JPH112403A - Boiler apparatus - Google Patents

Boiler apparatus

Info

Publication number
JPH112403A
JPH112403A JP9153838A JP15383897A JPH112403A JP H112403 A JPH112403 A JP H112403A JP 9153838 A JP9153838 A JP 9153838A JP 15383897 A JP15383897 A JP 15383897A JP H112403 A JPH112403 A JP H112403A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
air preheater
boiler
regenerative air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9153838A
Other languages
Japanese (ja)
Inventor
Kazuto Sakai
和人 酒井
Shunichi Tsumura
俊一 津村
Yuji Fukuda
祐治 福田
Hideaki Iwamoto
英明 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9153838A priority Critical patent/JPH112403A/en
Publication of JPH112403A publication Critical patent/JPH112403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate reliably an acid dew-point temperature of exhaust gas evolved from a boiler and maintain the high efficiency of the boiler by controlling an exhaust gas temperature to an optimum level. SOLUTION: This boiler apparatus is provided with a regenerative air preheater 2 for recovering heat from exhaust gas evolved from a boiler 1, which uses fuel containing a sulfur component, and with a controlling means adapted to control a temperature of the exhaust gas at an outlet of the regenerative air preheater 2. The concentration of SO3 contained in the exhaust gas from the regenerative air preheater 2 is measured by an SO3 measuring instrument 12 and, at the same time, moisture contained in the exhaust gas from the regenerative air preheater 2 is measured by a moisture measuring instrument 15. An acid dew-point temperature of the exhaust gas is calculated by a dew-point temperature operation unit 13 on the basis of both of a measured value of the SO3 concentration obtained by the SO3 measuring instrument 12 and a measured value of moisture obtained by the moisture measuring instrument 15, whereby an exhaust gas temperature is controlled so that the exhaust gas temperature becomes higher than the acid dew-point temperature. Further, an ammonia injection quantity at an inlet of a dust collector 16 for the exhaust gas is controlled by an ammonia injection nozzle 18 on the basis of the measured value of the SO3 concentration obtained by the SO3 measuring instrument 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はボイラの制御方法に
係わり、特に排ガス温度を最適化してボイラの高効率化
を維持するのに好適なボイラ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler control method, and more particularly to a boiler apparatus suitable for optimizing an exhaust gas temperature and maintaining a high boiler efficiency.

【0002】[0002]

【従来の技術】従来のボイラ装置は図6に示すように、
ボイラ1の排ガスからの熱回収を行なうために設置され
た再生式空気予熱器2の入口の空気ダクト11における
空気温度を空気温度計5で計測し、ガスダクト10の出
口ガス温度をガス温度計4で計測して、それらの平均値
として求められる再生式空気予熱器2の低温端メタル温
度を平均温度演算器6にて算出し、あらかじめ決められ
た設定値と比較演算器7にて比較の上、制御信号発信器
8で蒸気式空気予熱器3への蒸気流量を制御する蒸気流
量調整弁9を動作させて空気ダクト11内の空気温度を
変えることにより運用されていた。
2. Description of the Related Art As shown in FIG.
The air temperature in the air duct 11 at the inlet of the regenerative air preheater 2 installed for recovering heat from the exhaust gas of the boiler 1 is measured by the air thermometer 5, and the outlet gas temperature of the gas duct 10 is measured by the gas thermometer 4. The average temperature calculator 6 calculates the low-temperature end metal temperature of the regenerative air preheater 2, which is obtained as an average value, and compares it with a predetermined set value by the comparison calculator 7. The control signal transmitter 8 operates the steam flow regulating valve 9 for controlling the steam flow to the steam air preheater 3 to change the air temperature in the air duct 11.

【0003】しかし、前記比較演算器7の設定値は再生
式空気予熱器2のエレメントの腐食及び閉塞防止の観点
から決定されるが、排ガス温度については、燃料中の硫
黄分量変動、並びにボイラ及びその出口に煙道脱硝が設
置されている場合はその触媒のSO2酸化率の経時変
化、等を考慮して排ガス中のSO3濃度の予想最大値に
基づいて決定されるため、結果的には排ガス温度が必要
以上に高くなり、ボイラ効率については十分な配慮が成
されていなかった。
However, the set value of the comparator 7 is determined from the viewpoint of preventing the elements of the regenerative air preheater 2 from corroding and clogging. If flue gas denitration is installed at the outlet, it is determined based on the expected maximum value of the SO3 concentration in the exhaust gas in consideration of the time-dependent change in the SO2 oxidation rate of the catalyst, etc. The temperature became higher than necessary, and sufficient consideration was not given to boiler efficiency.

【0004】また、排ガス中のSOx濃度を計測してあ
らかじめ設定したSO2酸化率よりSO3濃度を算出し、
設定値を決定する方法があるが、SO2酸化率が経時的
に変化した場合に対応できない問題があった。
Further, the SOx concentration in the exhaust gas is measured, and the SO3 concentration is calculated from a preset SO2 oxidation rate.
Although there is a method of determining the set value, there is a problem that it cannot cope with a case where the SO2 oxidation rate changes with time.

【0005】さらに、ガスダクト10に酸露点計を設置
して直接露点を計測して設定値を決める従来手法があ
る。これはガス中に電解質を塗ったセンサと電極を置
き、電気導電率を利用して露点を計測するものだが、次
のような問題点があった。
Further, there is a conventional method in which an acid dew point meter is installed in the gas duct 10 and the set value is determined by directly measuring the dew point. In this method, a sensor and an electrode coated with an electrolyte are placed in a gas, and the dew point is measured using electric conductivity. However, there are the following problems.

【0006】(1)センサと電極をガス中に置くため、
排ガス中に灰が含まれている場合にはセンサおよび電極
が灰に覆われ計測不可能となる。
(1) To place the sensor and the electrode in the gas,
When the ash is contained in the exhaust gas, the sensor and the electrode are covered with the ash and cannot be measured.

【0007】(2)排ガス中の灰に未燃炭素が存在する
と、導電率が変化し正確な計測ができない。
(2) If unburned carbon is present in the ash in the exhaust gas, the conductivity changes and accurate measurement cannot be performed.

【0008】(3)灰中に塩化物(CaCL2,MgCL2
など)や硫化物(MgSO4など)が存在する場合も正確
な計測ができない。
(3) Chloride (CaCL2, MgCL2)
) Or sulfides (eg, MgSO4) cannot be measured accurately.

【0009】(4)排ガス中に酸性硫安(NH4HSO
4)が存在すると、ガス温度約230℃以下でセンサ上
に凝縮するため正確な計測ができない。
(4) Acid ammonium sulfate (NH 4 HSO)
If 4) is present, accurate measurement cannot be performed because the gas condenses on the sensor at a gas temperature of about 230 ° C. or less.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術はボイラ
の高効率化の点について配慮がされておらず、排ガス温
度が必要以上に高くなりボイラ効率が低くなるという問
題があった。また、SOx温度や露点計では正確な計測
・評価が困難であるという問題も存在する。
The above prior art does not take into consideration the point of improving the efficiency of the boiler, and has a problem that the exhaust gas temperature becomes unnecessarily high and the boiler efficiency decreases. There is also a problem that it is difficult to accurately measure and evaluate the SOx temperature and the dew point meter.

【0011】本発明の目的は酸露点温度を確実に評価
し、排ガス温度を最適化してボイラ効率を高く維持する
ことにある。さらにアンモニア注入量を必要最低限とし
て運転経緯の節減を図ることにある。
An object of the present invention is to reliably evaluate an acid dew point temperature, optimize an exhaust gas temperature, and maintain a high boiler efficiency. In addition, there is a need to reduce the operation history by minimizing the amount of injected ammonia.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0013】硫黄分を含む燃料を使用するボイラの排ガ
スからの熱回収を行なう再生式空気予熱器と、前記再生
式空気予熱器出口の排ガスの温度を制御する制御手段
と、を備えたボイラ装置において、前記再生式空気予熱
器からの排ガス中のSO3の濃度を計測し、前記計測値
に基づいて酸露点温度を算出し、前記排ガス温度が前記
酸露点温度を上廻るように排ガス温度を制御するボイラ
装置。
A boiler apparatus comprising: a regenerative air preheater for recovering heat from exhaust gas from a boiler using a fuel containing sulfur; and control means for controlling the temperature of the exhaust gas at the outlet of the regenerative air preheater. Measuring the concentration of SO3 in the exhaust gas from the regenerative air preheater, calculating the acid dew point temperature based on the measured value, and controlling the exhaust gas temperature so that the exhaust gas temperature exceeds the acid dew point temperature. Boiler equipment.

【0014】更に、前記再生式空気予熱器からの排ガス
中の水分を計測し、前記水分計測値と前記SO3濃度計
測値とから前記酸露点温度を算出すること。
[0014] Further, the moisture in the exhaust gas from the regenerative air preheater is measured, and the acid dew point temperature is calculated from the measured moisture value and the measured SO3 concentration value.

【0015】更に、前記SO3濃度計測値に基づいて前
記排ガスの集塵器入口でのアンモニア注入量を制御する
こと。
[0015] Further, the amount of ammonia injected into the dust collector at the inlet of the exhaust gas is controlled based on the measured SO3 concentration.

【0016】[0016]

【発明の実施の形態】本発明の実施形態に係る全体構成
を、図1を用いて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An overall configuration according to an embodiment of the present invention will be described below with reference to FIG.

【0017】図1において、1はボイラ、2は再生式空
気予熱器、3は蒸気式空気予熱器、4はガス温度計、5
は空気温度計、6は平均温度演算器、7は比較演算器、
8は制御信号発信器、9は蒸気流量調整弁、10はガス
ダクト、11は空気ダクト、12はSO3計、13は露
点温度演算器、14は比較演算器、15は水分計、16
は集塵機、17はアンモニア流量調整弁、18はアンモ
ニア注入ノズル、19は制御信号発信器、20はフィル
タ、をそれぞれ表す。
In FIG. 1, 1 is a boiler, 2 is a regenerative air preheater, 3 is a steam air preheater, 4 is a gas thermometer, 5
Is an air thermometer, 6 is an average temperature calculator, 7 is a comparison calculator,
8 is a control signal transmitter, 9 is a steam flow control valve, 10 is a gas duct, 11 is an air duct, 12 is an SO3 meter, 13 is a dew point temperature calculator, 14 is a comparison calculator, 15 is a moisture meter, 16
Denotes a dust collector, 17 denotes an ammonia flow control valve, 18 denotes an ammonia injection nozzle, 19 denotes a control signal transmitter, and 20 denotes a filter.

【0018】ボイラ1を出たガスダクト10の排ガス
は、再生式空気予熱器2にて空気ダクト11の空気と熱
交換を行なった後、ガスダクト10にて図示していない
煙突へ送られて排出される。ボイラ1へ供給される空気
ダクト11の燃焼用空気は、再生式空気予熱器2にてガ
スダクト10の排ガスから熱回収を行なった上で送られ
る。
The exhaust gas from the gas duct 10 that has exited the boiler 1 undergoes heat exchange with the air in the air duct 11 in the regenerative air preheater 2 and is then sent to the chimney (not shown) in the gas duct 10 and discharged. You. The combustion air of the air duct 11 supplied to the boiler 1 is sent after the heat is recovered from the exhaust gas of the gas duct 10 by the regenerative air preheater 2.

【0019】再生式空気予熱器2の空気ダクト11に
は、再生式空気予熱器2のエレメント低温端メタル温度
及び排ガス温度の制御を目的として、蒸気式空気予熱器
3が設置されており、加熱蒸気流量を蒸気流量調整弁9
にて変化させて再生式空気予熱器2の入口空気温度を制
御するシステムとなっている。
A steam air preheater 3 is installed in the air duct 11 of the regenerative air preheater 2 for the purpose of controlling the element low-temperature metal temperature and the exhaust gas temperature of the regenerative air preheater 2. Steam flow rate adjusting valve 9
To control the inlet air temperature of the regenerative air preheater 2.

【0020】再生式空気予熱器2の入口空気ダクト1
1、出口ガスダクト10にはそれぞれ温度計5,4が設
置され、それらの計測値により平均温度演算器6にて平
均値=低温端メタル温度を算出し、比較演算器7におい
てその制御設定値と比較して蒸気式空気予熱器3の蒸気
流量調整弁9を動作させる。
Inlet air duct 1 of regenerative air preheater 2
1. Thermometers 5 and 4 are installed in the outlet gas duct 10, respectively. An average value = low-end metal temperature is calculated by an average temperature calculator 6 based on the measured values. By comparison, the steam flow control valve 9 of the steam air preheater 3 is operated.

【0021】再生式空気予熱器2のガス後流に設置され
る集塵器16の入口には、アンモニア注入ノズル18が
あり、アンモニア流量調整弁17の開度を調整してその
流量を制御する。
At the inlet of the dust collector 16 installed downstream of the gas of the regenerative air preheater 2, there is an ammonia injection nozzle 18, which controls the opening of the ammonia flow control valve 17 to control its flow rate. .

【0022】次に、本発明の実施形態の全体構成におけ
る各構成要素間の相互関係並びにその作用を以下説明す
る。
Next, the interrelationships between the components in the overall configuration of the embodiment of the present invention and the operation thereof will be described below.

【0023】再生式空気予熱器2の出口ガスダクト10
の近傍にSO3計12を設置し排ガス中のSO3濃度を測
定する。SO3の計測は、ガスダクト10から吸引した
排ガスをSO3計12に入れて試薬のカラムを通過させ
て発色させ、比色分析することにより行なう。試薬とし
て用いるクロラニル酸バリウムは非常に溶解度の低い物
質であるが、硫酸イオンが来るとクロラニル酸イオンと
置換して硫酸バリウム(BaSO4)が形成され、クロラ
ニル酸イオンが遊離するので、その色によりSO3濃度
を判定するものである。
Outlet gas duct 10 of regenerative air preheater 2
A SO3 meter 12 is installed in the vicinity of to measure the SO3 concentration in the exhaust gas. The measurement of SO3 is performed by putting the exhaust gas sucked from the gas duct 10 into the SO3 meter 12, passing it through the column of the reagent to develop color, and performing colorimetric analysis. Barium chloranilate used as a reagent is a substance with very low solubility, but when sulfate ions come, they are replaced by chloranilate ions to form barium sulfate (BaSO4), and chloranilate ions are liberated. This is to determine the density.

【0024】SO3計12はダクトの外に設置されるの
で灰付着の問題はなく、吸引ガスに混入した微量の灰、
硫化物、塩化物等は吸引管中にフィルター20を設置し
て除去し、計測精度の向上を図る。露点温度演算器13
にて酸露点温度を算出して、ガス温度計4の実測値と比
較演算器14にて比較する。酸露点は公知の次式にて評
価できる。
Since the SO3 meter 12 is installed outside the duct, there is no problem of ash adhesion.
Sulfides, chlorides, and the like are removed by installing a filter 20 in the suction tube to improve measurement accuracy. Dew point temperature calculator 13
, The acid dew point temperature is calculated, and the measured value of the gas thermometer 4 is compared with the comparison arithmetic unit 14. The acid dew point can be evaluated by the following formula.

【0025】T=20log10V+a ここで、VはSO3%、aはガス中の水分により決まる
定数である。従って水分計15により排ガス中の水分を
計測すれば、一層精度良く酸露点を評価することができ
る。
T = 20 log 10 V + a where V is a constant determined by the SO3% and a is a constant determined by the moisture in the gas. Therefore, if the moisture in the exhaust gas is measured by the moisture meter 15, the acid dew point can be more accurately evaluated.

【0026】ガス温度計4からのガス温度実測値よりも
露点温度演算器13からの酸露点温度が高い場合には、
ガスダクト10以降の後流機器の腐食防止のため、蒸気
流量調整弁9の開度を増して(調整弁9を開いて)蒸気
式空気予熱器3への蒸気流量を増加させて、蒸気式空気
予熱器3の出口空気温度を上昇させて、排ガス温度が酸
露点温度を上回るように制御する(調整弁9を開く)。
If the acid dew point temperature from the dew point temperature calculator 13 is higher than the measured gas temperature value from the gas thermometer 4,
In order to prevent corrosion of the downstream equipment after the gas duct 10, the opening of the steam flow regulating valve 9 is increased (the regulating valve 9 is opened) to increase the steam flow to the steam air preheater 3, and the steam air The outlet air temperature of the preheater 3 is increased to control the exhaust gas temperature to be higher than the acid dew point temperature (the regulating valve 9 is opened).

【0027】逆に露点温度演算器13からの酸露点温度
の方が低い場合には再生式空気予熱器2の低温端メタル
温度設定値を満足するように蒸気流量調整弁9を閉まる
ように制御する。排ガス中のSO3量が多いボイラで
は、集塵器16の入口に設けたアンモニア注入ノズル1
8よりアンモニアを注入し、SO3と反応させて硫安と
して集塵器16にて除去する。そこでSO3計12で測
定した濃度の変化に従ってアンモニア流量調整弁17を
動作させて制御する。
Conversely, when the acid dew point temperature from the dew point temperature calculator 13 is lower, control is performed to close the steam flow control valve 9 so as to satisfy the low end metal temperature set value of the regenerative air preheater 2. I do. In a boiler having a large amount of SO3 in exhaust gas, an ammonia injection nozzle 1 provided at an inlet of a dust collector 16 is used.
Ammonia is injected from 8 and reacted with SO3 to remove as ammonium sulfate in the dust collector 16. Therefore, the ammonia flow control valve 17 is operated and controlled according to the change in the concentration measured by the SO3 meter 12.

【0028】以上説明したように、本発明は、排ガス中
のSO3を計測してその濃度に従って排ガス温度や集塵
器入口アンモニア注入量を最適化制御するものである。
そして、硫黄分を含む燃料を使用するボイラの空気予熱
器出口排ガス温度は、硫酸の露点温度以下となると硫酸
が析出してガスダクト11等の後流設備の腐食を引き起
こすため、露点温度を下回らないように制御する。
As described above, the present invention measures SO3 in exhaust gas and optimizes and controls the temperature of the exhaust gas and the amount of ammonia injected into the dust collector according to the concentration.
When the temperature of the exhaust gas at the outlet of the air preheater of the boiler using the fuel containing sulfur is lower than the dew point temperature of sulfuric acid, the sulfuric acid precipitates and causes corrosion of downstream equipment such as the gas duct 11, so that the temperature does not fall below the dew point temperature. Control.

【0029】酸の露点温度は排ガス中のSO3温度と水
分量により決まるので、SO3濃度または水分量も併せ
て計測して排ガス温度が露点温度を下回らないようにガ
ス温度制御を行なえば、排ガス温度が必要以上に高くな
ることはないので、ボイラの効率を悪化させることがな
い。
Since the dew point temperature of an acid is determined by the SO3 temperature and the amount of moisture in the exhaust gas, if the SO3 concentration or the amount of moisture is also measured and the gas temperature is controlled so that the exhaust gas temperature does not fall below the dew point temperature, the temperature of the exhaust gas can be reduced. Is not unnecessarily high, so that the efficiency of the boiler is not deteriorated.

【0030】さらにSO3濃度の増減に合わせて集塵器
入口アンモニア注入量を制御すれば、無駄なアンモニア
消費量を抑制できるので運転経費を増加させることがな
い。
Further, if the amount of ammonia injected into the dust collector is controlled in accordance with the increase or decrease in the SO3 concentration, useless ammonia consumption can be suppressed, so that the operating cost does not increase.

【0031】本発明の他の実施形態を図2,図3に示
す。図2の実施形態は再生式空気予熱器2の入口から出
口にバイパス空気ダクト21及びバイパス空気流量調整
ダンパ22を設け、バイパス空気流量調整ダンパ22に
よりバイパス空気量ダクト21のバイパス空気量を増加
させて再生式空気予熱器2を通過する空気量を少なくし
て、再生式空気予熱器2での熱交換量を少なくし、ガス
ダクト10の排ガス温度を高くした。
Another embodiment of the present invention is shown in FIGS. In the embodiment of FIG. 2, a bypass air duct 21 and a bypass air flow adjustment damper 22 are provided from the inlet to the outlet of the regenerative air preheater 2, and the bypass air flow adjustment damper 22 increases the bypass air amount of the bypass air amount duct 21. Thus, the amount of air passing through the regenerative air preheater 2 was reduced, the amount of heat exchange in the regenerative air preheater 2 was reduced, and the exhaust gas temperature in the gas duct 10 was increased.

【0032】図3の場合には再生式空気予熱器2のガス
側にバイパスガスダクト31及びバイパスガス流量調整
ダンパ32を設置して、バイパスガスダクト31のバイ
パスガス量を増加させてガスダクト10の排ガス温度を
高くしたものである。
In the case of FIG. 3, a bypass gas duct 31 and a bypass gas flow rate adjusting damper 32 are installed on the gas side of the regenerative air preheater 2 to increase the amount of bypass gas in the bypass gas duct 31 so that the exhaust gas temperature in the gas duct 10 is increased. Is higher.

【0033】図2,図3のいずれの実施形態でも、図1
の実施形態に示す蒸気式空気予熱器3が無く、システム
を簡素化できる効果がある。
In each of the embodiments shown in FIGS. 2 and 3, FIG.
There is no steam type air preheater 3 shown in the embodiment, and the system can be simplified.

【0034】図4はSO3計12を再生式空気予熱器2
のガス上流側に設置した場合の実施形態を示す。この場
合はボイラ1、及びボイラ1と再生式空気予熱器2の間
に脱硝装置41が設置されている時はその触媒でのSO
2酸化率の経時変化を正確に監視できるという効果があ
る。
FIG. 4 shows that the SO3 meter 12 is converted to a regenerative air preheater 2.
An embodiment in the case of being installed on the upstream side of a gas is shown. In this case, when the denitration device 41 is installed between the boiler 1 and the boiler 1 and the regenerative air preheater 2, SO
There is an effect that the change with time of the oxidation rate can be accurately monitored.

【0035】排ガス中のSO3濃度と酸露点温度は図5
に示す関係にある。ガス中SOx濃度は燃料中のS分量
に大きく左右される。ボイラ伝熱面や脱硝触媒に付着し
たバナジウム等の触媒作用でSO2酸化率が変化し、初
期には1〜3%程度だったものが、経時変化後は10%
程度まで酸化率が増加することがあるため、SO3濃度
は燃料仕様や運転時間により0〜200ppmとなる。
FIG. 5 shows the SO3 concentration and the acid dew point temperature in the exhaust gas.
The relationship is shown in The SOx concentration in the gas largely depends on the S content in the fuel. The SO2 oxidation rate changes due to the catalytic action of vanadium and the like attached to the boiler heat transfer surface and the denitration catalyst.
Since the oxidation rate may increase to the extent, the SO3 concentration is 0 to 200 ppm depending on the fuel specifications and the operation time.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
SO3濃度が低く露点温度がガス温度より低い場合に
は、空気予熱器の腐食・閉塞防止のため必要な低温端メ
タル温度設定値を満足する最低ガス温度にて運転し、逆
に、SO3濃度が高く露点温度が上昇した場合にのみ、
排ガス温度が露点温度を上回るように上昇させて運転す
れば、排ガス温度を必要最低限にできるので、ボイラ効
率の低下も必要最低限にでき、高効率運転を達成でき
る。
As described above, according to the present invention,
If the SO3 concentration is low and the dew point temperature is lower than the gas temperature, operate at the lowest gas temperature that satisfies the low end metal temperature setting required to prevent corrosion and blockage of the air preheater. Only when the dew point temperature rises high,
If the operation is performed while the exhaust gas temperature is raised so as to exceed the dew point temperature, the exhaust gas temperature can be minimized, so that the reduction in boiler efficiency can be minimized and high efficiency operation can be achieved.

【0037】また精度良く露点温度が評価できるので、
SO3濃度の経時変化の監視が容易となる外、排ガス温
度を正確に露点温度以上とでき、再生式空気予熱器12
の低温側エレメントの材質をエナメルコーティング材か
ら耐食鋼に変更し、設備費の低減が可能となる。
Since the dew point temperature can be accurately evaluated,
In addition to making it easy to monitor the change over time in the SO3 concentration, the temperature of the exhaust gas can be accurately set to the dew point or higher, and the regeneration type air preheater 12
By changing the material of the low-temperature side element from enamel coating material to corrosion-resistant steel, it is possible to reduce equipment costs.

【0038】またエレメント上へのSO3凝縮がなくな
るのでエレメントへの灰付着量が減り、スートブロワの
運転頻度・蒸気消費量が低減する。
Further, since there is no SO3 condensation on the element, the amount of ash adhering to the element is reduced, and the operation frequency and steam consumption of the soot blower are reduced.

【0039】さらに集塵器16入口でのアンモニア注入
量を節約し、運転経緯を抑制することが可能となる。
Furthermore, the amount of ammonia injected at the inlet of the dust collector 16 can be saved, and the operation history can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の全体構成を示す系統図で
ある。
FIG. 1 is a system diagram showing an overall configuration of an embodiment of the present invention.

【図2】本発明の第2の実施形態を示す系統図であっ
て、空気予熱器にバイパスダクトを設けた構成図であ
る。
FIG. 2 is a system diagram showing a second embodiment of the present invention, and is a configuration diagram in which a bypass duct is provided in an air preheater.

【図3】本発明の第3の実施形態を示す系統図であっ
て、空気予熱器にバイパスダクトを設けた構成図であ
る。
FIG. 3 is a system diagram showing a third embodiment of the present invention, and is a configuration diagram in which a bypass duct is provided in an air preheater.

【図4】本発明の第4の実施形態を示す系統図である。FIG. 4 is a system diagram showing a fourth embodiment of the present invention.

【図5】排ガス中のSO3濃度と酸露点温度の関係を示
す図である。
FIG. 5 is a graph showing the relationship between SO3 concentration in exhaust gas and acid dew point temperature.

【図6】従来技術における空気予熱器廻りの系統図であ
る。
FIG. 6 is a system diagram around an air preheater in the related art.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 再生式空気予熱器 3 蒸気式空気予熱器 4 ガス温度計 5 空気温度計 6 平均温度演算器 7,14 比較演算器 8,19 制御信号発信器 9 蒸気流量調整弁 10 ガスダクト 11 空気ダクト 12 SO3計 13 露点温度演算器 15 水分計 16 集塵機 17 アンモニア流量調整弁 18 アンモニア注入ノズル 20 フィルタ 21 バイパス空気ダクト 22 バイパス空気流量調整ダンパ 31 バイパスガスダクト 32 バイパスガス流量調整ダンパ 41 脱硝装置 REFERENCE SIGNS LIST 1 boiler 2 regenerative air preheater 3 steam type air preheater 4 gas thermometer 5 air thermometer 6 average temperature calculator 7,14 comparison calculator 8,19 control signal transmitter 9 steam flow control valve 10 gas duct 11 air duct 12 SO3 meter 13 Dew point temperature calculator 15 Moisture meter 16 Dust collector 17 Ammonia flow control valve 18 Ammonia injection nozzle 20 Filter 21 Bypass air duct 22 Bypass air flow control damper 31 Bypass gas duct 32 Bypass gas flow control damper 41 Denitration device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩元 英明 広島県呉市宝町6番9号 バブコツク日立 株式会社呉工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideaki Iwamoto 6-9 Takaracho, Kure City, Hiroshima Prefecture Babkotsuk Hitachi Kure Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫黄分を含む燃料を使用するボイラの排
ガスからの熱回収を行なう再生式空気予熱器と、前記再
生式空気予熱器出口の排ガスの温度を制御する制御手段
と、を備えたボイラ装置において、 前記再生式空気予熱器からの排ガス中のSO3の濃度を
計測し、 前記計測値に基づいて排ガスの酸露点温度を算出し、 前記排ガス温度が前記酸露点温度を上廻るように排ガス
温度を制御することを特徴とするボイラ装置。
1. A regenerative air preheater for recovering heat from an exhaust gas of a boiler using a fuel containing a sulfur component, and control means for controlling a temperature of the exhaust gas at an outlet of the regenerative air preheater. In the boiler device, the concentration of SO3 in the exhaust gas from the regenerative air preheater is measured, and the acid dew point temperature of the exhaust gas is calculated based on the measured value, so that the exhaust gas temperature exceeds the acid dew point temperature. A boiler device for controlling exhaust gas temperature.
【請求項2】 硫黄分を含む燃料を使用するボイラの排
ガスからの熱回収を行なう再生式空気予熱器と、前記再
生式空気予熱器出口の排ガスの温度を制御する制御手段
と、を備えたボイラ装置において、 前記再生式空気予熱器からの排ガス中のSO3の濃度を
計測すると共に、 前記再生式空気予熱器からの排ガス中の水分を計測し、 前記SO3濃度計測値と前記水分計測値とから排ガスの
酸露点温度を算出することを特徴とするボイラ装置。
2. A regenerative air preheater for recovering heat from an exhaust gas of a boiler using a fuel containing sulfur, and control means for controlling a temperature of the exhaust gas at an outlet of the regenerative air preheater. In the boiler device, while measuring the concentration of SO3 in the exhaust gas from the regenerative air preheater, measuring the moisture in the exhaust gas from the regenerative air preheater, the SO3 concentration measurement value and the moisture measurement value A boiler device which calculates an acid dew point temperature of exhaust gas from the boiler.
【請求項3】 請求項1または2に記載のボイラ装置に
おいて、 前記SO3濃度計測値に基づいて前記排ガスの集塵器入
口でのアンモニア注入量を制御することを特徴とするボ
イラ装置。
3. The boiler apparatus according to claim 1, wherein the amount of ammonia injected at the dust collector inlet of the exhaust gas is controlled based on the measured SO3 concentration.
JP9153838A 1997-06-11 1997-06-11 Boiler apparatus Pending JPH112403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9153838A JPH112403A (en) 1997-06-11 1997-06-11 Boiler apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9153838A JPH112403A (en) 1997-06-11 1997-06-11 Boiler apparatus

Publications (1)

Publication Number Publication Date
JPH112403A true JPH112403A (en) 1999-01-06

Family

ID=15571211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9153838A Pending JPH112403A (en) 1997-06-11 1997-06-11 Boiler apparatus

Country Status (1)

Country Link
JP (1) JPH112403A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052310A (en) * 2000-08-10 2002-02-19 Ishikawajima Harima Heavy Ind Co Ltd Ammonia injection method and device therefor in boiler exhaust gas treatment eqipment
JP2003074831A (en) * 2001-08-31 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Boiler equipment
JP2003106796A (en) * 2001-09-28 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method of heat exchanger
WO2011096250A1 (en) * 2010-02-08 2011-08-11 三菱重工業株式会社 System and method for recovering heat from co2 recovery device
JP2011237137A (en) * 2010-05-12 2011-11-24 Takuma Co Ltd Method of operating waste incineration plant
JP2016205679A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Waste heat recovery system and operation method for the same
KR20190026783A (en) * 2016-07-08 2019-03-13 아르보스 융스트롬 엘엘씨 Method and system for improving boiler efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154462B2 (en) * 1982-02-12 1986-11-22 Mitsubishi Heavy Ind Ltd
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPS6257633A (en) * 1985-09-06 1987-03-13 Hitachi Ltd Device for monitoring and controlling waste gas
JPH0957150A (en) * 1995-08-23 1997-03-04 Hitachi Plant Eng & Constr Co Ltd Removal of sulfur oxide in combustion exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154462B2 (en) * 1982-02-12 1986-11-22 Mitsubishi Heavy Ind Ltd
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPS6257633A (en) * 1985-09-06 1987-03-13 Hitachi Ltd Device for monitoring and controlling waste gas
JPH0957150A (en) * 1995-08-23 1997-03-04 Hitachi Plant Eng & Constr Co Ltd Removal of sulfur oxide in combustion exhaust gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052310A (en) * 2000-08-10 2002-02-19 Ishikawajima Harima Heavy Ind Co Ltd Ammonia injection method and device therefor in boiler exhaust gas treatment eqipment
JP2003074831A (en) * 2001-08-31 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Boiler equipment
JP2003106796A (en) * 2001-09-28 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method of heat exchanger
WO2011096250A1 (en) * 2010-02-08 2011-08-11 三菱重工業株式会社 System and method for recovering heat from co2 recovery device
AU2011211954B2 (en) * 2010-02-08 2013-04-18 Mitsubishi Heavy Industries, Ltd. System and method for recovering heat from CO2 recovery device
JP2011237137A (en) * 2010-05-12 2011-11-24 Takuma Co Ltd Method of operating waste incineration plant
JP2016205679A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Waste heat recovery system and operation method for the same
KR20190026783A (en) * 2016-07-08 2019-03-13 아르보스 융스트롬 엘엘씨 Method and system for improving boiler efficiency
JP2019520543A (en) * 2016-07-08 2019-07-18 アルヴォス ユングストローム エルエルシー Method and system for improving the efficiency of a boiler
JP2019525114A (en) * 2016-07-08 2019-09-05 アルヴォス ユングストローム エルエルシー Method and system for improving boiler efficiency
JP2022024062A (en) * 2016-07-08 2022-02-08 アルヴォス ユングストローム エルエルシー Method and system for improving efficiency of boiler

Similar Documents

Publication Publication Date Title
US4188190A (en) Input control method and means for nitrogen oxide removal means
EP2154530B1 (en) Method for detection, measurement and control of sulfur-trioxide and other condensables in flue gas
BRPI1000809B1 (en) method for dosing an ammonia releasing reducing agent in an exhaust gas stream
CN113740090B (en) Anti-blocking method and system for air preheater of thermal power plant
CN112648635B (en) Steam soot blowing optimization guidance method for boiler air preheater
US20210115832A1 (en) System And Method For Monitoring Exhaust Gas
JPH112403A (en) Boiler apparatus
CN111540412B (en) SCR reactor inlet flue gas soft measurement method based on least square method
CN106501443A (en) For testing the test system of sulfur trioxide concentration and its condenser in flue gas
JP3193966B2 (en) Flue gas desulfurization apparatus and method
JP2573589B2 (en) Flue gas treatment equipment
CN113819482B (en) Anti-blocking control method and system for air preheater of thermal power station and air preheater system of thermal power station
JP2710985B2 (en) Air preheater performance diagnosis method
Reese et al. Experience with electrostatic fly-ash collection equipment serving steam-electric generating plants
JP3200608B2 (en) Exhaust gas treatment method
JPS6249116A (en) Controlling method for discharged gas of boiler
CN207248580U (en) One kind is based on flue-gas temperature and thermostat water bath coolant controlled SO3Sampling system
JPH09280540A (en) Heat exchanger and exhaust gas treatment equipment having the same
CN210513821U (en) A flue gas collection system for SCR denitrification facility
JPH10109018A (en) Waste gas denitration method and device therefor
JP3449060B2 (en) Method for removing sulfur oxides from flue gas
JPH11295293A (en) Method and device for measuring sulfuric anhydride in exhaust gas and device for neutralizing sulfuric anhydride
JP3702094B2 (en) Ammonia injection equipment
JP3705042B2 (en) Smoke treatment system
JP3705041B2 (en) Smoke treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110