JP2710985B2 - Air preheater performance diagnosis method - Google Patents
Air preheater performance diagnosis methodInfo
- Publication number
- JP2710985B2 JP2710985B2 JP1118362A JP11836289A JP2710985B2 JP 2710985 B2 JP2710985 B2 JP 2710985B2 JP 1118362 A JP1118362 A JP 1118362A JP 11836289 A JP11836289 A JP 11836289A JP 2710985 B2 JP2710985 B2 JP 2710985B2
- Authority
- JP
- Japan
- Prior art keywords
- air preheater
- air
- exhaust gas
- pressure loss
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Incineration Of Waste (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Chimneys And Flues (AREA)
- Air Supply (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気予熱器性能診断方法に係り、さらに詳し
くは発電所用大型ボイラ等の燃焼装置に用いられる空気
予熱器の洗浄を適切に行うことができる空気予熱器性能
診断方法に関する。The present invention relates to a method for diagnosing the performance of an air preheater, and more particularly to appropriately cleaning an air preheater used in a combustion device such as a large boiler for a power plant. The present invention relates to a method for diagnosing the performance of an air preheater.
従来、火力発電所用大型ボイラや事業所用大型燃焼装
置においては、燃焼効率を向上させるために燃焼用空気
をあらかじめ予熱する方法が採用されている。予熱用熱
源としては、自己が排出する高温の燃焼排ガスを使用す
るのが最も一般的であり、燃焼排ガスと燃焼用空気との
熱交換によって行われる。2. Description of the Related Art Conventionally, a large-sized boiler for a thermal power plant or a large-sized combustion device for a business employs a method of preheating combustion air in advance in order to improve combustion efficiency. As a preheating heat source, it is most common to use a high-temperature flue gas exhausted by itself, which is performed by heat exchange between the flue gas and combustion air.
第5図は、大型ボイラにおける一般的な燃焼装置の系
統図である。この装置は、バーナ5を備えたボイラ6
と、燃焼排ガス中の窒素酸化物を除去する脱硝装置8
と、送風器(FDF)1から供給される燃焼用空気を予熱
する蒸気式空気予熱器3および空気予熱器4と、排ガス
中のダスト分を除去する集塵器9とから主としてなる。
このような構成において、ボイラ6から排出された高温
の燃焼排ガスは、ガスダクト7を経て脱硝装置8に導入
されて窒素酸化物が除去された後、空気予熱器4を通過
し、さらに集塵器9においてダスト分が除去されて煙突
10から大気中に放出される。一方、押込み送風機(FD
F)1から供給された燃焼用空気は、蒸気式空気予熱器
3でボイラ6から供給される蒸気によりある程度加熱さ
れた後、空気ダクト2を経て空気予熱器4で前記高温燃
焼排ガスと熱交換され、昇温してボイラ6のバーナ5に
供給される。FIG. 5 is a system diagram of a general combustion device in a large boiler. This device comprises a boiler 6 with a burner 5
And a denitration device 8 for removing nitrogen oxides in the combustion exhaust gas
And a steam-type air preheater 3 and an air preheater 4 for preheating combustion air supplied from a blower (FDF) 1 and a dust collector 9 for removing dust in exhaust gas.
In such a configuration, the high-temperature combustion exhaust gas discharged from the boiler 6 is introduced into the denitration device 8 through the gas duct 7 to remove nitrogen oxides, passes through the air preheater 4, and further passes through the dust collector. The dust is removed in 9 and the chimney
Emitted from 10 to the atmosphere. On the other hand, a forced blower (FD
F) The combustion air supplied from 1 is heated to some extent by steam supplied from the boiler 6 in the steam-type air preheater 3, and then heat-exchanged with the high-temperature combustion exhaust gas in the air preheater 4 through the air duct 2. Then, the temperature is increased and supplied to the burner 5 of the boiler 6.
第6図は、空気予熱器4として用いられている回転式
空気予熱器の説明図である。この空気予熱器は、ドラム
状の本体内に、表面積を大きくした波状やハニカム状の
鋼板などの伝熱エレメントが多数配置され、ドラムの一
方が排ガス流中に位置し、他方が空気流中に位置するよ
うに構成されており、該ドラム全体を回転させて高温排
ガス中で加熱された伝熱エレメントの熱を空気流中に放
出し、排ガスGの熱を空気Aに伝達させる。この予熱器
は、大量の空気を効果的に予熱できるために一般的に用
いられている。FIG. 6 is an explanatory diagram of a rotary air preheater used as the air preheater 4. In this air preheater, a number of heat transfer elements such as a corrugated or honeycomb-shaped steel plate having a large surface area are arranged in a drum-shaped main body, and one of the drums is positioned in an exhaust gas flow, and the other is positioned in an air flow. The entire drum is rotated to release the heat of the heat transfer element heated in the high-temperature exhaust gas into the air flow, and to transfer the heat of the exhaust gas G to the air A. This preheater is generally used because it can effectively preheat a large amount of air.
しかしながら、前記空気予熱器は、運転を継続すると
空気予熱器のガス側および空気側の圧力損失が増大し、
送風機の動力費が増加するため、該圧力上昇を予測して
適切な時期に空気予熱器を水洗する必要がある。これ
は、燃焼排ガス中に硫黄酸化物やダストを含み、かつ空
気予熱器前流に脱硝装置を有する場合に、該脱硝装置に
ガス中の窒素酸化物を還元する目的で供給されるアンモ
ニアの未反応分が漏洩アンモニアとなって空気予熱器に
流入し、該漏洩アンモニアとガス中の硫黄化合物が化合
して酸性硫安を生成し、これが特に空気予熱器の低温部
で析出して前記伝熱エレメントに付着し、さらにこの付
着物にダストが付着するために生じる。However, when the air preheater continues to operate, the pressure loss on the gas side and the air side of the air preheater increases,
Since the power cost of the blower increases, it is necessary to predict the pressure increase and to wash the air preheater at an appropriate time. This is because when the combustion exhaust gas contains sulfur oxides and dust and a denitrification device is provided upstream of the air preheater, the amount of ammonia supplied to the denitration device for the purpose of reducing nitrogen oxides in the gas is reduced. The reaction components flow into the air preheater as leaked ammonia, and the leaked ammonia and sulfur compounds in the gas combine to form acidic ammonium sulfate, which is deposited particularly in the low temperature portion of the air preheater and the heat transfer element. And the dust adheres to the deposits.
前記圧力上昇の予測は、定期的に圧力損失を測定し、
過去における圧力損失の上昇傾向から行っている。しか
し、実測の圧力損失は、種々の変動要因により、単純な
上昇特性を示さないため、前記実測データから、将来の
圧力損失の上昇を正確に予測することが困難であり、従
って、空気予熱器の水洗時期を適切に予測することは一
般に困難であった。The pressure rise prediction measures the pressure loss periodically,
It is based on the upward trend of pressure loss in the past. However, since the actually measured pressure loss does not show a simple rising characteristic due to various fluctuation factors, it is difficult to accurately predict a future increase in pressure loss from the actually measured data. It was generally difficult to properly predict the time of water washing.
該圧力損失の上昇特性の変動要因には、圧力計の測定
誤差、圧力の微小変動、ガス量および空気量の変化、ガ
ス性状(漏洩アンモニア濃度)の変化による酸性硫安の
析出量および付着量の変化などが挙げられる。Factors that cause fluctuations in the pressure drop rising characteristics include measurement errors of the pressure gauge, minute fluctuations in pressure, changes in gas and air amounts, changes in gas properties (leakage ammonia concentration), and changes in the amount of ammonium acid sulfate deposited and deposited. Change and the like.
