JP2710225B2 - Heat exchanger for condenser - Google Patents

Heat exchanger for condenser

Info

Publication number
JP2710225B2
JP2710225B2 JP7055958A JP5595895A JP2710225B2 JP 2710225 B2 JP2710225 B2 JP 2710225B2 JP 7055958 A JP7055958 A JP 7055958A JP 5595895 A JP5595895 A JP 5595895A JP 2710225 B2 JP2710225 B2 JP 2710225B2
Authority
JP
Japan
Prior art keywords
heat exchanger
fin
cooling pipe
condenser
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7055958A
Other languages
Japanese (ja)
Other versions
JPH08254397A (en
Inventor
幸夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7055958A priority Critical patent/JP2710225B2/en
Publication of JPH08254397A publication Critical patent/JPH08254397A/en
Application granted granted Critical
Publication of JP2710225B2 publication Critical patent/JP2710225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Chimneys And Flues (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は火力発電所及び一般産業
用ボイラ等の燃焼排ガスから凝縮性成分(水蒸気等)を
回収する凝縮器に用いられる凝縮器用熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for a condenser used in a condenser for recovering condensable components (such as water vapor) from combustion exhaust gas from a thermal power plant or a general industrial boiler.

【0002】[0002]

【従来の技術】蒸気タービン発電プラントなどでは熱効
率を高めるため、節炭器や空気予熱器などの顕熱回収装
置を設置し、ボイラ排ガスの顕熱を回収している。燃料
が液化天然ガス(LNG)のような高含水燃料の場合、
排ガス中には多量の水蒸気が含まれることから、水蒸気
の潜熱を回収して効率をさらに向上させることが提案さ
れている。LNGは硫黄などの腐食成分を含まない炭化
水素が主成分のクリーンなエネルギ源であるため、潜熱
回収を行なっても硫酸などの腐食性物質が生成されず、
低温腐食を生じるおそれがない。このため、LNGを燃
料とする火力発電ボイラなどでは凝縮器を積極的に利用
している。
2. Description of the Related Art In a steam turbine power plant or the like, a sensible heat recovery device such as a economizer or an air preheater is installed in order to improve thermal efficiency, and sensible heat of boiler exhaust gas is recovered. If the fuel is a high water content fuel such as liquefied natural gas (LNG),
Since the exhaust gas contains a large amount of water vapor, it has been proposed to recover the latent heat of the water vapor to further improve the efficiency. Since LNG is a clean energy source mainly composed of hydrocarbons containing no corrosive components such as sulfur, corrosive substances such as sulfuric acid are not generated even when latent heat is recovered,
No risk of low temperature corrosion. For this reason, condensers are actively used in thermal power generation boilers and the like that use LNG as fuel.

【0003】従来の凝縮器用熱交換器の冷却管15に
は、図6及び図7に示すように外周面が平滑な垂直配列
管がある。また、図8及び図9に示すように冷却管15
の外周に円環状のフィン17を多数取り付けたものがあ
る。これらの熱交換器では冷却管15内に冷水16を流
して、管外側を流れる凝縮成分を含んだガス2の冷却及
び含有水蒸気等の凝縮によって、ガスの保有する熱を回
収し冷却管15内の冷水16の温度を上昇させる。ま
た、管外周で凝縮した液は重力によって冷却管15ある
いはフィン17を伝わって下降し、冷却管15の下部に
設けてある回収装置(図示せず)によって集められる。
集めた水はボイラ給水などとして利用される。
As a cooling pipe 15 of a conventional heat exchanger for a condenser, there is a vertically arranged pipe having a smooth outer peripheral surface as shown in FIGS. Also, as shown in FIGS.
Are provided with a large number of annular fins 17 on the outer periphery thereof. In these heat exchangers, chilled water 16 flows through the cooling pipe 15 to cool the gas 2 containing condensed components flowing outside the pipe and to condense the water vapor contained therein, thereby recovering the heat possessed by the gas. The temperature of the cold water 16 is increased. The liquid condensed on the outer circumference of the pipe descends along the cooling pipe 15 or the fins 17 due to gravity, and is collected by a recovery device (not shown) provided at a lower part of the cooling pipe 15.
The collected water is used for boiler water supply.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
平滑管では凝縮液が外表面に沿って下降する途中で熱交
換器内のガス流によって下流側に飛ばされる。また、後
者のフィン付き冷却管では、フィンから流下する過程で
液滴がガス流によって下流側に吹き飛ばされる。その結
果、熱交換器内を流れるガスに液滴が含まれ、ガスの
動抵抗が増加し、通風機6の負荷が増大するとともに通
風機6及び煙突7が著しく腐食される。この対策として
気液分離機能をもつエリミネータを熱交換器5のすぐ下
流側に設け、排ガス中の水蒸気を捕捉除去することが考
えられる。しかし、エリミネータを下流側に設置すると
圧力損失が著しく増大してしまい、通風機6の負荷が過
大になるので好ましくない。更に、これら飛散した液滴
が再蒸発することによって凝縮器の潜熱回収特性が悪化
する。
However, in the former smooth tube, the condensate is blown downstream by the gas flow in the heat exchanger while descending along the outer surface. Further, the conditioned latter fin cooling tubes, the droplets in the course of flowing down from the fin is blown blown to the downstream side by the gas flow. As a result, the gas flowing in the heat exchanger contains droplets, the flow resistance of the gas increases , the load on the ventilator 6 increases, and the gas flows.
The fan 6 and the chimney 7 are significantly corroded. As a measure against this
An eliminator with a gas-liquid separation function is placed immediately below the heat exchanger 5.
It is considered to be installed on the flow side to capture and remove water vapor in exhaust gas.
available. However, if the eliminator is installed downstream,
The pressure loss increases significantly, and the load on the ventilator 6 becomes excessive.
It is not preferable because it becomes large. Furthermore, the re-evaporation of these scattered droplets deteriorates the latent heat recovery characteristics of the condenser.

【0005】本発明は上記課題を解決するためになされ
たものであって、燃焼器からの燃焼排ガスのガス流によ
って凝縮液が下流側へ吹き飛ばされないようにしなが
ら、冷却管の外表面から凝縮液を速やかに回収すること
ができ、ガス流動抵抗の増加を抑えると共に、優れた潜
熱回収特性を実現することができる凝縮器用熱交換器を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for controlling the flow of combustion exhaust gas from a combustor.
To prevent condensate from being blown downstream.
Therefore, it is an object of the present invention to provide a condenser heat exchanger capable of quickly collecting condensed liquid from the outer surface of a cooling pipe, suppressing an increase in gas flow resistance, and achieving excellent latent heat recovery characteristics. And

【0006】[0006]

【課題を解決するための手段】本発明に係る凝縮器用熱
交換器は、凝縮成分を含有する燃焼排ガスの気流に対し
て交差するように配置され、内部を冷媒が通流し、外周
面に前記凝縮成分を凝縮させる実質的に垂直に設けられ
冷却管と、少なくとも前記ガス流が衝突する側の前記
冷却管の外周面に設けられるフィンと、を備え、このフ
ィンは、凝縮した前記凝縮成分が前記ガス流の衝突によ
り前記冷却管を離脱して下流側に飛散するのを防止する
ために、少なくともその一部を前記ガス流の流れ方向に
対して鉛直上方に所定の角度をもって設けられ、前記冷
却管の外周面に対する前記ガス流の風当りを弱める防風
部と、凝縮した前記凝縮成分を前記冷却管に沿って通流
させるための案内部と、を有することを特徴とする。
A heat exchanger for a condenser according to the present invention is disposed so as to intersect an airflow of a combustion exhaust gas containing a condensed component, a refrigerant flows through the inside, and an outer periphery of the heat exchanger.
A surface provided substantially vertically to condense the condensed component
And a fin provided on an outer peripheral surface of the cooling pipe at least on a side where the gas flow collides, and the fin is configured such that the condensed component condensed due to the collision of the gas flow.
To prevent the cooling pipe from leaving and scattering downstream.
At least a part thereof in the flow direction of the gas flow.
A predetermined angle is provided vertically above the
Windbreak to reduce the wind hit of the gas flow against the outer peripheral surface of the pipe
And a guide for allowing the condensed component to flow along the cooling pipe.

【0007】なお、前記フィンは、ガス流の流れ方向に
沿って鉛直下方に傾斜して設けられていることが好まし
い。また、前記フィンの先端部には複数の切り込みが設
けられていることが望ましい。
[0007] Incidentally, the fins are preferably provided obliquely vertically downward along the flow direction of the gas flow. Further, it is desirable that a plurality of cuts are provided at the tip of the fin.

【0008】[0008]

【作用】本発明に係る凝縮器用熱交換器においては、フ
ィンの防風部によって冷却管の外表面に衝突しようとす
るガス流を弱めているので、凝縮液は吹き飛ばされる
となく冷却管外表面に沿って流下する。また、フィンの
案内部によってフィンに集まった凝縮液を下方へ案内し
排出するようにしているので、凝縮液は吹き飛ばされる
前に速やかに回収される。
In the heat exchanger for a condenser according to the present invention, since the gas flow that is going to collide with the outer surface of the cooling pipe is weakened by the windproof portion of the fin, the condensate is not blown off. It flows down along the outer surface of the cooling pipe. In addition, the condensate collected on the fins is guided downward by the fin guides and discharged, so that the condensate is blown away.
Collected immediately before .

【0009】[0009]

【実施例】以下、添付の図面を参照して本発明の種々の
実施例について説明する。本実施例では蒸気タービン発
電プラントに設けられた凝縮器用熱交換器の場合を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the accompanying drawings. In the present embodiment, a case of a heat exchanger for a condenser provided in a steam turbine power plant will be described.

【0010】図1に示すように、蒸気タービン発電プラ
ントは蒸気系および排ガス系を有する。蒸気系において
は、ボイラ1でLNGを燃焼し、発生した水蒸気を蒸気
タービン8に送って発電機11を回転させた後に、復水
器9で凝縮する。凝縮した水はポンプ10で昇圧され、
節炭器3で予熱された後、ボイラ1に戻る。図中の一点
鎖線は蒸気サイクルを示している。また、図中の実線、
破線および点線は、それぞれ排ガス2、作動熱媒体12
(以降、熱媒体と略す)および燃焼用空気14の流れを
示している。
As shown in FIG. 1, the steam turbine power plant has a steam system and an exhaust gas system. In the steam system, LNG is burned in the boiler 1, and the generated steam is sent to the steam turbine 8 to rotate the generator 11, and then condensed in the condenser 9. The condensed water is pressurized by the pump 10,
After being preheated by the economizer 3, the process returns to the boiler 1. The dashed line in the figure indicates the steam cycle. Also, the solid line in the figure,
Dashed and dotted lines represent the exhaust gas 2 and the working heat medium 12 respectively.
(Hereinafter abbreviated as heat medium) and the flow of combustion air 14 are shown.

【0011】一方、排ガス系においては、ボイラ1から
出た排ガス2は、節炭器3、空気予熱器4、凝縮液およ
び潜熱回収用の熱交換器5を経由し、通風機6によって
煙突7から大気中に放出される。図中に記入した各温度
は、熱交換器5の出入口における排ガス2および熱媒体
12の温度である。
On the other hand, in the exhaust gas system, the exhaust gas 2 emitted from the boiler 1 passes through a economizer 3, an air preheater 4, a heat exchanger 5 for condensate and latent heat recovery, and a chimney 7 by a ventilator 6. Is released into the atmosphere. Each temperature entered in the figure is the temperature of the exhaust gas 2 and the temperature of the heat medium 12 at the entrance and exit of the heat exchanger 5.

【0012】熱交換器5は、排ガス2と熱媒体12が対
向流的に熱交換される凝縮用熱交換器であり、流入する
排ガス2の温度は110℃、水蒸気濃度は約17mol
%(露点温度約55℃)である。一方、熱媒体12の入
り口温度は35℃である。排ガス2は熱媒体12によっ
て露点温度以下に冷却されるので、含有水蒸気の凝縮が
生じる。この際、水蒸気潜熱だけでなく、排ガス顕熱も
奪われるので、排ガス温度は大きく低下し、出口温度は
50℃となる(すなわち、凝縮装置における温度低下は
60℃である)。一方、熱媒体12は水蒸気潜熱および
排ガス顕熱を回収して50℃まで温度上昇するが、付属
のヒートポンプ13に熱を供給して温度低下し、再び熱
交換器5に戻る。熱交換器5で凝縮した水はボイラ給水
などとして利用される。
The heat exchanger 5 is a condensing heat exchanger in which the exhaust gas 2 and the heat medium 12 exchange heat in a countercurrent manner. The temperature of the flowing exhaust gas 2 is 110 ° C. and the water vapor concentration is about 17 mol.
% (Dew point temperature about 55 ° C). On the other hand, the inlet temperature of the heat medium 12 is 35 ° C. Since the exhaust gas 2 is cooled to a temperature equal to or lower than the dew point temperature by the heat medium 12, condensation of the contained water vapor occurs. At this time, not only the latent heat of water vapor but also the sensible heat of the exhaust gas is deprived, so that the exhaust gas temperature drops significantly and the outlet temperature becomes 50 ° C. (that is, the temperature drop in the condenser is 60 ° C.). On the other hand, the heat medium 12 recovers the latent heat of steam and the sensible heat of exhaust gas and raises the temperature to 50 ° C., but supplies heat to the attached heat pump 13 to lower the temperature and returns to the heat exchanger 5 again. The water condensed in the heat exchanger 5 is used as boiler feed water or the like.

【0013】次に、図2及び図3を参照しながら熱交換
器5の本体内部に配列された冷却管15について詳細に
説明する。多数の冷却管15が熱交換器5の本体内部に
略鉛直に配列され、内部に冷媒が通流するようになって
いる。熱交換器5の本体内部にはボイラ排ガス2が所定
流速で導入されている。排ガス2は冷却管15に対して
直交する方向(水平方向)に流され、冷却管15の管壁
を介して排ガス2と冷媒との間で熱交換するようになっ
ている。
Next, the cooling pipes 15 arranged inside the main body of the heat exchanger 5 will be described in detail with reference to FIGS. A large number of cooling pipes 15 are arranged substantially vertically inside the main body of the heat exchanger 5 so that a refrigerant flows therethrough. Boiler exhaust gas 2 is introduced into the main body of the heat exchanger 5 at a predetermined flow rate. The exhaust gas 2 flows in a direction (horizontal direction) orthogonal to the cooling pipe 15, and exchanges heat between the exhaust gas 2 and the refrigerant via the pipe wall of the cooling pipe 15.

【0014】冷却管15には管軸と略鉛直に特殊形状の
円環状のフィン20が所定ピッチ間隔に設けられてい
る。各フィン20にはその外周側から内周側に向かって
複数の切り込み23が入れられている。更にこの切り込
み23の入った外周部21は、水平面に対して鉛直上向
きに、ある角度をもって曲げられている。外周部21は
管外周面に衝突する排ガス2の勢いを弱める防風部とし
ての役割をもつ。
The cooling pipe 15 is provided with annular fins 20 of a special shape at a predetermined pitch interval substantially perpendicular to the pipe axis. Each fin 20 is provided with a plurality of cuts 23 from the outer peripheral side toward the inner peripheral side. Further, the outer peripheral portion 21 having the cut 23 is bent at a certain angle vertically upward with respect to a horizontal plane. The outer peripheral portion 21 has a role as a windproof portion that weakens the momentum of the exhaust gas 2 colliding with the outer peripheral surface of the pipe.

【0015】なお、外周部21だけでなく円環状フィン
20の全体を水平面に対して上向きに曲げてもよい。ま
た、フィン20の冷却管15との取り付け部近傍には凝
縮液を冷却管15に沿って降下させるため、4つのドレ
ン孔22が設けられている。これらのドレン孔22は凝
縮液を排出するための案内部としての役割をもち、少な
くとも1つ設ければよい。
Incidentally, not only the outer peripheral portion 21 but also the entire annular fin 20 may be bent upward with respect to the horizontal plane. In addition, four drain holes 22 are provided in the vicinity of the fin 20 where the fin 20 is attached to the cooling pipe 15 in order to lower the condensate along the cooling pipe 15. These drain holes 22 serve as guides for discharging the condensed liquid, and at least one drain hole may be provided.

【0016】なお、図2及び図3に示したフィン20は
円環状板を多数独立して管15に取り付けた構成として
いるが、リボン状板を冷却管15の周方向に連続的に螺
旋状に巻き付けてフィンを形成してもよい。
Although the fin 20 shown in FIGS. 2 and 3 has a structure in which a number of annular plates are independently attached to the tube 15, the ribbon-like plate is continuously spirally formed in the circumferential direction of the cooling tube 15. To form a fin.

【0017】なお、冷却管15にはボイラ用鋼管を用
い、フィン20には厚さ1〜2mm程度の鋼帯を用いた。
また、フィン20は冷却管15の外周面に溶接により固
定されている。
The cooling pipe 15 was a steel pipe for a boiler, and the fin 20 was a steel strip having a thickness of about 1 to 2 mm.
The fins 20 are fixed to the outer peripheral surface of the cooling pipe 15 by welding.

【0018】このような冷却管15の列に直交するよう
に排ガス2が流されると、冷却管15及びフィン20の
表面にて排ガス中の凝縮成分が凝縮して凝縮液を生じ
る。凝縮液は重力によって冷却管15又はフィン20か
ら下降又は落下しようとするが、ガス流速が大きい場合
は吹き飛ばされようとする。しかし、フィン外周部21
によってガス2の衝突力が緩和され、さらに、上向きに
傾いた円環状のフィン20に凝縮液が受けとめられ、か
つ、切り込み23の狭い空間で生じる毛細管力によって
液が飛散しないように保持されるので、凝縮液が下流側
に飛散しなくなる。そして、凝縮液はフィン20のガス
流によって飛ばされにくい位置に設けられたドレン孔2
2から排出され、冷却管15の外周面を伝わって流れ、
下方の回収装置に回収される。
When the exhaust gas 2 flows perpendicular to the row of the cooling pipes 15, the condensed components in the exhaust gas condense on the surfaces of the cooling pipes 15 and the fins 20 to generate a condensate. The condensate tends to fall or fall from the cooling pipe 15 or the fin 20 due to gravity, but tends to be blown off when the gas flow rate is high. However, the fin outer peripheral portion 21
As a result, the collision force of the gas 2 is reduced, the condensed liquid is received by the annular fins 20 inclined upward, and the liquid is held so as not to be scattered by the capillary force generated in the narrow space of the cut 23. Then, the condensate does not scatter to the downstream side. Then, the condensate is drained from the drain hole 2 provided at a position where the condensed liquid is hardly blown off by the gas flow of the fin 20.
2 and flows along the outer peripheral surface of the cooling pipe 15,
It is collected in the lower collecting device.

【0019】上記実施例によれば、量産に適した簡単な
構造のフィンを取り付けることで、排ガス中の凝縮成分
の回収効率が大幅に向上する。また、凝縮液の飛散がな
くなるので、熱交換器本体内でのガスの流動抵抗が増加
せず、さらに潜熱回収特性が向上する。
According to the above embodiment, the efficiency of recovering the condensed components in the exhaust gas is greatly improved by installing the fin having a simple structure suitable for mass production. In addition, since the condensed liquid is not scattered, the flow resistance of the gas in the heat exchanger body does not increase, and the latent heat recovery characteristics are further improved.

【0020】次に、図4及び図5を参照しながら他の実
施例について説明する。本実施例では多数の傾斜フィン
30を冷却管15の外周に所定ピッチ間隔で取り付けて
いる。図4に示すように、傾斜フィン30は排ガス2の
流れ方向に沿って鉛直下方に傾斜して設けられている。
傾斜フィン30のガス衝突側(上流側)には図2に示し
たものと同様に防風部31が形成され、冷却管15の外
周面への排ガス2の衝突力が緩和されるようになってい
る。傾斜フィン30のガス回り込み側(下流側)には排
出通路32が形成され、凝縮液がフィン30に沿って集
液され、ドレン溝32を通って下方に排出されるように
なっている。
Next, another embodiment will be described with reference to FIGS. In this embodiment, a large number of inclined fins 30 are attached to the outer periphery of the cooling pipe 15 at a predetermined pitch. As shown in FIG. 4, the inclined fins 30 are provided to be inclined vertically downward along the flow direction of the exhaust gas 2.
On the gas collision side (upstream side) of the inclined fin 30, a windbreak part 31 is formed in a manner similar to that shown in FIG. 2, so that the collision force of the exhaust gas 2 on the outer peripheral surface of the cooling pipe 15 is reduced. I have. A discharge passage 32 is formed on the gas wrap side (downstream side) of the inclined fin 30, and condensate is collected along the fin 30 and discharged downward through the drain groove 32.

【0021】上記実施例によれば、ガス回り込み側に凝
縮液を導き、そこからドレン溝36を介して排出するよ
うにしているので、凝縮液は一層ガス流の影響を受けに
くくなり、ガス流速が大きい場合であっても、凝縮液が
飛散することなく、これを確実に回収することができ
る。
According to the above embodiment, the condensed liquid is guided to the gas wraparound side, and is discharged therefrom via the drain groove 36. Therefore, the condensed liquid is further less affected by the gas flow, and the gas flow rate is reduced. Is large, the condensed liquid can be reliably collected without scattering.

【0022】[0022]

【発明の効果】本発明によれば、フィンの防風部によっ
て冷却管の外表面に衝突しようとするガス流を弱めてい
るので、凝縮液は吹き飛ばされることなく冷却管外表面
に沿って流下する。このため、気液分離機能をもつエリ
ミネータを特別に下流側に設けなくても排ガス中の液分
を分離除去することができるので、ガスの流動抵抗を増
加させず、すなわち圧力損失を増大させずに更に良好な
潜熱回収を実現することができる。また、フィンのドレ
ン孔等によってフィンに集まった凝縮液を下方へ案内し
排出するようにしているので、凝縮液は吹き飛ばされる
前に速やかに回収される。このように凝縮液は再蒸発す
る前に迅速に回収されるため、凝縮液の回収効率が向上
するばかりでなく、凝縮器の潜熱回収特性が大幅に改善
される。 さらに、熱交換器の下流側に液分が侵入しなく
なるので、通風機の負荷が増大せず、かつ煙突や通風ダ
クト壁の腐食が低減される。
According to the present invention, since the gas flow which is going to collide with the outer surface of the cooling pipe is weakened by the windproof portion of the fin, the condensate flows down along the outer surface of the cooling pipe without being blown off. . For this reason, an area with gas-liquid separation function
Even if a minator is not specially installed on the downstream side,
Can be separated and removed, increasing gas flow resistance.
Better without increasing the pressure drop
Latent heat recovery can be realized. In addition, the condensate collected on the fin is guided downward by the drain hole of the fin and discharged, so that the condensate is blown away.
Collected immediately before . Thus the condensate re-evaporates
Recovery time before condensate recovery
As well as significantly improve the latent heat recovery characteristics of the condenser
Is done. Furthermore, liquid does not enter the downstream side of the heat exchanger.
As a result, the load on the ventilator does not increase, and
Corrosion of the cut wall is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸気タービン発電プラントの概要を示すシステ
ムフロー図。
FIG. 1 is a system flow diagram showing an outline of a steam turbine power plant.

【図2】本発明の実施例に係る凝縮器用熱交換器に設け
られた冷却管を示す側面図。
FIG. 2 is a side view showing a cooling pipe provided in the condenser heat exchanger according to the embodiment of the present invention.

【図3】本発明の実施例に係る凝縮器用熱交換器に設け
られた冷却管を示す横断面図。
FIG. 3 is a cross-sectional view showing a cooling pipe provided in the condenser heat exchanger according to the embodiment of the present invention.

【図4】他の実施例に係る凝縮器用熱交換器に設けられ
た冷却管を示す側面図。
FIG. 4 is a side view showing a cooling pipe provided in a condenser heat exchanger according to another embodiment.

【図5】他の実施例に係る凝縮器用熱交換器に設けられ
た冷却管を示す横断面図。
FIG. 5 is a cross-sectional view showing a cooling pipe provided in a heat exchanger for a condenser according to another embodiment.

【図6】従来の熱交換器を示す図。FIG. 6 is a diagram showing a conventional heat exchanger.

【図7】従来の熱交換器を示す図。FIG. 7 is a diagram showing a conventional heat exchanger.

【図8】従来の熱交換器を示す図。FIG. 8 is a view showing a conventional heat exchanger.

【図9】従来の熱交換器を示す図である。FIG. 9 is a view showing a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

2…排ガス 5…熱交換器本体 15…冷却管 20,30…フィン 21,31…防風部 22…ドレン孔(案内部) 23…切り込み 32…ドレン溝(案内部) 2: Exhaust gas 5: Heat exchanger body 15: Cooling pipe 20, 30 ... Fin 21, 31: Windproof part 22: Drain hole (guide part) 23: Cut 32: Drain groove (guide part)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凝縮成分を含有する燃焼排ガスの気流
対して交差するように配置され、内部を冷媒が通流し、
外周面に前記凝縮成分を凝縮させる実質的に垂直に設け
られた冷却管と、少なくとも前記ガス流が衝突する側の
前記冷却管の外周面に設けられるフィンと、を備え、 このフィンは、凝縮した前記凝縮成分が前記ガス流の衝
突により前記冷却管を離脱して下流側に飛散するのを防
止するために、少なくともその一部を前記ガス流の流れ
方向に対して鉛直上方に所定の角度をもって設けられ、
前記冷却管の外周面に対する前記ガス流の風当りを弱め
る防風部と、凝縮した前記凝縮成分を前記冷却管に沿っ
て通流させるための案内部と、を有することを特徴とす
る凝縮器用熱交換器。
Claims: 1. A refrigerant is arranged so as to intersect with an airflow of a combustion exhaust gas containing a condensed component, and a refrigerant flows through the inside thereof.
Provided substantially vertically on the outer peripheral surface for condensing the condensed component
It was a cooling tube, comprising: a fin at least the gas flow is provided on the outer peripheral surface of the cooling tube side of collision, and the fins, condensed the condensed component of the gas flow Opposition
A collision prevents the cooling pipe from leaving and scattering downstream.
At least a portion of said gas stream to stop
Provided at a predetermined angle vertically above the direction,
Reduce the wind contact of the gas flow against the outer peripheral surface of the cooling pipe
A heat exchanger for a condenser, comprising: a windbreak section; and a guide section for allowing the condensed component to flow along the cooling pipe.
【請求項2】 前記フィンは、前記ガス流の流れ方向に
沿って鉛直下方に傾斜して設けられていることを特徴と
する請求項1記載の凝縮器用熱交換器。
2. The fin according to claim 1, wherein the fin is arranged in
It is characterized by being provided vertically inclining along
The heat exchanger for a condenser according to claim 1, wherein
【請求項3】 前記フィンの先端部には複数の切り込み
が設けられていることを特徴とする請求項1記載の凝縮
器用熱交換器。
3. A plurality of cuts are formed at the tip of the fin.
2. A condensation device according to claim 1, further comprising:
Dexterous heat exchanger.
JP7055958A 1995-03-15 1995-03-15 Heat exchanger for condenser Expired - Fee Related JP2710225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7055958A JP2710225B2 (en) 1995-03-15 1995-03-15 Heat exchanger for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7055958A JP2710225B2 (en) 1995-03-15 1995-03-15 Heat exchanger for condenser

Publications (2)

Publication Number Publication Date
JPH08254397A JPH08254397A (en) 1996-10-01
JP2710225B2 true JP2710225B2 (en) 1998-02-10

Family

ID=13013594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7055958A Expired - Fee Related JP2710225B2 (en) 1995-03-15 1995-03-15 Heat exchanger for condenser

Country Status (1)

Country Link
JP (1) JP2710225B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061993A1 (en) * 1999-04-13 2000-10-19 Ohtsuka Katsumi COOLING DEVICE AND METHOD FOR PREVENTING SYNTHESIS OF PCDDs
JP2005129463A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Movable body
JP5980138B2 (en) * 2013-02-05 2016-08-31 三菱日立パワーシステムズ株式会社 Heat transfer tube and exhaust heat recovery boiler
KR101754665B1 (en) * 2015-06-02 2017-07-10 (주)케이에프 Apparatus for reducing white smoke
CN112629270B (en) * 2020-08-28 2023-05-02 广西鱼峰水泥股份有限公司 AQC boiler for low-temperature waste heat power generation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031597A (en) * 1976-09-22 1977-06-28 Rca Corporation Method of assembling a mount assembly in the neck of a cathode-ray tube
JPS6028365U (en) * 1983-08-01 1985-02-26 三洋電機株式会社 absorption chiller evaporator
JPH0646175U (en) * 1992-11-24 1994-06-24 昭和アルミニウム株式会社 Heat pipe type heat exchanger

Also Published As

Publication number Publication date
JPH08254397A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
US7691349B2 (en) Exhaust gas treating method
US10315128B2 (en) Dephlegmator
WO1995003520A1 (en) Heat exchanger using finned tubes
CN104819571A (en) Condensed gas waste heat recovery device
CN109289476A (en) Wet desulfurization flue gas takes off white device and de- whitening method
JP2710225B2 (en) Heat exchanger for condenser
CN103968405B (en) A kind of flue gas heater with defrosting function
US5384106A (en) Method for removing pollutants from a gas stream using a fractional condensing heat exchanger
CN208678793U (en) The white system of boiler smoke qi exhaustion
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP5209952B2 (en) High dust exhaust gas heat recovery treatment equipment
CN105042612B (en) A kind of flue gas heater of the compound low-temperature corrosion of moisture-resistant flue gas
JPH09280540A (en) Heat exchanger and exhaust gas treatment equipment having the same
WO2021085513A1 (en) Gas-gas heat exchanger
JP3868093B2 (en) Flue gas desulfurization device and its operation method
JPS621520B2 (en)
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
JP2002250514A (en) Exhaust gas disposer, and its operation method
CN209147795U (en) A kind of three-stage heat pipe rotational flow heat exchanger
JP2006349203A (en) Heat exchanger
CN116678007B (en) Boiler provided with low-energy-consumption flue gas waste heat recovery device
CN109269330A (en) A kind of three-stage heat pipe rotational flow heat exchanger
CN213179559U (en) Wet flue gas air cooling condenser
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
JP3852820B2 (en) Smoke removal equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees