JPH09280540A - Heat exchanger and exhaust gas treatment equipment having the same - Google Patents

Heat exchanger and exhaust gas treatment equipment having the same

Info

Publication number
JPH09280540A
JPH09280540A JP8086525A JP8652596A JPH09280540A JP H09280540 A JPH09280540 A JP H09280540A JP 8086525 A JP8086525 A JP 8086525A JP 8652596 A JP8652596 A JP 8652596A JP H09280540 A JPH09280540 A JP H09280540A
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
dust
heat exchanger
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8086525A
Other languages
Japanese (ja)
Other versions
JP3572139B2 (en
Inventor
Masao Hino
日野  正夫
Naohiko Ugawa
直彦 鵜川
Kenji Inoue
井上  健治
Fushimi Ochiai
節美 落合
Haruhiko Kataoka
晴彦 片岡
Retsu Sakai
烈 酒井
Koichiro Iwashita
浩一郎 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08652596A priority Critical patent/JP3572139B2/en
Publication of JPH09280540A publication Critical patent/JPH09280540A/en
Application granted granted Critical
Publication of JP3572139B2 publication Critical patent/JP3572139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To hold a heat recovering part of a heat exchanger in a necessary minimum size, to suppress sticking of dust to fins in the heat recovering part and to avoid a rise in a pressure loss of passing air by a construction wherein fin pitches of a tube with the fins positioned in a specified area wherein the amount of condensed and sticking SO3 is large are set to be larger than ones in other areas in the heat recovering part. SOLUTION: In a heat recovering part 5, an exhaust gas inlet 103 into which exhaust gas passing through an electrostatic precipitator is introduced is provided on one end side of a housing 51 and an exhaust gas outlet 104 on the other end side thereof. A large number of fins 102 are fixed at prescribed pitches on the outer periphery of a tube 102 with the fins provided in a zigzag inside the housing 51 and a heat transfer medium such as water is made to flow through the tube. In the heat recovering part 5, the pitches of the fins 102 for the tube 101 are set to be larger in a specified area M of condensation and sticking wherein condensed dust of SO3 is apt to stick to the fins than in other areas. By setting the specified area M, it is made possible to suppress sticking of the dust efficiently, to make the heat recovering part 5 small in size and compact and to maintain a pressure loss of passing air to be low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フィン付き管を有
する熱交換器、並びにこの種熱交換器を備えてSO3
含む排ガスから熱を回収する排煙処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger having a finned tube, and a flue gas treatment apparatus equipped with such a heat exchanger for recovering heat from exhaust gas containing SO 3 .

【0002】[0002]

【従来の技術】図3には、石炭燃焼ボイラからの排ガス
のようなダスト、窒素酸化物(NOX)、硫黄酸化物
(SOX )のような大気汚染物質を含む燃焼排ガスの処
理システムのブロック図が示されている。
BACKGROUND OF THE INVENTION FIG. 3, the dust such as the exhaust gas from a coal combustion boiler, nitrogen oxides (NO X), sulfur oxides (SO X) of the processing system of a combustion exhaust gas containing air pollutants, such as A block diagram is shown.

【0003】図3において、ボイラ1より排出された燃
焼排ガスは、触媒が充填された脱硝装置2に導入され、
還元剤として注入されるアンモニア(NH3 )10によ
り、排ガス中のNOX が水と窒素とに還元され無害化さ
れる。次いで、この燃焼排ガスは空気予熱器3に導入さ
れ、一般的に120〜150℃まで空気を加熱すること
により熱回収される。熱回収された排ガスは、電気集塵
器4に導入され、ダストが除去された後、さらに熱回収
のため熱交換器11の熱回収部5に導入され、一般的に
120〜150℃から80〜100℃まで熱回収され
る。上記熱交換器11の熱回収部5は、フィン付き管群
で構成されており、フィン付き管群の外側を排ガスが流
れ、また管内を温水、油、スチームなどの熱媒が流れる
ようになっており、排ガスと熱媒とが直接的に熱交換さ
れることによって、排ガスの熱が回収される。
In FIG. 3, the combustion exhaust gas discharged from the boiler 1 is introduced into a denitration device 2 filled with a catalyst,
Ammonia (NH 3 ) 10 injected as a reducing agent reduces NO x in the exhaust gas to water and nitrogen to render it harmless. Next, this combustion exhaust gas is introduced into the air preheater 3 and generally heat is recovered by heating the air to 120 to 150 ° C. The exhaust gas from which heat has been recovered is introduced into the electrostatic precipitator 4 to remove dust, and then further introduced into the heat recovery section 5 of the heat exchanger 11 for heat recovery, and generally from 120 to 150 ° C. Heat recovery up to ~ 100 ° C. The heat recovery unit 5 of the heat exchanger 11 is composed of a finned tube group, and exhaust gas flows outside the finned tube group, and a heat medium such as hot water, oil, or steam flows in the tube. The heat of the exhaust gas is recovered by directly exchanging heat between the exhaust gas and the heat medium.

【0004】上記熱交換器11の熱回収部5で熱が回収
された排ガスは、湿式脱硫装置6に導入され、ここで冷
却されると共に石灰石を吸収剤として湿式処理される。
これにより、排ガス中のSOX が吸収除去され、副生物
として石膏が生成される。この湿式脱硫装置6の出口の
排ガスは一般的に45〜55℃に低下している。従っ
て、この排ガスをこのまま大気に放出すると、低温のた
め拡散しにくく、白煙になるなどの問題が生じるため、
この排ガスを熱交換器11の再加熱部7に導入して加熱
し、熱回収部5でその熱を回収し、温度が上昇した熱媒
9を循環せしめることにより、排ガスを再加熱し、煙突
8から排出される排ガス温度を所定温度以上に上げる。
The exhaust gas from which heat has been recovered in the heat recovery section 5 of the heat exchanger 11 is introduced into the wet desulfurization device 6, where it is cooled and wet treated with limestone as an absorbent.
As a result, SO X in the exhaust gas is absorbed and removed, and gypsum is produced as a by-product. The exhaust gas at the outlet of the wet desulfurization device 6 is generally lowered to 45 to 55 ° C. Therefore, if this exhaust gas is released into the atmosphere as it is, it will be difficult to diffuse due to low temperature, and there will be problems such as white smoke.
This exhaust gas is introduced into the reheating unit 7 of the heat exchanger 11 to be heated, the heat recovery unit 5 recovers the heat, and the heating medium 9 whose temperature has risen is circulated, whereby the exhaust gas is reheated and the stack The temperature of the exhaust gas discharged from 8 is raised to a predetermined temperature or higher.

【0005】上記熱交換器11としては、ユングストロ
ーム型の熱交換器の如く、蓄熱体が回転することによ
り、熱回収して温度が上昇したエレメントと湿式脱硫装
置6からの排ガスとを接触させて熱交換する、いわゆる
蓄熱体方式の熱交換器が提供されている。しかしながら
この蓄熱体方式では、熱回収部5でエレメントに付着し
たダストが、再加熱時に再飛散し、これによって、煙突
でのダスト濃度が上昇する。また、かかる方式では、S
X が再加熱部にリークするなどの問題点があることか
ら最近ではフィン付き管を備えた熱交換器が実用化され
ている。
As the heat exchanger 11, like the Jungstrom type heat exchanger, the element whose temperature has risen due to the heat recovery due to the rotation of the heat storage element and the exhaust gas from the wet desulfurization device 6 are brought into contact with each other. There is provided a so-called heat storage type heat exchanger for exchanging heat. However, in this heat storage system, the dust attached to the element in the heat recovery section 5 is re-scattered at the time of reheating, and the dust concentration in the chimney increases. Moreover, in such a system, S
Since there is a problem that O X leaks to the reheating section, a heat exchanger equipped with finned tubes has recently been put into practical use.

【0006】上記のようなフィン付き管を備えた熱交換
器の熱回収部5の詳細が図1及び図2に示されている。
図1〜図2において、51はハウジング、101は内部
を熱媒が通流するフィン付き管であり、同管101の外
周には伝熱面積を増加させるためのフィン102が固着
されている。103は排ガス入口、104は排ガス出
口、105は熱媒入口、106は熱媒出口であり、排ガ
スはフィン102の間を流れてフィン付き管101内を
流れる熱媒と熱交換しこれを加熱する。
Details of the heat recovery section 5 of the heat exchanger having the finned tube as described above are shown in FIGS. 1 and 2.
In FIGS. 1 and 2, 51 is a housing, 101 is a finned tube through which a heat medium flows, and fins 102 for increasing the heat transfer area are fixed to the outer periphery of the tube 101. 103 is an exhaust gas inlet, 104 is an exhaust gas outlet, 105 is a heat medium inlet, and 106 is a heat medium outlet. Exhaust gas flows between the fins 102 to exchange heat with a heat medium flowing in the finned pipe 101 to heat it. .

【0007】即ち、図1〜図2において、上記熱回収部
5においては、内部を熱媒が通流するフィン付管101
のフィン間通路107を排ガスが通過することにより熱
交換される。このフィン102のピッチeは、初期の通
気圧損や熱効率等を考慮して8〜10mm程度、またフィ
ン付き管101が配設された熱回収部5の有効高さは、
3〜5mでありこの範囲においてはフィン付き管101
を20〜50段程度配置している。
That is, in FIGS. 1 and 2, in the heat recovery section 5, a finned pipe 101 through which a heat medium flows is provided.
Exhaust gas passes through the inter-fin passages 107 to perform heat exchange. The pitch e of the fins 102 is about 8 to 10 mm in consideration of the initial ventilation pressure loss, thermal efficiency, etc., and the effective height of the heat recovery section 5 in which the finned tubes 101 are arranged is
3-5 m, and in this range finned tube 101
20 to 50 stages are arranged.

【0008】図1〜図3において、高温の排ガスは熱交
換器11の熱回収部5に導入され、フィン102付きの
管101内を流れる熱媒と熱交換され、温度の低い排ガ
スとなって排ガス出口104から排出され、後流の湿式
脱硫装置6に導入される。また、上記熱媒は熱媒入口1
05より導入され、排ガスと熱交換し、熱媒出口106
から流出し、再加熱部7に循環され排ガスの昇温に利用
される。
1 to 3, the high temperature exhaust gas is introduced into the heat recovery section 5 of the heat exchanger 11 and exchanges heat with the heat medium flowing in the pipe 101 with the fins 102 to become low temperature exhaust gas. The exhaust gas is discharged from the exhaust gas outlet 104 and introduced into the downstream wet desulfurization device 6. Further, the heat medium is the heat medium inlet 1
It is introduced from 05, exchanges heat with the exhaust gas, and the heat medium outlet 106
Out of the exhaust gas and is circulated to the reheating unit 7 to be used for raising the temperature of the exhaust gas.

【0009】このフィン付き管101のフィンピッチe
を狭くし、フィン102の数を増すほど、排ガスとの接
触面積が増加し装置全体をコンパクトにできるが、一
方、上記フィンピッチeを狭くしすぎると、通気圧損が
増大し、動力費がかさむ、またダストが詰まりやすくな
り経済的でない。従って通常は上記フィンピッチeを8
〜10mm程度としている。
The fin pitch e of the finned tube 101
As the number of fins 102 is increased and the number of fins 102 is increased, the contact area with the exhaust gas is increased and the entire apparatus can be made compact. On the other hand, if the fin pitch e is too narrow, the ventilation pressure loss increases and the power cost increases. Also, it is not economical because dust is likely to be clogged. Therefore, the fin pitch e is usually set to 8
It is about 10 mm.

【0010】[0010]

【発明が解決しようとする課題】上記従来の熱交換器1
1の熱回収部5は、フィン102のピッチeを、熱回収
部5内の全域に渡って一定値(10mm程度)に設定して
いるが、排ガス中のSO 3 が熱回収部5のフィン102
に凝縮付着して固着ダストを生成し、通気圧損が短期間
で上昇する現象が起こり易かったため、例えば頻繁に上
記回収部5を水洗し、固く付着したダストを除去すると
いう不経済で面倒な作業が必要になることがあった。
The conventional heat exchanger 1 described above.
The heat recovery unit 5 of No. 1 heats the pitch e of the fins 102
Set a constant value (about 10 mm) over the entire area of section 5.
There is SO in the exhaust gas ThreeIs the fin 102 of the heat recovery unit 5
Condensates and adheres to the air to generate adhered dust, resulting in short-term ventilation pressure loss.
Since it was easy for the phenomenon of rising in
When the collecting unit 5 is washed with water to remove dust that is firmly attached to it,
It was sometimes uneconomical and tedious.

【0011】上記SO3 ガスは、石炭焚きボイラ1から
の排ガス中にダストと共に含有されている。このSO3
ガスは、燃料中に含まれる硫黄の一部が燃焼の際酸化さ
れて生成され、さらに最近のように脱硝装置が設置され
るものにあっては、脱硝反応に付随して二酸化硫黄(S
2 )ガスの0.5〜2%が酸化されてSO3 を生成
し、燃焼の際発生した上記SO3 ガスに上乗せされて排
ガス中に含有される。従って上記空気予熱器3の入口に
到達するSO3 濃度は、燃料中の硫黄分によって変動す
るが、概ね5〜50ppm 程度となる。
The SO 3 gas is contained in the exhaust gas from the coal-fired boiler 1 together with dust. This SO 3
The gas is produced by oxidizing a part of sulfur contained in the fuel during combustion, and in the case where a denitration device is installed recently, sulfur dioxide (S
0.5 to 2% of O 2 ) gas is oxidized to generate SO 3, which is added to the SO 3 gas generated during combustion and contained in the exhaust gas. Therefore, the SO 3 concentration reaching the inlet of the air preheater 3 is about 5 to 50 ppm, although it varies depending on the sulfur content in the fuel.

【0012】そして、上記SO3 は、空気予熱器3を通
過するとき、排ガス温度が下がり酸露点以下となるた
め、その一部は下記(1)式に示す凝縮反応により硫黄
ミスト(H2 SO4 )に転化し、同伴されるダストに付
着して後流の電気集塵器4でダストと共に捕集される。
When the SO 3 passes through the air preheater 3, the temperature of the exhaust gas falls and becomes lower than the acid dew point. Therefore, a part of the SO 3 is sulfur mist (H 2 SO 2 ) due to the condensation reaction shown in the following formula (1). 4 ), is attached to the entrained dust and is collected together with the dust in the downstream electrostatic precipitator 4.

【0013】 SO3 +H2 O←/→H2 SO4 ……………………………………(1) 一般に空気予熱器3の温度が120〜140℃である
と、SO3 ガスは10〜20%空気予熱器3を通過する
と言われており、空気予熱器3出口のSO3 ガス濃度は
1〜10ppm の範囲にある。また、上記ダスト濃度は燃
料中の灰分によっても異なるが、通常石炭焚きボイラの
排ガスの場合には、ボイラ出口で数g/m3N〜数10g
/m3Nであり、電気集塵器4でダストが捕集され300
mg/m3N以下となるのが一般的である。
SO 3 + H 2 O ← / → H 2 SO 4 ………………………… (1) Generally, if the temperature of the air preheater 3 is 120 to 140 ° C., SO 3 It is said that the gas passes through 10% to 20% of the air preheater 3, and the SO 3 gas concentration at the outlet of the air preheater 3 is in the range of 1 to 10 ppm. The dust concentration varies depending on the ash content in the fuel, but in the case of the exhaust gas of a coal-fired boiler, it is usually several g / m 3 N to several 10 g at the boiler outlet.
/ M 3 N, dust is collected by the electrostatic precipitator 4 and 300
It is generally less than mg / m 3 N.

【0014】従って、上記熱交換器11の熱回収部5入
口での排ガス中には通常SO3 ガスが1〜10ppm 、ダ
ストが概ね300mg/m3N含有されている。このSO3
が熱交換器11の熱回収部5で排ガスの温度が下がって
(1)式に示す凝縮反応がなされると、これにより硫酸
ミスト(H2 SO4 )に転化し、同伴されるダストと共
に熱回収部5のフィン102に付着する。凝縮した硫酸
ミスト(H2 SO4 )は熱交換器11構成材料中の鉄分
や、ダスト中の鉄分と反応し硫酸鉄の結晶が生成され
る。これがバインダとなって固着ダストとなり、フィン
102に固着堆積する。
Therefore, the exhaust gas at the inlet of the heat recovery section 5 of the heat exchanger 11 usually contains 1 to 10 ppm of SO 3 gas and approximately 300 mg / m 3 N of dust. This SO 3
When the temperature of the exhaust gas is lowered in the heat recovery section 5 of the heat exchanger 11 and the condensation reaction shown in the equation (1) is performed, it is converted into sulfuric acid mist (H 2 SO 4 ) and is heated together with the entrained dust. It adheres to the fin 102 of the recovery unit 5. The condensed sulfuric acid mist (H 2 SO 4 ) reacts with the iron content in the heat exchanger 11 constituent material and the iron content in the dust to produce iron sulfate crystals. This becomes a binder and becomes fixed dust, which is fixedly deposited on the fin 102.

【0015】通常のダスト(軟着ダスト)は、熱交換器
11の熱回収部5の上部から鋼球(通常4〜5mmφ)を
散布し、その衝撃により付着ダストを除去するいわゆる
鋼球散布によるダスト除去装置を付設することにより容
易に除去可能であるが、硫酸鉄が生成され、これがバイ
ンダとなって固着したダストは除去が極めて困難であ
る。このため、かかる固着ダストが経時的にフィン10
2の表面に厚く付着し、これによって通気圧損が上昇す
る。さらに、上記鋼球が詰まり落下不能となる現象も併
発され、その際には通気圧損が急上昇し、遂には熱交換
器11の水洗を要することとなる。また、スーツブロワ
除去装置においても、上記ダストの付着により通気圧損
が増大するため、水洗が必要となる。
Normal dust (soft-adhesion dust) is produced by so-called steel ball spraying, in which steel balls (usually 4 to 5 mmφ) are scattered from the upper part of the heat recovery section 5 of the heat exchanger 11 and the adhered dust is removed by the impact. Although it can be easily removed by attaching a dust removing device, it is extremely difficult to remove dust that is produced by iron sulfate and becomes a binder and is fixed. For this reason, such adhered dust may be removed by the fins 10 over time.
Thickly adheres to the surface of No. 2, which increases ventilation pressure loss. Further, a phenomenon in which the steel balls are clogged and cannot be dropped occurs at the same time, and in that case, the ventilation pressure loss rapidly increases, and finally the heat exchanger 11 needs to be washed with water. Further, also in the suit blower removing device, since the ventilation pressure loss increases due to the adhesion of the dust, it is necessary to wash with water.

【0016】一方、上記熱回収部5のフィン102のピ
ッチeを大きくすれば、上記のようなダストの固着が発
生しても急激な通気圧損の増大は回避されるが、上記フ
ィンピッチeを大きくすれば、所要の熱交換性能を得る
ためには熱回収部5の大型化は避けられず、装置の設置
スペースの増大が高コスト化を招く。
On the other hand, if the pitch e of the fins 102 of the heat recovery section 5 is increased, a sudden increase in ventilation pressure loss can be avoided even if the dust adheres as described above. If it is increased, the heat recovery unit 5 is inevitably increased in size in order to obtain the required heat exchange performance, and an increase in the installation space of the device causes an increase in cost.

【0017】本発明の目的は、熱交換器の熱回収部を必
要最低限の小型のものに保持しつつ、同熱回収部のフィ
ンへのダスト固着を抑制し、これによる通気圧損の上昇
を抑制し得る排煙処理装置及び同処理装置用熱交換器を
提供することにある。
The object of the present invention is to keep the heat recovery part of the heat exchanger as small as possible and to prevent dust from adhering to the fins of the heat recovery part, thereby increasing the ventilation pressure loss. An object of the present invention is to provide a flue gas treatment device and a heat exchanger for the same which can be suppressed.

【0018】[0018]

【課題を解決するための手段】本発明は上記問題点を解
決するもので、その要旨とする手段は、SO3 を含む排
ガスを、熱媒体が通流するフィン付き管が多段に配設さ
れた熱交換器の熱回収部に導き、上記熱媒体と熱交換す
ることにより排ガス熱を回収するものにおいて、上記熱
回収部が、上記SO3 の凝縮付着量の多い特定領域に位
置する上記フィン付き管のフィンピッチを他の領域のそ
れよりも大きく設定されてなることを特徴とする熱交換
器、並びにこの熱交換器及び空気予熱器を備えた排煙処
理装置にある。
Means for Solving the Problems The present invention is intended to solve the above-mentioned problems, and the gist of the means is that finned tubes through which a heat medium flows through exhaust gas containing SO 3 are arranged in multiple stages. In the heat recovery section of the heat exchanger for recovering exhaust gas heat by exchanging heat with the heat medium, the heat recovery section has a fin located in a specific region where the amount of SO 3 condensed and adhered is large. The heat exchanger is characterized in that the fin pitch of the attached tube is set to be larger than that in other regions, and a flue gas treatment apparatus provided with this heat exchanger and air preheater.

【0019】上記手段によれば、上記熱回収部において
は、排ガスの通流方向において、他の領域よりもSO3
に起因する固着ダストの多い特定領域が存在するので、
この特定領域のフィンピッチを他の領域よりも大きく構
成することにより、同領域におけるSO3 凝縮ダストの
固着が他の領域よりも低く抑制される。これによって上
記特定領域における通気圧損の上昇が抑制され、他の熱
回収部の他の領域のフィンピッチを狭めることも可能と
なり、熱回収部の小型化が実現できる。
According to the above-mentioned means, in the heat recovery section, in the flow direction of the exhaust gas, the SO 3
Because there is a specific area with a lot of adhered dust due to
By making the fin pitch of this specific region larger than that of the other regions, the fixation of SO 3 condensed dust in the same region is suppressed to be lower than that of the other regions. As a result, the increase of the ventilation pressure loss in the specific region is suppressed, the fin pitch in the other region of the other heat recovery unit can be narrowed, and the heat recovery unit can be downsized.

【0020】従って、通気圧損が長期にわたって低減さ
れ、かつ小形化された熱交換器及びこれを使用した排煙
処理装置が得られる。
Therefore, it is possible to obtain a heat exchanger in which the ventilation pressure loss is reduced for a long period of time and the size thereof is reduced, and a flue gas treatment apparatus using the heat exchanger.

【0021】[0021]

【発明の実施の形態】以下図1〜図9を参照して本発明
の実施形態を詳細に説明する。図1には本発明が通用さ
れる熱交換器の熱回収部の構成図が、図2には同熱回収
部のフィン付き管の要部拡大断面図が、図3には上記熱
回収部を有する熱交換器が装備される排煙処理装置のブ
ロック図が夫々示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. 1 is a block diagram of a heat recovery part of a heat exchanger to which the present invention is applied, FIG. 2 is an enlarged cross-sectional view of a main part of a finned tube of the heat recovery part, and FIG. 3 is the heat recovery part. A block diagram of a flue gas treatment device equipped with a heat exchanger having the above is respectively shown.

【0022】図3に示される排煙処理装置は前述の従来
のものと同一構成であり、1はボイラ、2は脱硝装置、
3は空気予熱器、4は電気集塵器、6は湿式脱硫装置、
8は煙突である。11は熱交換器であり、本発明が適用
される熱回収部5及び再加熱部7から構成される。上記
排煙処理装置の動作については、前記従来のものと同様
であるので、ここでは説明を省略する。
The flue gas treatment apparatus shown in FIG. 3 has the same construction as the conventional one described above, 1 is a boiler, 2 is a denitration apparatus,
3 is an air preheater, 4 is an electrostatic precipitator, 6 is a wet desulfurizer,
8 is a chimney. A heat exchanger 11 is composed of a heat recovery unit 5 and a reheating unit 7 to which the present invention is applied. The operation of the smoke emission processing device is the same as that of the conventional one, and therefore its explanation is omitted here.

【0023】図1〜図2に示される熱回収部5におい
て、51はハウジングであり、一端側に上記電気集塵器
4を経た排ガスが導入される排ガス入口103、他端側
に排ガス出口104が設けられる。101は上記ハウジ
ング51内に蛇行状に設けられたフィン付き管であり、
外周に所定のピッチeにて多数のフィン102が固着さ
れ、内部を水等の熱媒が通流するようになっている。1
05は上記熱媒の入口、106は熱媒の出口である。
In the heat recovery section 5 shown in FIGS. 1 and 2, reference numeral 51 is a housing, one end of which is an exhaust gas inlet 103 into which the exhaust gas passing through the electrostatic precipitator 4 is introduced, and the other end of which is an exhaust gas outlet 104. Is provided. 101 is a finned tube provided in the housing 51 in a meandering shape,
A large number of fins 102 are fixed to the outer periphery at a predetermined pitch e, and a heat medium such as water flows through the inside. 1
Reference numeral 05 is an inlet of the heat medium, and 106 is an outlet of the heat medium.

【0024】本発明の実施形態に係る熱回収部5におい
ては、上記フィン付き管101用のフィン102のピッ
チeを、SO3 凝縮ダストが付着し易い凝縮付着の特定
領域M(長さZ)のピッチeが他の領域(長さZ1 及び
2 )よりも大きくなるように構成している。
In the heat recovery section 5 according to the embodiment of the present invention, the pitch e of the fins 102 for the finned tube 101 is set to a specific area M (length Z) of condensation attachment where SO 3 condensation dust is easily attached. Pitch e is larger than the other areas (lengths Z 1 and Z 2 ).

【0025】以下、その詳細及び設定根拠について説明
する。上記熱回収部5において、SO3 の凝縮付着領域
は、実験によって求めることもできるが、この実施形態
においては、通常運転の条件下で、SO3 ガスの凝縮速
度から熱回収部5のガス流通方向におけるSO3 付着量
分布を推算し、この推算結果においてSO3 凝縮付着量
の多い範囲を上記凝縮付着領域即ち指定領域Mに設定す
る。具体的にはSO3凝縮付着量分布の推算結果からガ
ス通流方向におけるSO3 凝縮付着量の平均値を求め、
例えばこの平均値よりもSO3 凝縮付着量が多い範囲を
上記特定領域Mとして、この領域M内におけるフィン1
02のピッチeを他の領域よりも大きく設定する。
The details and the basis of setting will be described below. In the heat recovery unit 5, the condensation and adhesion region of SO 3 can be obtained by an experiment, but in this embodiment, the gas flow rate of the heat recovery unit 5 is changed from the condensation rate of SO 3 gas under normal operating conditions. The SO 3 deposit amount distribution in the direction is estimated, and the range in which the SO 3 condensation deposit amount is large is set as the condensation deposit region, that is, the designated region M, in this estimation result. Specifically, the average value of the SO 3 condensate deposition amount in the gas flow direction is calculated from the estimation result of the SO 3 condensate deposition amount distribution,
For example, the range in which the amount of SO 3 condensed and adhered is larger than this average value is defined as the specific region M, and the fins 1 in this region M are
The pitch e of 02 is set to be larger than the other areas.

【0026】然るに、上記SO3 ガスの凝縮速度は次の
(2)式により求められる。
Therefore, the condensation rate of the SO 3 gas is obtained by the following equation (2).

【0027】 −GM ・dy/dZ=kg・a・p・(y−y1 )…………………(2) ここで GM :ガスモル流量〔kgmol /h〕 y :ガス中SO3 分率〔−〕 y1 :SO3 平衡分率〔−〕 Z :熱回収部の有効長さ〔m〕 kg:気相の物質移動係数〔kgmol /m2・h・atm 〕 a :単位高さ当りの伝熱面積〔m2/m〕 p :全圧〔atm 〕 また上記、y1 (SO3 平衡分率)は、通常熱交換器で
計算される周知の方法にて各部のチューブ表面温度を求
め、それを露点として図8に示されるSO3 濃度と露点
との関係より求めればよい。また、上記kg(気相の物質
移動係数)は、5kgmol /m2・h・atm の値を採る。
[0027] -G M · dy / dZ = kg · a · p · (y-y 1) ..................... (2) where G M: gas molar flow rate [kgmol / h] y: gas SO 3 parts per [-] y 1: SO 3 equilibrium fraction [-] Z: effective length of the heat recovery section (m) kg: mass transfer coefficient of the gas phase [kgmol / m 2 · h · atm] a: unit Heat transfer area per height [m 2 / m] p: Total pressure [atm] The above-mentioned y 1 (SO 3 equilibrium fraction) is usually calculated by a heat exchanger by a well-known method. The surface temperature is determined, and the dew point is used as the dew point to determine the relationship between the SO 3 concentration and the dew point. Further, the above-mentioned kg (mass transfer coefficient of gas phase) takes a value of 5 kgmol / m 2 · h · atm.

【0028】上記のようにして、特定領域Mのフィンピ
ッチeを他の領域よりも大きなピッチに設定することに
より、上記ダスト固着が効率良く抑制され、熱回収部5
の小型コンパクトさを保持しつつ、通気圧損を長期間低
く維持できる。すなわち、前述したように、発明者らの
研究によれば、図4の断面図に示されるとおり、フィン
付き管101への固着ダストの付着域は、同フィン付き
管101の全般に均一に付着しているのではなく、ある
特定領域Mのフィン付き管101に固着ダストの付着が
多く、他の領域は固着ダストの付着が少ない。つまり、
通気圧損が急速に上昇する原因は、ある領域のフィン付
き管101部に極部的に固着ダストが付着するためであ
る。
As described above, by setting the fin pitch e of the specific area M to be larger than that of the other areas, the dust adhesion is effectively suppressed, and the heat recovery section 5 is provided.
The air pressure loss can be kept low for a long time while maintaining the small size and compactness. That is, as described above, according to the study by the inventors, as shown in the cross-sectional view of FIG. 4, the adhesion area of the adhered dust to the finned tube 101 is uniformly adhered to the entire finned tube 101. Rather, the adhered dust adheres much to the finned pipe 101 in a certain specific region M, and the adhered dust adheres less to the other regions. That is,
The reason why the ventilation pressure loss rapidly increases is that the adhered dust is locally attached to the finned pipe 101 portion in a certain region.

【0029】従って、上記固着ダストが付着する特定領
域Mのフィンピッチeを拡げることにより、急激な通気
圧損の上昇を回避でき、しかも熱回収部5の全域にわた
って一様にフィンピッチeを拡大する場合に較べて、熱
回収部5の大きさを格段に小さく構成できる。また逆に
いえば、上記特定領域M以外の部位のフィンピッチe
は、従来のものよりも狭くしても、急激な通気圧損の上
昇は起こり難く、この点で熱回収部5の小型化が図れ
る。そして、上記固着ダストの生成が抑制されれば、ボ
イラ1の定期検査時に合わせて、水洗等のダスト除去操
作を実施すればよく、排煙処理システム全体の長期安定
運転が、容易なメンテナンス作業で以って可能となる。
Therefore, by expanding the fin pitch e in the specific region M to which the adhered dust adheres, it is possible to avoid a rapid increase in ventilation pressure loss, and further to uniformly expand the fin pitch e over the entire area of the heat recovery section 5. Compared with the case, the size of the heat recovery part 5 can be made significantly smaller. Conversely speaking, the fin pitch e of the portion other than the specific region M is
However, even if it is narrower than the conventional one, a rapid increase in ventilation pressure loss is unlikely to occur, and in this respect, the heat recovery section 5 can be downsized. If the generation of the adhered dust is suppressed, the dust removal operation such as washing with water may be carried out at the time of the periodic inspection of the boiler 1, and the long-term stable operation of the entire flue gas treatment system can be performed by easy maintenance work. This is possible.

【0030】また、既存の熱交換器11の仕様に対し
て、上記特定領域Mのフィンピッチeを単に拡げる設計
変更や改造をしようとすると、一定の伝熱面積を確保す
るため、熱回収部5の寸法が若干増えることになる。し
かしながら、この場合には、固着ダストの生成が少ない
領域(上記特定領域M以外の範囲)のフィンピッチeを
も仕様変更することにより、熱回収部5の寸法増加を回
避しつつ、しかも全体として急激な通気圧損の増加を招
く固着ダストの生成を防止できる。すなわち、固着ダス
トの生成が少ない領域のフィンピッチeを現行の仕様よ
りも若干小さくすればよい。このように上記特定領域M
とそれ以外の領域とで相対的にフィン102のピッチe
を異ならしめることにより、システムの長期安定運転と
小型化という、従来は同時に達成できなかった課題が解
決される。
Further, if an attempt is made to change the design of the existing heat exchanger 11 by simply expanding the fin pitch e of the specific region M or to modify it, in order to secure a constant heat transfer area, the heat recovery section is required. The size of 5 will be slightly increased. However, in this case, by changing the specifications of the fin pitch e in a region (a range other than the specific region M) in which the amount of adhered dust is small, the size of the heat recovery unit 5 is prevented from increasing and the overall size is improved. It is possible to prevent the generation of adhered dust that causes a rapid increase in ventilation pressure loss. That is, the fin pitch e in the area where the amount of adhered dust is small may be made slightly smaller than the current specifications. Thus, the specific area M
And the other area, the pitch e of the fins 102 is relatively
By differentiating, the problems of long-term stable operation and downsizing of the system, which could not be achieved at the same time in the past, are solved.

【0031】なお、以上説明した思想、すなわち実験ま
たは凝縮からの推算により、固着ダスト生成が極端に多
い領域Mを特定し、この特定領域Mのフィンピッチeを
相対的に大きくするという上記技術思想は、SO3 と同
様に凝縮して固着ダストまたは固着スケールなどを生成
するSO3 以外の成分を含む他の高温流体から熱回収す
る場合にも、同様に適用して効果がある。 〔実施例〕以下、本発明の上記実施形態における実施例
を図5〜図7に基づいて説明する。
It should be noted that, based on the above-described idea, that is, the above-mentioned technical idea that the region M in which the amount of adhered dust is extremely large is specified and the fin pitch e of the specific region M is relatively increased by the estimation based on the experiment or the condensation. Is also effectively applied when heat is recovered from another high-temperature fluid containing a component other than SO 3 , which condenses to form adhered dust or adhered scale as in the case of SO 3 . [Examples] Examples of the above-described embodiment of the present invention will be described below with reference to FIGS.

【0032】先ず、図3に示されるブロック図で構成さ
れる排煙処理装置と同一構成の試験装置に石炭焚きボイ
ラ排ガス200m3N/hを供給し、熱交換器11の熱回
収部5(全長5m)への固着ダストの付着試験を図7に
示される条件で実施した。試験後、熱交換器11の熱回
収部5を開放点検し、各フィン部102に付着した固着
ダストをサンプリングし、そのダスト中の可溶性SO4
をイオンクロマト方法で分析し、各部のSO3 付着量を
求めた。図5は、その分析結果をもとに、SO 3 付着量
の平均値を1としてSO3 付着量分布を表したものであ
る。図5より明らかなように、SO3 の付着は、伝熱面
全体に均一に付着しているのではなく、ある範囲にSO
3 の付着が多く、SO3 付着に分布が見られる。
First, the block diagram shown in FIG. 3 is used.
A coal-fired boiler is installed in the same test equipment as the flue gas treatment equipment used.
La exhaust gas 200mThreeN / h is supplied to heat the heat exchanger 11.
Figure 7 shows the adhesion test of adhered dust to the collecting part 5 (total length 5 m).
It carried out on the conditions shown. After the test, heat the heat exchanger 11
Opening inspection of the storage part 5 and sticking to each fin 102
Dust is sampled and soluble SO in the dust is sampled.Four
Is analyzed by ion chromatography and the SOThreeAdhesion amount
I asked. Figure 5 shows the SO based on the analysis results. ThreeAdhesion amount
SO as 1ThreeIt shows the distribution of adhered amount.
You. As is clear from FIG.ThreeAdhesion of heat transfer surface
It does not adhere uniformly to the whole, but SO in a certain range
ThreeOften adheres to SOThreeDistribution is seen in the adhesion.

【0033】例えばRun No.3のSO3 濃度10.3
ppm においては、熱交換器11の熱回収部5のガス入口
側から1〜2.5mの範囲にSO3 付着量が多い。従っ
てこの部位のフィンピッチeを拡げることにより、通気
圧損の上昇を低く抑えることができ、排煙処理装置の全
体システムの長期安定運転につながる。また、図中の実
線は本発明の発明者らが前述の方法でSO3 付着量分布
を推算した結果であるが、SO3 付着量分布の実測値と
推算値とがよく一致している。従って、前述の推算のみ
によっても、フィンピッチeを相対的に大きくすべき特
定領域Mが設定できることとなる。
For example, the SO 3 concentration of Run No. 3 10.3
At ppm, the SO 3 deposition amount is large in the range of 1 to 2.5 m from the gas inlet side of the heat recovery section 5 of the heat exchanger 11. Therefore, by expanding the fin pitch e at this portion, it is possible to suppress an increase in ventilation pressure loss to a low level, which leads to long-term stable operation of the entire system of the smoke treatment apparatus. Further, the solid line in the figure is the result of the inventors of the present invention estimating the SO 3 attachment amount distribution by the method described above, and the measured value and the estimation value of the SO 3 attachment amount distribution are in good agreement. Therefore, the specific region M in which the fin pitch e should be relatively large can be set only by the above estimation.

【0034】次に、図7におけるRun No.2の条件で
全段のフィンピッチe=10.16mmにした熱回収部5
(A)と熱回収部5入口側から1.25〜2.45mの
範囲にあるフィン102のみをフィンピッチe=12.
70mmにした熱回収部(B)を使用して通気圧損の経時
変化を調査した。その結果を図6に示す。図に示すよう
に固着ダストが付着しやすい領域のフィンピッチeを1
2.70mmにした熱回収部(B)の通気圧損の上昇は極
めて少なくなり、長期安定運転を行うことができた。な
お、熱回収部(B)は熱回収部(A)に較べて若干熱交
換率が低下するが、問題になるほどではなく、実機にお
いては若干装置寸法を大きくするか、または固着ダスト
の付着が少ない領域のフィンピッチeを若干狭くするこ
とで解決できる値であった。
Next, under the condition of Run No. 2 in FIG. 7, the heat recovery section 5 with fin pitch e = 10.16 mm in all stages
(A) and only the fins 102 within the range of 1.25 to 2.45 m from the inlet side of the heat recovery unit 5 are fin pitch e = 12.
Using the heat recovery part (B) having a length of 70 mm, the time-dependent change in ventilation pressure loss was investigated. FIG. 6 shows the result. As shown in the figure, the fin pitch e in the area where adhered dust is likely to adhere is set to 1
The rise in ventilation pressure loss in the heat recovery section (B), which was set to 2.70 mm, was extremely small, and long-term stable operation could be performed. The heat recovery unit (B) has a slightly lower heat exchange rate than the heat recovery unit (A), but this is not a problem, and the actual equipment may be slightly increased in size or adhered with adhered dust. It was a value that could be solved by slightly narrowing the fin pitch e in a small area.

【0035】なお、本発明は、図3に示されるシステム
のみに適用が限定されるものではなく、図9に示される
システムにも適用可能である。すなわち、図9は空気予
熱器3の後流側に熱交換器11の熱回収部5が配置さ
れ、次いで電気集塵器4が配置されたシステムを示す。
このシステムにおいては、熱交換器11の熱回収部5で
排ガスが冷却されて降温し、電気集塵器4に流入する温
度が80〜100℃と低いため、集塵効率が向上する。
上記電気集塵器4での温度低下は少ないため、熱回収部
5の温度は殆ど変わらない。
The application of the present invention is not limited to the system shown in FIG. 3, but can be applied to the system shown in FIG. That is, FIG. 9 shows a system in which the heat recovery part 5 of the heat exchanger 11 is arranged on the downstream side of the air preheater 3, and then the electrostatic precipitator 4 is arranged.
In this system, the exhaust gas is cooled in the heat recovery section 5 of the heat exchanger 11 to lower its temperature, and the temperature flowing into the electric dust collector 4 is as low as 80 to 100 ° C., so that the dust collection efficiency is improved.
Since the temperature drop in the electrostatic precipitator 4 is small, the temperature of the heat recovery part 5 remains almost unchanged.

【0036】ただし、この場合はダスト濃度が若干多く
なるが、熱回収部5への固着ダストの付着については、
これが低減される方向にある。すなわち排ガス中のSO
3 が凝縮して硫酸ミスト(H2 SO4 )となっても、ダ
スト濃度が高いと、多量のダストに硫酸ミストが付着す
るために粘着性があまり強くならず、同ダストが後流側
へと飛散していく割合が多くなり、フィン102表面へ
の固着ダストの付着はむしろ少なくなる。そしてこの場
合も、熱回収部5においてSO3 の凝縮速度に分布があ
ることは明らかであり、本発明の適用は有効である。ま
た前述のように、本発明は、SO3 以外の固着成分を含
む他の高温流体から熱回収する熱交換器11に適用する
こともできる。
However, in this case, although the dust concentration is slightly increased, the adhesion of the adhered dust to the heat recovery section 5 is
This tends to be reduced. That is, SO in exhaust gas
Even if 3 is condensed and becomes sulfuric acid mist (H 2 SO 4 ), if the dust concentration is high, the sulfuric acid mist will adhere to a large amount of dust and the adhesiveness will not be so strong. And the amount of adhered dust on the surface of the fin 102 is rather reduced. Also in this case, it is clear that there is a distribution in the condensation rate of SO 3 in the heat recovery section 5, and the application of the present invention is effective. Further, as described above, the present invention can also be applied to the heat exchanger 11 that recovers heat from another high-temperature fluid containing a fixed component other than SO 3 .

【0037】[0037]

【発明の効果】本発明は以上のように構成されており、
本発明によれば、熱回収部におけるSO3 凝縮ダストの
固着が多い特定領域のみについてフィンピッチを大きく
構成するという簡単な手段で以って熱回収部全体の通気
圧損を低減することができ、通気圧損が抑制された熱交
換器及びこれを使用した排煙処理装置を得ることができ
る。
The present invention is configured as described above.
According to the present invention, the ventilation pressure loss of the entire heat recovery unit can be reduced by a simple means of increasing the fin pitch only in a specific region where SO 3 condensed dust is often stuck in the heat recovery unit. It is possible to obtain a heat exchanger with suppressed ventilation pressure loss and a flue gas treatment device using the heat exchanger.

【0038】また、上記通気圧損を通常レベルに抑えれ
ば他の部位におけるフィンピッチの縮小が可能となり、
熱回収部の小型化がなされた熱交換器が得られる。
If the ventilation pressure loss is suppressed to a normal level, the fin pitch in other parts can be reduced,
A heat exchanger in which the heat recovery unit is downsized can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る排煙処理システム用熱
交換器の熱回収部の構成図。
FIG. 1 is a configuration diagram of a heat recovery unit of a heat exchanger for a flue gas treatment system according to an embodiment of the present invention.

【図2】上記熱回収部のフィン付き管の部分断面図。FIG. 2 is a partial cross-sectional view of a finned tube of the heat recovery section.

【図3】上記実施形態における排煙処理装置のブロック
図。
FIG. 3 is a block diagram of a flue gas treatment device in the above embodiment.

【図4】上記排煙処理システムにおける熱回収部の固着
ダストの分布を示す説明図。
FIG. 4 is an explanatory diagram showing a distribution of adhered dust in a heat recovery unit in the smoke exhaust processing system.

【図5】本発明の実施例におけるSO3 付着量分布を示
す線図。
FIG. 5 is a diagram showing a SO 3 attachment amount distribution in an example of the present invention.

【図6】上記実施例における通気圧損の経時変化を示す
線図。
FIG. 6 is a diagram showing a change over time in ventilation pressure loss in the above-mentioned embodiment.

【図7】上記実施例における試験条件を示す図。FIG. 7 is a diagram showing test conditions in the above-mentioned embodiment.

【図8】硫酸(H2 SO4 )の露点を示す線図。FIG. 8 is a diagram showing the dew point of sulfuric acid (H 2 SO 4 ).

【図9】本発明の他の実施形態に係る排煙処理装置のブ
ロック図。
FIG. 9 is a block diagram of an exhaust gas treatment device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ボイラ 5 熱回収部 6 湿式脱硫装置 7 再加熱部 11 熱交換器 101 フィン付き管 102 フィン 1 Boiler 5 Heat Recovery Part 6 Wet Desulfurization Device 7 Reheating Part 11 Heat Exchanger 101 Finned Tube 102 Fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 落合 節美 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 片岡 晴彦 広島県三原市糸崎町5007番地 三菱重工業 株式会社三原製作所内 (72)発明者 酒井 烈 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 岩下 浩一郎 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satomi Ochiai 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Haruhiko Kataoka 5007 Itozakicho, Mihara City, Hiroshima Prefecture Mitsubishi Heavy Industries In Mihara Manufacturing Co., Ltd. (72) Inventor Rei Sakai 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Koichiro Iwashita 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanbishi Heavy Industries Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SO3 を含む排ガスを、熱媒体が通流す
るフィン付き管が多段に配設された熱交換器の熱回収部
に導き、上記熱媒体と熱交換することにより排ガス熱を
回収するものにおいて、上記熱回収部が、上記SO3
凝縮付着量の多い特定領域に位置する上記フィン付き管
のフィンピッチを他の領域のそれよりも大きく設定され
てなることを特徴とする熱交換器。
The exhaust gas containing 1. A SO 3, finned tube heat medium flowing is led to the heat recovery of the heat exchanger arranged in multiple stages, the exhaust gas heat by the heat medium and the heat exchanger In the heat recovery section, the heat recovery section is characterized in that the fin pitch of the finned tube located in a specific region where the amount of SO 3 condensed and adhered is large is set to be larger than that in other regions. Heat exchanger.
【請求項2】 請求項1に記載の熱交換器と、同熱交換
器の上流に排ガスにより空気を加熱する空気予熱器とを
備えた排煙処理装置。
2. A flue gas treatment apparatus comprising the heat exchanger according to claim 1 and an air preheater for heating air with exhaust gas upstream of the heat exchanger.
JP08652596A 1996-04-09 1996-04-09 Heat exchanger and flue gas treatment device provided with the same Expired - Lifetime JP3572139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08652596A JP3572139B2 (en) 1996-04-09 1996-04-09 Heat exchanger and flue gas treatment device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08652596A JP3572139B2 (en) 1996-04-09 1996-04-09 Heat exchanger and flue gas treatment device provided with the same

Publications (2)

Publication Number Publication Date
JPH09280540A true JPH09280540A (en) 1997-10-31
JP3572139B2 JP3572139B2 (en) 2004-09-29

Family

ID=13889415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08652596A Expired - Lifetime JP3572139B2 (en) 1996-04-09 1996-04-09 Heat exchanger and flue gas treatment device provided with the same

Country Status (1)

Country Link
JP (1) JP3572139B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042280A1 (en) * 2002-11-05 2004-05-21 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus
WO2011104918A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Heat exchanger, and method for inspecting heat exchanger
US8568673B2 (en) 2010-09-28 2013-10-29 Mitsubishi Heavy Industries, Ltd. Gas analysis device, mercury removal system, gas analysis method, and removal method for mercury in flue gas
WO2016056036A1 (en) * 2014-10-06 2016-04-14 カンケンテクノ株式会社 Exhaust gas processing device
CN107965787A (en) * 2017-11-22 2018-04-27 西安交通大学 System and method for the classification rotary regenerative air preheater for mitigating ammonium hydrogen sulfate deposition
US10907822B2 (en) 2015-02-12 2021-02-02 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010635B2 (en) 2009-03-18 2012-08-29 三菱重工業株式会社 Heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042280A1 (en) * 2002-11-05 2004-05-21 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus
CN100429460C (en) * 2002-11-05 2008-10-29 巴布考克日立株式会社 Exhaust gas treating apparatus
US7507381B2 (en) 2002-11-05 2009-03-24 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus
US7691349B2 (en) 2002-11-05 2010-04-06 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating method
WO2011104918A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Heat exchanger, and method for inspecting heat exchanger
US8568673B2 (en) 2010-09-28 2013-10-29 Mitsubishi Heavy Industries, Ltd. Gas analysis device, mercury removal system, gas analysis method, and removal method for mercury in flue gas
WO2016056036A1 (en) * 2014-10-06 2016-04-14 カンケンテクノ株式会社 Exhaust gas processing device
JP5952984B1 (en) * 2014-10-06 2016-07-13 カンケンテクノ株式会社 Exhaust gas treatment equipment
US9937467B2 (en) 2014-10-06 2018-04-10 Kanken Techno Co., Ltd. Exhaust gas processing device
US10907822B2 (en) 2015-02-12 2021-02-02 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
CN107965787A (en) * 2017-11-22 2018-04-27 西安交通大学 System and method for the classification rotary regenerative air preheater for mitigating ammonium hydrogen sulfate deposition
CN107965787B (en) * 2017-11-22 2019-06-11 西安交通大学 For mitigating the system and method for the classification rotary regenerative air preheater of ammonium hydrogen sulfate deposition

Also Published As

Publication number Publication date
JP3572139B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
WO2004042280A1 (en) Exhaust gas treating apparatus
CA2498263C (en) Exhaust smoke-processing system
JP4318055B2 (en) Method and apparatus for treating exhaust gas containing sulfur oxide
CN106940025A (en) Fire coal boiler fume is purified and waste heat recovery processing system and method
CN103203154B (en) Water-cooled tube type condensate dust collector
MX2012003434A (en) Exhaust processing and heat recovery system.
US20040047773A1 (en) So3 separating and removing equipment for flue gas
KR20150067292A (en) Exhaust gas treatment system and method
JP3572139B2 (en) Heat exchanger and flue gas treatment device provided with the same
CN206755210U (en) Fire coal boiler fume purifies and waste heat recovery processing system
JP4761284B2 (en) Exhaust gas treatment device and its operation method
JP2000051651A (en) Apparatus and method for flue gas desulfurization
CN203196508U (en) Water-cooled tube type condensate dust remover
CN209034090U (en) A kind of ammonia process of desulfurization flue gas disappears white waste heat depth recovery system
CN208678793U (en) The white system of boiler smoke qi exhaustion
US5401480A (en) Removal of sulfur and nitrogen oxides from flue gases
CN210410170U (en) Process system suitable for wet desulphurization and white smoke elimination of northern air cooling unit
JP2710225B2 (en) Heat exchanger for condenser
JPH10128152A (en) Device and method for flue gas treatment
CN208720254U (en) A kind of device for thermal power plant's exhaust heat stepped utilization and eliminating white smoke
JP2002250514A (en) Exhaust gas disposer, and its operation method
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
CN212204588U (en) Flue gas system of coal-fired boiler
JP3790349B2 (en) Smoke removal apparatus and method
JPH10141890A (en) Cleaning method for heat exchanger and exhaust gas desulfurizing apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term