本発明の目的は、前記従来技術の問題を解決し、空気
予熱器の圧力損失の上昇特性、さらにはその洗浄時期を
高精度で予測することができる空気予熱器性能診断方法
を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and provide an air preheater performance diagnostic method capable of predicting the pressure drop increasing characteristics of the air preheater and the cleaning time thereof with high accuracy. is there.
本発明は、アンモニアが注入された、硫黄分を含む高
温燃焼排ガスを用いて燃焼用空気の予熱を行う空気予熱
器の性能を診断するに際し、前記排ガス流量と、前記排
ガスおよび空気の空気予熱器における圧力損失と、前記
排ガス中の二酸化炭素濃度、酸素濃度およびアンモニア
濃度と、空気予熱器入口側空気流量とを測定し、該各測
定値を性能診断装置に入力して前記空気予熱器の圧力損
失上昇特性を予測することを特徴とする空気予熱器性能
診断方法に関する。The present invention is characterized in that, when diagnosing the performance of an air preheater for preheating combustion air using a high-temperature combustion exhaust gas containing sulfur, which has been injected with ammonia, the exhaust gas flow rate and the air preheater for the exhaust gas and air are used. , The carbon dioxide concentration, the oxygen concentration and the ammonia concentration in the exhaust gas, the air preheater inlet side air flow rate is measured, and the measured values are input to a performance diagnostic device, and the pressure of the air preheater is measured. The present invention relates to a method for diagnosing performance of an air preheater, which is characterized by predicting a loss rise characteristic.
本発明の空気予熱器性能診断は、排ガス流量と、排ガ
スおよび空気の空気予熱器における圧力損失と、排ガス
中の二酸化炭素濃度、酸素濃度およびアンモニア濃度
と、空気予熱器入口側空気流量とを測定し、次のような
方法で行われる。すなわち、空気予熱器出入口中のO
2(酸素)濃度およびCO2(二酸化炭素)濃度の差から空
気予熱器内での空気側からガス側への空気漏洩量を算出
し、これらの値と排ガス流量および空気流量から空気予
熱器内の空気量およびガス量を算出して該空気量または
ガス量の変化による圧力損失の補正が行われる。また酸
性硫安の析出量および付着量が、空気予熱器に流入する
アンモニア濃度に関係するため、該濃度に応じて将来に
おける圧力損失上昇の割合が補正される。なお、測定誤
差による変動は測定を繰返し、平均化することにより排
除される。The air preheater performance diagnosis of the present invention measures the exhaust gas flow rate, the pressure loss of the exhaust gas and air in the air preheater, the carbon dioxide concentration, the oxygen concentration and the ammonia concentration in the exhaust gas, and the air flow rate on the air preheater inlet side. It is performed in the following manner. That is, O in the entrance and exit of the air preheater
2 Calculate the amount of air leakage from the air side to the gas side in the air preheater from the difference between the (oxygen) concentration and the CO 2 (carbon dioxide) concentration, and calculate The amount of air and the amount of gas are calculated to correct the pressure loss due to the change in the amount of air or the amount of gas. Further, since the precipitation amount and the adhesion amount of the acidic ammonium sulfate are related to the concentration of ammonia flowing into the air preheater, the rate of increase in pressure loss in the future is corrected according to the concentration. Note that fluctuations due to measurement errors are eliminated by repeating the measurement and averaging.
このように現状の圧力損失および将来における圧力損
失の上昇割合を補正することによって圧力損失上昇特性
を精度よく予測することが可能となり、これにより適切
な空気予熱器の水洗時期を正確に予測することができ
る。In this way, by correcting the current pressure loss and the rate of increase of the pressure loss in the future, it is possible to accurately predict the pressure loss rise characteristics, and thereby accurately predict the appropriate air preheater flush timing. Can be.
以下、本発明を図面により説明する。 Hereinafter, the present invention will be described with reference to the drawings.
第1図は、本発明の方法を用いた燃焼装置の空気予熱
器近傍の系統図である。第1図において第5図と同一部
分は同一符号を付し説明を省略する。空気予熱器4のガ
ス側出入口および空気側出入口にはそれぞれ差圧計13
a、13bが設けられ、ガスダクト7の空気予熱器4の前流
側および後流側にはそれぞれガス性状分析器12a、12bが
設置され、また送風機1の後流には空気流量計14が設置
され、これらの計測器によって測定されたデータが診断
装置15に入力される。前記ガス性状分析器12aおよび12b
では、排ガス流量、排ガス中のO2濃度、CO2濃度、アン
モニア注入装置11から注入されるアンモニアの漏洩アン
モニア濃度などが分析される。FIG. 1 is a system diagram near an air preheater of a combustion apparatus using the method of the present invention. In FIG. 1, the same parts as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. A differential pressure gauge 13 is provided at each of the gas inlet and outlet of the air preheater 4.
a and 13b are provided, gas property analyzers 12a and 12b are installed on the upstream and downstream sides of the air preheater 4 of the gas duct 7, and an air flow meter 14 is installed on the downstream side of the blower 1. The data measured by these measuring instruments is input to the diagnostic device 15. The gas property analyzers 12a and 12b
In the analysis, the flow rate of the exhaust gas, the O 2 concentration in the exhaust gas, the CO 2 concentration, the leakage ammonia concentration of the ammonia injected from the ammonia injection device 11, and the like are analyzed.
第2図は、本発明の方法による性能診断装置の一例を
示すフロー図である。図において、まず現状の空気予熱
器の圧力損失の測定、各ガスの性状分析および空気流量
の測定が行われる。次に前記排ガス流量、空気流量およ
び漏洩空気量から算出される空気量およびガス量の変動
に応じた実測圧力損失の補正22が圧力損失上昇特性算出
部21に入力される。すなわち、現状のガス量および空気
量は必ずしもこれまでの最大の量ではなく、今後、変動
することも考えられるので、考えられる最大の量に圧力
損失を補正する。また圧力損失の上昇特性は、第3図に
示すように漏洩アンモニア濃度に影響されるため、該濃
度による圧力損失の上昇割合の補正23が前記圧力損失上
昇特性算出部21に入力される。該圧力損失上昇特性算出
部21では、前記補正値に基づき、圧力損失の上昇特性を
算出する。FIG. 2 is a flowchart showing an example of a performance diagnosis apparatus according to the method of the present invention. In the figure, first, the measurement of the pressure loss of the current air preheater, the analysis of the properties of each gas, and the measurement of the air flow rate are performed. Next, the correction 22 of the actually measured pressure loss corresponding to the fluctuation of the air amount and the gas amount calculated from the exhaust gas flow amount, the air flow amount, and the leaked air amount is input to the pressure loss increasing characteristic calculating unit 21. That is, the current gas amount and the air amount are not necessarily the maximum amounts so far, but may fluctuate in the future. Therefore, the pressure loss is corrected to the conceivable maximum amounts. Further, as shown in FIG. 3, the rise characteristic of the pressure loss is affected by the concentration of the leaked ammonia. The pressure loss increase characteristic calculating section 21 calculates an increase characteristic of the pressure loss based on the correction value.
第4図は、実測および補正により予測された圧力損失
と運転時間との関係を示す図である。該関係から許容圧
力損失到達時期が推定(24)され、適正な水洗時期が表
示(25)される。FIG. 4 is a diagram showing a relationship between a pressure loss predicted by actual measurement and correction and an operation time. Based on the relationship, the allowable pressure loss reaching time is estimated (24), and the appropriate water washing time is displayed (25).
漏洩アンモニア濃度が微小な場合は正確な測定が困難
であるが、その場合は脱硝装置におけるガス量、窒素酸
化物量、アンモニア量等の物質収支から空気予熱器入口
の漏洩アンモニア濃度を計算で求めることも可能であ
る。Accurate measurement is difficult when the leaked ammonia concentration is very small.In that case, calculate the leaked ammonia concentration at the inlet of the air preheater from the material balance such as the gas amount, nitrogen oxide amount, and ammonia amount in the denitration equipment. Is also possible.
本発明の空気予熱器性能診断方法によれば、空気予熱
器の圧力損失の上昇予測を高精度で行うことができるた
め、水洗時期の適切な予測と計画が可能となり、送風機
動力の低減が図れ、プラントを効率よく運転することが
できる。According to the air preheater performance diagnosis method of the present invention, it is possible to accurately predict the rise in pressure loss of the air preheater, so that it is possible to appropriately predict and plan the flushing time and reduce the power of the blower. Thus, the plant can be operated efficiently.
第1図は、本発明の方法を用いた燃焼装置の空気予熱器
近傍の系統図、第2図は、本発明の方法による性能診断
装置の一例を示すフロー図、第3図は、漏洩アンモニア
濃度による運転時間と圧力損失の関係を示す図、第4図
は、実測および補正によって予測された圧力損失と運転
時間との関係を示す図、第5図は、大型ボイラにおける
一般的な燃焼装置の系統図、第6図は、回転式空気予熱
器の説明図である。 1……送風機(FDF)、2……空気ダクト、3……蒸気
式空気予熱器、4……空気予熱器、5……バーナ、6…
…ボイラ、7……ガスダクト、8……脱硝装置、9……
集塵器、10……煙突、11……アンモニア注入装置、12
a、12b……ガス性状分析器、13a、13b……差圧計、14…
…空気流量計、15……診断装置。FIG. 1 is a system diagram near an air preheater of a combustion device using the method of the present invention, FIG. 2 is a flowchart showing an example of a performance diagnosis device according to the method of the present invention, and FIG. FIG. 4 is a diagram showing the relationship between the operation time and the pressure loss depending on the concentration, FIG. 4 is a diagram showing the relationship between the pressure loss and the operation time predicted by actual measurement and correction, and FIG. 5 is a general combustion device in a large boiler. FIG. 6 is an explanatory diagram of a rotary air preheater. 1 ... blower (FDF), 2 ... air duct, 3 ... steam type air preheater, 4 ... air preheater, 5 ... burner, 6 ...
... boiler, 7 ... gas duct, 8 ... denitration equipment, 9 ...
Dust collector, 10 chimney, 11 ammonia injection device, 12
a, 12b ... gas property analyzer, 13a, 13b ... differential pressure gauge, 14 ...
... air flow meter, 15 ... diagnostic device.
Claims (1)
温燃焼排ガスを用いて燃焼用空気の予熱を行う空気予熱
器の性能を診断するに際し、前記排ガス流量と、前記排
ガスおよび空気の空気予熱器における圧力損失と、前記
排ガス中の二酸化炭素濃度、酸素濃度およびアンモニア
濃度と、前記空気予熱器入口側空気流量とを測定し、該
各測定値を性能診断装置に入力して前記空気予熱器の圧
力損失上昇特性を予測することを特徴とする空気予熱器
性能診断方法。When diagnosing the performance of an air preheater for preheating combustion air using a high-temperature combustion exhaust gas containing ammonia and into which ammonia has been injected, the exhaust gas flow rate and the air preheating of the exhaust gas and air are diagnosed. Pressure loss, the concentration of carbon dioxide, the concentration of oxygen and the concentration of ammonia in the exhaust gas, and the air flow rate on the inlet side of the air preheater. The measured values are input to a performance diagnostic device, and the air preheater is measured. A method for diagnosing the performance of an air preheater, comprising predicting a pressure loss rise characteristic of the air preheater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1118362A JP2710985B2 (en) | 1989-05-11 | 1989-05-11 | Air preheater performance diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1118362A JP2710985B2 (en) | 1989-05-11 | 1989-05-11 | Air preheater performance diagnosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02298719A JPH02298719A (en) | 1990-12-11 |
JP2710985B2 true JP2710985B2 (en) | 1998-02-10 |
Family
ID=14734828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1118362A Expired - Fee Related JP2710985B2 (en) | 1989-05-11 | 1989-05-11 | Air preheater performance diagnosis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2710985B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101439990B1 (en) * | 2014-06-23 | 2014-09-12 | 알코엔지니어링주식회사 | Regenerator auto control system and method of regenerative gas burner using differential pressure |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4578706B2 (en) * | 2000-04-07 | 2010-11-10 | 旭硝子株式会社 | How to remove acidic deposits |
JP5137598B2 (en) * | 2008-01-23 | 2013-02-06 | 中国電力株式会社 | Ventilation system in steam power generation facilities |
US9598742B2 (en) * | 2009-09-25 | 2017-03-21 | Arvos Inc. | Exhaust processing and heat recovery system |
JP5370457B2 (en) * | 2011-10-13 | 2013-12-18 | 三浦工業株式会社 | Heating medium boiler |
JP6597144B2 (en) * | 2015-10-01 | 2019-10-30 | 中国電力株式会社 | Air preheater abnormality determination device and air preheater abnormality determination method |
JP6909425B2 (en) * | 2017-03-31 | 2021-07-28 | 中国電力株式会社 | Air preheater differential pressure rise predictor |
JP2019027763A (en) * | 2017-08-03 | 2019-02-21 | 一般財団法人電力中央研究所 | Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater |
JP7249165B2 (en) * | 2019-02-20 | 2023-03-30 | 三菱重工業株式会社 | Monitoring device, monitoring method and program |
-
1989
- 1989-05-11 JP JP1118362A patent/JP2710985B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101439990B1 (en) * | 2014-06-23 | 2014-09-12 | 알코엔지니어링주식회사 | Regenerator auto control system and method of regenerative gas burner using differential pressure |
Also Published As
Publication number | Publication date |
---|---|
JPH02298719A (en) | 1990-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4188190A (en) | Input control method and means for nitrogen oxide removal means | |
JP2710985B2 (en) | Air preheater performance diagnosis method | |
US6120580A (en) | Method for testing systems designed for NOx reduction in the combustion of carbonaceous fuels | |
US7890197B2 (en) | Dual model approach for boiler section cleanliness calculation | |
US4302205A (en) | Input control method and means for nitrogen oxide removal | |
JPS6038522A (en) | Soot blower system | |
KR100801237B1 (en) | Method of testing denitration catalyst | |
JPS60108611A (en) | Soot blowing work system by decision of model parameter | |
CN105975789A (en) | Ammonia-escaping-rate online obtaining method for desulfurization and denitrification control | |
CN111540412B (en) | SCR reactor inlet flue gas soft measurement method based on least square method | |
WO2016098173A1 (en) | Air pre-heater cleaning time predicting method and air pre-heater cleaning time predicting apparatus | |
JP5656746B2 (en) | Denitration catalyst deterioration judgment method | |
JP4678107B2 (en) | Boiler equipment | |
JPH112403A (en) | Boiler apparatus | |
US7704456B2 (en) | NOx removal catalyst management unit for NOx removal apparatus and method for managing NOx removal catalyst | |
JPH01181013A (en) | Air preheater performance diagnostic method | |
JP3565607B2 (en) | Method and apparatus for controlling amount of ammonia injection into denitration device | |
JP4899259B2 (en) | SO3, NH3 simultaneous continuous concentration meter | |
JP3544432B2 (en) | Exhaust gas treatment equipment and its operation method | |
JP2003014627A (en) | Method of drawing up analytical curve for multicomponent analyzer | |
WO2019130578A1 (en) | Method for evaluating degradation of denitration catalyst | |
JPH09303714A (en) | Boiler equipment and operating method thereof | |
JPH11295293A (en) | Method and device for measuring sulfuric anhydride in exhaust gas and device for neutralizing sulfuric anhydride | |
RU2190875C2 (en) | Method and system for determining the amount of released pollutants into the environment | |
CN108910976A (en) | It is a kind of for handle from plant facilities be discharged waste water water treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |