side of it exceeds a predetermined value. The method for operating a boiler device according to claim 1, wherein the ash removing device is operated.
【請求項3】 硫黄酸化物の濃度として燃焼ガス中の二
酸化硫黄または三酸化硫黄の濃度を計測することを特徴
とする請求項1または2記載のボイラ装置の運転方法。
3. The method for operating a boiler device according to claim 1, wherein the concentration of sulfur dioxide or sulfur trioxide in the combustion gas is measured as the concentration of sulfur oxides.
【請求項4】 化石燃料を燃焼させて、ボイラ火炉内に
設けられたボイラ伝熱管群を加熱するボイラ装置におい
て、 ボイラ火炉出口と、それよりも前流側のボイラ火炉内と
少なくとも2箇所に燃焼ガス中の硫黄酸化物濃度計を設
け、またボイラ伝熱管群には灰除去装置を設け、さら
に、前記ボイラ火炉出口の硫黄酸化物濃度計の計測値と
ボイラ火炉出口よりも前流側のボイラ火炉内に設けられ
た硫黄酸化物濃度計の計測値の差が所定値以上になった
ら灰除去装置を作動させる制御装置を設けたことを特徴
とするボイラ装置。
4. A boiler apparatus for burning a fossil fuel to heat a group of boiler heat transfer tubes provided in a boiler furnace, wherein the boiler furnace outlet and the boiler furnace on the upstream side of the boiler furnace have at least two locations. A sulfur oxide concentration meter in the combustion gas is provided, and an ash removal device is provided in the boiler heat transfer tube group.Furthermore, the measurement value of the sulfur oxide concentration meter at the boiler furnace outlet and the upstream side of the boiler furnace outlet are provided. A boiler device comprising a control device for activating an ash removal device when a difference between measured values of a sulfur oxide concentration meter provided in a boiler furnace exceeds a predetermined value.
【請求項5】 複数のボイラ伝熱管毎にそれぞれ一対の
硫黄酸化物濃度計と灰除去装置を設け、ボイラ火炉出口
の硫黄酸化物濃度計の計測値と、各々の硫黄酸化物濃度
計の計測値との差が、所定値以上になったら各々の硫黄
酸化物濃度計に対応する灰除去装置を作動させる制御装
置を設けたことを特徴とする請求項4記載のボイラ装
置。
5. A pair of sulfur oxide densitometers and an ash removal device are provided for each of the plurality of boiler heat transfer tubes, and the measured values of the sulfur oxide densitometers at the boiler furnace outlet and the respective sulfur oxide densitometers are measured. The boiler apparatus according to claim 4, further comprising a control device that operates an ash removing device corresponding to each sulfur oxide concentration meter when the difference from the value exceeds a predetermined value.
【請求項6】 硫黄酸化物濃度計は燃焼ガス中の二酸化
硫黄または三酸化硫黄の濃度を計測する装置であること
を特徴とする請求項4または5記載のボイラ装置。
6. The boiler device according to claim 4, wherein the sulfur oxide concentration meter is a device for measuring the concentration of sulfur dioxide or sulfur trioxide in the combustion gas.
【請求項7】 灰除去装置はスートブロア方式または音
響方式の装置であることを特徴とする請求項4ないし6
のいずれかに記載のボイラ装置。
7. The ash removing device is a soot blower type or an acoustic type device.
The boiler device according to any one of 1.
JP12372896A 1996-05-17 1996-05-17 Boiler equipment and operating method thereof Pending JPH09303714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12372896A JPH09303714A (en) 1996-05-17 1996-05-17 Boiler equipment and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12372896A JPH09303714A (en) 1996-05-17 1996-05-17 Boiler equipment and operating method thereof

Publications (1)

Publication Number Publication Date
JPH09303714A true JPH09303714A (en) 1997-11-28

Family

ID=14867893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12372896A Pending JPH09303714A (en) 1996-05-17 1996-05-17 Boiler equipment and operating method thereof

Country Status (1)

Country Link
JP (1) JPH09303714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090511A (en) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd Control method for so3 suppressive air-fuel ratio for boiler
JP2007032916A (en) * 2005-07-26 2007-02-08 Kurita Water Ind Ltd Method of preventing formation of clinker
JP2009204197A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Operating method of boiler for burning heavy residual oil fuel
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090511A (en) * 2001-09-17 2003-03-28 Ishikawajima Harima Heavy Ind Co Ltd Control method for so3 suppressive air-fuel ratio for boiler
JP4639562B2 (en) * 2001-09-17 2011-02-23 株式会社Ihi Boiler SO3 suppression type air-fuel ratio control method
JP2007032916A (en) * 2005-07-26 2007-02-08 Kurita Water Ind Ltd Method of preventing formation of clinker
JP4725224B2 (en) * 2005-07-26 2011-07-13 栗田工業株式会社 How to prevent clinker generation
JP2009204197A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Operating method of boiler for burning heavy residual oil fuel
JP2014129914A (en) * 2012-12-28 2014-07-10 Kawasaki Heavy Ind Ltd Boiler with corrosion suppression device and corrosion suppression method of boiler

Similar Documents

Publication Publication Date Title
US6120580A (en) Method for testing systems designed for NOx reduction in the combustion of carbonaceous fuels
EP1040865B1 (en) Mercury removal in utility wet scrubber using a chelating agent
DK0828550T3 (en) Pipe gas washing system and waste heat recovery
CN104684627B (en) Flue gas treatment method and flue gas treatment device
JPH09303714A (en) Boiler equipment and operating method thereof
JP2000051651A (en) Apparatus and method for flue gas desulfurization
JPH1114034A (en) Exhaust gas treating apparatus and operation method thereof
Roslyakov Modern air protection technologies at thermal power plants
KR20050086754A (en) Emission treatment system
US20100055015A1 (en) Low temperature mercury control process
CN107803114A (en) A kind of denitration control system and its control method and control device
Eskinazi et al. Stationary Combustion NOX Control A Summary of the 1989 Symposium
JPH04141214A (en) Exhaust gas desulfurizer
JPH06218229A (en) Method and device for controlling supply of flue gas purifying agent
Fernando SO3 issues for coal-fired plant
Omar Evaluation of BOC's Lotox process for the oxidation of elemental mercury in flue gas from a coal-fired boiler
JP3402744B2 (en) Combustion exhaust gas sampling method
JP4639562B2 (en) Boiler SO3 suppression type air-fuel ratio control method
JP3731471B2 (en) Smoke treatment method for high sulfur oil fired boiler
ZAMANSKY∗ et al. Byproducts Emissions in Reburning and Advanced ReburningTechnologies
JPS63205125A (en) Exhaust gas denitrating and desulfurizing method
Reid Discussion:“Corrosion of Metals by Liquid Vanadium Pentoxide and the Sodium Vanadates”(Kerby, RG, and Wilson, JR, 1973, ASME J. Eng. Power, 95, pp. 36–44)
Nakabayashi et al. Development of Flue Gas Treatment in Japan
JPH04288405A (en) Method of controlling quantity of discharged dioxine in incineration facilities
Solutions TEST RESULTS OF MULTI-POLLUTANT EMISSIONS REDUCTION SYSTEMS

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815