JPH04363115A - Exhaust gas treating equipment - Google Patents

Exhaust gas treating equipment

Info

Publication number
JPH04363115A
JPH04363115A JP3137728A JP13772891A JPH04363115A JP H04363115 A JPH04363115 A JP H04363115A JP 3137728 A JP3137728 A JP 3137728A JP 13772891 A JP13772891 A JP 13772891A JP H04363115 A JPH04363115 A JP H04363115A
Authority
JP
Japan
Prior art keywords
exhaust gas
electrode
electrodes
plasma
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3137728A
Other languages
Japanese (ja)
Inventor
Seiichi Nishida
西田 聖一
Masayoshi Murata
正義 村田
Hiroyuki Matsunaga
松永 弘雪
Nobuaki Murakami
信明 村上
Satoshi Uchida
聡 内田
Takanobu Kondou
近藤 敬宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3137728A priority Critical patent/JPH04363115A/en
Publication of JPH04363115A publication Critical patent/JPH04363115A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To make exhaust gas treating equipment by glow discharge plasma having a large capacity. CONSTITUTION:A reaction tank 60 through which nitrogen oxide and sulfur oxide containing exhaust gas passes, plural plate type electrodes 61-1 to 61-n which are installed along gas flow in the tank and whose surface is covered with a dielectric, plural saw-shaped electrodes 62-1 to 62-n which are respectively installed opposite to the plate type electrodes and whose surface is covered with a dielectric, and a power source 70 which is connected to the plate type electrode and the saw-shaped electrode in-between and applies composite wave of high-frequency wave and low-frequency wave, are provided in the objective equipment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は発電プラント用ボイラー
、ディーゼルエンジン、ガスタービン、各種燃焼炉など
から排出される排気ガス中のNOX ,N2 O及びS
OX を効果的にかつ大容量を除去することができるグ
ロー放電による排ガス処理装置に関する。
[Industrial Application Field] The present invention is aimed at reducing NOX, N2 O, and S in exhaust gas emitted from boilers for power plants, diesel engines, gas turbines, various combustion furnaces, etc.
The present invention relates to an exhaust gas treatment device using glow discharge that can effectively remove OX in a large amount.

【0002】0002

【従来の技術】図4から図6により従来から用いられて
いるグロー放電プラズマによる排ガス処理装置について
説明する。
2. Description of the Related Art A conventional exhaust gas treatment apparatus using glow discharge plasma will be described with reference to FIGS. 4 to 6.

【0003】図4において、1は汎用の燃焼炉で排気ガ
ス公害対策を講じるための対象物である。3は除じん器
、2は上記汎用の燃焼炉1の排ガスを除じん器(サイク
ロン・コレクター等)3に移送する排気管、6はプラズ
マ反応容器、4は上記除じん器3の排ガスをプラズマ反
応容器6に移送する排気管、7は上記プラズマ反応容器
6の電極にプラズマ発生電圧を印加する電源、8はプラ
ズマ反応容器6に連結された排ガス出力管、または15
はアンモニアを数l/min 〜数10l/min の
範囲の所定の設定値で供給するアンモニア供給装置、1
4は排出管4に連結されたアンモニア供給管である。
In FIG. 4, reference numeral 1 indicates an object for taking measures against exhaust gas pollution in a general-purpose combustion furnace. 3 is a dust remover, 2 is an exhaust pipe that transfers the exhaust gas from the general-purpose combustion furnace 1 to the dust remover (cyclone collector, etc.) 3, 6 is a plasma reaction vessel, 4 is a plasma reactor for the exhaust gas from the dust remover 3. an exhaust pipe for transferring to the reaction vessel 6; 7 a power source for applying a plasma generation voltage to the electrodes of the plasma reaction vessel 6; 8 an exhaust gas output pipe connected to the plasma reaction vessel 6;
1 is an ammonia supply device that supplies ammonia at a predetermined setting value in the range of several liters/min to several tens of liters/min;
4 is an ammonia supply pipe connected to the discharge pipe 4.

【0004】以下図5、図6によりプラズマ反応容器6
について説明する。両端が開口した筒状のプラズマ反応
容器6内には対向した鋸歯状電極110と板状電極11
1が表面をガス流れに平行に設けられる。また鋸歯状電
極110及び板状電極111は誘電体112,113に
覆われ、直接排ガスに接触しない構成となっている。
5 and 6 below, the plasma reaction vessel 6
I will explain about it. A sawtooth electrode 110 and a plate electrode 11 are placed in a cylindrical plasma reaction vessel 6 that is open at both ends.
1 is provided with its surface parallel to the gas flow. Further, the sawtooth electrode 110 and the plate electrode 111 are covered with dielectrics 112 and 113 so that they do not come into direct contact with exhaust gas.

【0005】以上の構成において、アンモニアがアンモ
ニア供給装置16から数l/min 〜数10l/mi
n の流量で排ガスとともに、プラズマ反応容器6に導
入される。プラズマ発生用の電源7から、鋸歯状電極1
10と板状電極111に電力を供給すると、誘電体11
2,113の間には、アンモニア入り排ガスのプラズマ
が発生する。
In the above configuration, ammonia is supplied from the ammonia supply device 16 at a rate of several liters/min to several tens of liters/min.
It is introduced into the plasma reaction vessel 6 together with the exhaust gas at a flow rate of n. From a power source 7 for plasma generation, a sawtooth electrode 1
10 and the plate electrode 111, the dielectric 11
Between 2 and 113, plasma of ammonia-containing exhaust gas is generated.

【0006】このプラズマは、グロー放電プラズマであ
り、アンモニア、NOX 、SOX などのガス分子を
励起及び解離させ、化学的に活性な状態とする。それに
よって以下に述べる化学反応がひき起こされる。
[0006] This plasma is a glow discharge plasma, which excites and dissociates gas molecules such as ammonia, NOX, SOX, etc., and makes them chemically active. This causes the chemical reaction described below.

【0007】   NH3 +電子エネルギー約6.4eV→NH2 
+H        …(1)  2NO2 +電子エ
ネルギー約9.5eV→2NO+O2     …(2
)  NH2 +NO→N2 +H2 O      
                      …(3
)  2NH2 +SO2 →S+N2 +2H2 O
                  …(4)上記(
1)〜(4)の式は、プラズマ反応容器6に導入された
燃焼炉1の排ガス中のNO,NO2 及びSO2 がN
2 ,S及びH2 Oになることを意味している。この
場合、上記のようにアンモニアを含む排ガスは鋸歯状電
極110や板状電極111に直接接触することなく、誘
電体(例えばガラスやセラミックスなど)112,11
3に接触するのみである。排ガス(特にアンモニア)が
接触しないので電極の腐食・摩耗がなく、長時間安定し
たグロー放電プラズマを発生させることができる。
NH3 + electron energy approximately 6.4 eV → NH2
+H...(1) 2NO2 + electron energy approximately 9.5eV → 2NO+O2...(2
) NH2 +NO→N2 +H2 O
…(3
) 2NH2 +SO2 →S+N2 +2H2 O
...(4) Above (
Equations 1) to (4) indicate that NO, NO2 and SO2 in the exhaust gas of the combustion furnace 1 introduced into the plasma reaction vessel 6 are
2, S and H2O. In this case, as described above, the exhaust gas containing ammonia does not directly contact the sawtooth electrode 110 or the plate electrode 111, and instead
It only touches 3. Since there is no contact with exhaust gas (especially ammonia), there is no corrosion or wear of the electrodes, and stable glow discharge plasma can be generated for a long time.

【0008】したがって、ボイラー、ガスタービン、デ
ィーゼルエンジンなど各種燃焼を伴う装置の排ガス公害
対策装置として活用されつつある。
[0008] Therefore, it is being utilized as an exhaust gas pollution control device for various types of equipment that involve combustion, such as boilers, gas turbines, and diesel engines.

【0009】[0009]

【発明が解決しようとする課題】上記、従来の装置では
次のような欠点があり実用化が困難であるという問題点
があった。 (1)電極1組あたりの排ガス処理量が100l/mi
n 程度である場合、10,000l/min の処理
容量を得るためには電極100組が必要となる。プラズ
マ発生用に交流電力を使用しているが、電極の静電容量
にバラツキ(ガスの温度分布、電極間隔の差などにより
生じる)があると、各電極のプラズマ電力が不均一にな
る。したがって電極100組で流量10,000l/m
in になると、プラズマ不均一のためNOX ,N2
 O及びSOX の低減率が低下し満足な処理量が得ら
れない。 (2)電極1組の場合、プラズマ電源の電圧上昇又は周
波数上昇により電力を増すことでNOX ,N2 O及
びSOX の低減率が向上し処理量が増加する。しかし
、電極100組の場合、上記(1)に述べたように各電
極のプラズマが不均一になっているときに、電圧及び周
波数を上昇させると各電極の電力の不均一性が更に助長
される。したがって電極を複数並列接続して処理量を増
大させようとしても、低減率が低下するので満足な処理
量を得ることができない。
SUMMARY OF THE INVENTION The conventional apparatus described above has the following drawbacks, making it difficult to put it into practical use. (1) Exhaust gas processing amount per electrode set is 100l/mi
n, 100 sets of electrodes are required to obtain a processing capacity of 10,000 l/min. Although alternating current power is used to generate plasma, if there are variations in the capacitance of the electrodes (caused by the temperature distribution of the gas, differences in electrode spacing, etc.), the plasma power of each electrode will become non-uniform. Therefore, with 100 pairs of electrodes, the flow rate is 10,000 l/m.
When it becomes in, NOX, N2 due to plasma non-uniformity
The reduction rate of O and SOX decreases, making it impossible to obtain a satisfactory throughput. (2) In the case of one set of electrodes, increasing the power by increasing the voltage or frequency of the plasma power source improves the reduction rate of NOX, N2O, and SOX, and increases the throughput. However, in the case of 100 pairs of electrodes, when the plasma of each electrode is non-uniform as described in (1) above, increasing the voltage and frequency will further exacerbate the non-uniformity of the power of each electrode. Ru. Therefore, even if an attempt is made to increase the throughput by connecting a plurality of electrodes in parallel, the reduction rate decreases, making it impossible to obtain a satisfactory throughput.

【0010】0010

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
[Means for Solving the Problems] The present invention takes the following means to solve the above problems.

【0011】すなわち、排ガス処理装置として、窒素酸
化物および硫黄酸化物を含む排ガスを通す反応容器と、
同反応容器内にガス流れに沿って設けられ表面が誘電体
で覆われた複数の平板型電極と、同各平板型電極にそれ
ぞれ対向して設けられ表面が誘導体で覆われた複数の鋸
歯状電極と、上記平板型電極および上記鋸歯状電極間に
接続され高周波および低周波の合成波を印加する電源手
段とを備ける。
That is, the exhaust gas treatment device includes a reaction vessel through which exhaust gas containing nitrogen oxides and sulfur oxides passes;
A plurality of flat electrodes whose surfaces are covered with a dielectric material are installed along the gas flow inside the reaction vessel, and a plurality of sawtooth electrodes whose surfaces are covered with a dielectric material are provided facing each of the flat electrodes. An electrode, and a power supply means connected between the flat plate electrode and the sawtooth electrode and applying a composite wave of high frequency and low frequency.

【0012】0012

【作用】上記手段により、平板型電極と鋸歯状電極間に
グロー放電プラズマが発生し、排ガス中のNOX ,N
2 O及びSOX が活性化され、無害化される。この
とき、印加される合成波電圧のうち高周波成分でプラズ
マ電力が増加し、NOX ,N2 O及びSOXの除去
率が向上する。また低周波成分が対向する平板型電極と
鋸歯状電極との組間の静電容量バラツキによる電力の不
均一性を抑制する。その結果各組間の電力が均一になり
大容量の排ガス処理ができるようになる。
[Operation] By the above means, glow discharge plasma is generated between the flat plate electrode and the sawtooth electrode, and NOX, N in the exhaust gas is removed.
2 O and SOX are activated and rendered harmless. At this time, the plasma power increases with the high frequency component of the applied composite wave voltage, and the removal rate of NOX, N2O, and SOX improves. Further, the low frequency component suppresses power non-uniformity due to capacitance variation between pairs of opposing flat plate electrodes and sawtooth electrodes. As a result, the electric power between each group becomes uniform, and a large amount of exhaust gas can be treated.

【0013】また電極が誘電体で覆われ、排ガスに直接
接触しないため、耐久性が向上する。
Furthermore, since the electrodes are covered with a dielectric and do not come into direct contact with exhaust gas, durability is improved.

【0014】[0014]

【実施例】本発明の1実施例を図1、図2及び図3によ
り説明する。
Embodiment One embodiment of the present invention will be explained with reference to FIGS. 1, 2 and 3.

【0015】図1において1は汎用の燃焼炉で排気ガス
公害対策を講じるための対象物である。2は、上記汎用
の燃焼炉1の排ガスを除じん器(サイクロンコレクター
等)3に移送する排気管、前記除じん器3では、排気ガ
スに含まれている粒子類を除去する。4は上記除じん器
3の排ガスを排ガス入口管5に移送する排気管、5は上
記排気管4からの排ガスをプラズマ反応容器60に移送
する排気管、60はグロー放電プラズマを発生し排ガス
を無害化する反応容器、70は上記プラズマ反応容器6
0にプラズマ発生電力を供給する電源、8は排ガス出口
管で上記反応容器60により処理された排ガスを排出す
る装置である。
In FIG. 1, reference numeral 1 indicates an object for taking measures against exhaust gas pollution in a general-purpose combustion furnace. Reference numeral 2 denotes an exhaust pipe that transfers the exhaust gas from the general-purpose combustion furnace 1 to a dust remover (such as a cyclone collector) 3, and the dust remover 3 removes particles contained in the exhaust gas. 4 is an exhaust pipe that transfers the exhaust gas from the dust remover 3 to the exhaust gas inlet pipe 5; 5 is an exhaust pipe that transfers the exhaust gas from the exhaust pipe 4 to the plasma reaction vessel 60; and 60 is an exhaust pipe that generates glow discharge plasma to remove the exhaust gas. A reaction vessel to be rendered harmless, 70 is the plasma reaction vessel 6 described above.
0 is a power source for supplying plasma generation power, and 8 is an exhaust gas outlet pipe which is a device for discharging the exhaust gas treated by the reaction vessel 60.

【0016】図2によりプラズマ反応容器60について
詳細に説明する。ガラスまたはセラミックス製の両端が
開口した筒状の反応容器60内の一方の壁に接して、表
面が誘電体aで覆われた平板型電極61−1が設けられ
る。電極61−1に対向して表面が鋸歯状で、かつその
面が誘電体aで覆われた平板型の鋸歯状電極62−1が
設けられる。これらの1組を第1組とする。さらにこの
1組をガス流れに沿った軸回りに反転し、隣接した電極
、すなわち平板型電極61−2、鋸歯状電極62−2を
第2組とする。以下同様にして第n組(100組)の平
板型電極61−n、鋸歯状電極62−nが設けられる。 このとき平板型電極61−nは反応容器60の他方の壁
に接する。
The plasma reaction vessel 60 will be explained in detail with reference to FIG. A flat electrode 61-1 whose surface is covered with a dielectric material a is provided in contact with one wall of a cylindrical reaction vessel 60 made of glass or ceramics and open at both ends. A flat sawtooth electrode 62-1 having a sawtooth surface and covered with a dielectric material a is provided opposite to the electrode 61-1. One set of these will be referred to as a first set. Furthermore, this one set is reversed around the axis along the gas flow, and the adjacent electrodes, that is, the flat electrode 61-2 and the sawtooth electrode 62-2 are used as a second set. Thereafter, an nth set (100 sets) of flat plate electrodes 61-n and sawtooth electrodes 62-n are provided in the same manner. At this time, the flat electrode 61-n is in contact with the other wall of the reaction vessel 60.

【0017】また平板型電極61−1、〜61−nは電
源70の一方の端子に、鋸歯状電極62−1〜62−n
は他方の端子につながれる。排ガスは入口管5から反応
容器60に入り平板電極と鋸歯状電極の間を通り出口管
8から排出される。また、入口管5にはアンモニア供給
管14が連結されており、アンモニア供給装置15から
、アンモニアを数l/min 〜数10l/min の
範囲の所定の設定値で供給し、排ガスと混合させる。
The flat electrodes 61-1 to 61-n are connected to one terminal of the power source 70, and the sawtooth electrodes 62-1 to 62-n
is connected to the other terminal. The exhaust gas enters the reaction vessel 60 from the inlet pipe 5, passes between the flat plate electrode and the sawtooth electrode, and is discharged from the outlet pipe 8. Further, an ammonia supply pipe 14 is connected to the inlet pipe 5, and ammonia is supplied from an ammonia supply device 15 at a predetermined setting value in the range of several l/min to several tens of l/min, and mixed with the exhaust gas.

【0018】このような構成のプラズマ反応容器60に
おいて、排ガス入口管5に排気管4から燃焼炉1の排ガ
スが、また同時にアンモニア供給管14からアンモニア
供給装置のアンモニアが供給される。これらのガスは混
合されてアンモニアを含む排ガスとなり平板電極61−
1〜61−nと鋸歯状電極62−1〜62−nの間に導
入され、電源70から各電極間に電圧が印加される。そ
うすると各電極の間の排ガスはプラズマ化され、化学反
応により排ガス中のNOX ,N2 O及びSOX が
無害化されて排ガス出口管8より排出される。このプラ
ズマは、グロー放電プラズマであり、NOX およびN
2 などのガス分子を励起及び解離させ、化学的に活性
な状態とする。それによって、以下に述べる化学反応が
ひき起こされる。
In the plasma reaction vessel 60 having such a structure, the exhaust gas from the combustion furnace 1 is supplied to the exhaust gas inlet pipe 5 from the exhaust pipe 4, and at the same time, ammonia from the ammonia supply device is supplied from the ammonia supply pipe 14. These gases are mixed to become an exhaust gas containing ammonia and the flat electrode 61-
1 to 61-n and sawtooth electrodes 62-1 to 62-n, and a voltage is applied between each electrode from a power source 70. Then, the exhaust gas between the electrodes is turned into plasma, and NOX, N2 O, and SOX in the exhaust gas are rendered harmless by a chemical reaction and are discharged from the exhaust gas outlet pipe 8. This plasma is a glow discharge plasma, with NOX and N
Excite and dissociate gas molecules such as 2 and make them chemically active. This causes the chemical reaction described below.

【0019】   NH3 +電子エネルギー約6.4eV→NH2 
+H        …(1)  2NO2 +電子エ
ネルギー約9.5eV→2NO+O2     …(2
)  NH2 +NO→N2 +H2 O      
                      …(3
)  2NH2 +SO2 →S+N2 +2H2 O
                  …(4)  2
N2 O→2N2 +O2             
                    …(5)上
記(3)〜(5)式はプラズマ反応容器60に導入され
た燃焼炉1の排ガス中のNO,NO2 、N2 OがN
2 及びO2 に、SO2 がS及びO2 になり、無
害化されることを意味している。
NH3 + electron energy approximately 6.4 eV → NH2
+H...(1) 2NO2 + electron energy approximately 9.5eV → 2NO+O2...(2
) NH2 +NO→N2 +H2 O
…(3
) 2NH2 +SO2 →S+N2 +2H2 O
…(4) 2
N2 O→2N2 +O2
...(5) Equations (3) to (5) above indicate that NO, NO2, and N2O in the exhaust gas of the combustion furnace 1 introduced into the plasma reaction vessel 60 are
2 and O2, SO2 becomes S and O2 and becomes harmless.

【0020】このとき電源70からは図3(c)に示す
合成波形の電圧が各電極に印加される。合成波形の電圧
は図3(a)に示す低周波数の電圧波形(例えばf=5
0Hz)と、図3(b)に示す高周波数の電圧波形(例
えばf=500Hz)を合成したものである。
At this time, a voltage having a composite waveform shown in FIG. 3(c) is applied from the power source 70 to each electrode. The voltage of the composite waveform is the low frequency voltage waveform shown in Fig. 3(a) (for example, f=5
0 Hz) and the high frequency voltage waveform (for example, f=500 Hz) shown in FIG. 3(b).

【0021】電極が複数並列接続されているので印加電
圧は周波数が低い程各電極の静電容量のバラツキの影響
が少なく均一したプラズマ電力が各電極に供給される。 そういう点では低い周波数の電圧でプラズマの電子エネ
ルギーが9.5eVとなるように印加電圧を設定すれば
良いことになる。しかし、低い周波数では電力が低く、
特にN2 O除去効果が低下する。反対にN2 O除去
効果を向上させる為、周波数を高くすると、各電極の静
電容量のバラツキによるプラズマ電力の不均一性が助長
されることになり複数組の電極全体での処理量が低下す
る。 そこで図3(c)に示すように高周波電圧と低周波電圧
の合成、すなわち高い周波数を低い周波数で変調した交
流電圧を用いると、低い周波数成分が各電極のプラズマ
電力の不均一性を抑制し、各電極に高い周波数を均一電
力で供給することができる。
Since a plurality of electrodes are connected in parallel, the lower the frequency of the applied voltage, the less the influence of variations in capacitance of each electrode, and uniform plasma power is supplied to each electrode. In this respect, it is sufficient to set the applied voltage so that the electron energy of the plasma becomes 9.5 eV with a low frequency voltage. However, at lower frequencies the power is lower;
In particular, the N2O removal effect decreases. On the other hand, if the frequency is increased to improve the N2O removal effect, non-uniformity in plasma power due to variations in the capacitance of each electrode will be promoted, and the throughput across multiple electrode sets will be reduced. . Therefore, as shown in Figure 3(c), by combining high-frequency voltage and low-frequency voltage, that is, by using an AC voltage in which high frequency is modulated by low frequency, the low frequency component suppresses the non-uniformity of plasma power at each electrode. , high frequency can be supplied to each electrode with uniform power.

【0022】したがって電極を100組並列接続した本
実施例においても各電極に十分な電力を均一に印加する
ことができ、大容量(10,000l/min程度)か
つ高処理率の排ガス処理が可能である。
Therefore, even in this embodiment in which 100 pairs of electrodes are connected in parallel, sufficient power can be uniformly applied to each electrode, and exhaust gas treatment with large capacity (about 10,000 l/min) and high treatment rate is possible. It is.

【0023】また、本実施例の装置をさらに多数並列接
続することにより処理量を増大することが容易であるの
で、適用範囲が広く排ガス処理装置としての産業上の価
値が著しく高い。
Furthermore, since it is easy to increase the throughput by connecting a large number of the apparatuses of this embodiment in parallel, the range of application is wide and the industrial value as an exhaust gas treatment apparatus is extremely high.

【0024】[0024]

【発明の効果】以上に説明したように、本発明の装置に
よれば、複数の電極への電力配分が均一になり従来装置
では不可能であったNOX ,N2O,SOX を含む
排ガスを大容量で、効率よく容易に処理することができ
る。
Effects of the Invention As explained above, according to the device of the present invention, power distribution to a plurality of electrodes becomes uniform, and a large volume of exhaust gas containing NOX, N2O, and SOX can be generated, which was impossible with conventional devices. can be processed efficiently and easily.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の一実施例の全体工程図である。FIG. 1 is an overall process diagram of an embodiment of the present invention.

【図2】図2は同実施例の反応容器部の構成断面図であ
る。
FIG. 2 is a cross-sectional view of the structure of the reaction container section of the same embodiment.

【図3】図3は同実施例の作用説明図である。FIG. 3 is an explanatory diagram of the operation of the same embodiment.

【図4】図4は従来例の全体工程図である。FIG. 4 is an overall process diagram of a conventional example.

【図5】図5は同従来例の反応容器部の構成斜視図であ
る。
FIG. 5 is a perspective view of the structure of the reaction container section of the conventional example.

【図6】図6は同従来例の反応容器の断面図である。FIG. 6 is a sectional view of the reaction vessel of the conventional example.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  窒素酸化物および硫黄酸化物を含む排
ガスを通す反応容器と、同反応容器内にガス流れに沿っ
て設けられ表面が誘電体で覆われた複数の平板型電極と
、同各平板型電極にそれぞれ対向して設けられ表面が誘
導体で覆われた複数の鋸歯状電極と、上記平板型電極お
よび上記鋸歯状電極間に接続され高周波および低周波の
合成波を印加する電源手段とを備えてなることを特徴と
する排ガス処理装置。
Claim 1: A reaction vessel through which exhaust gas containing nitrogen oxides and sulfur oxides passes; a plurality of flat electrodes provided along the gas flow within the reaction vessel and having surfaces covered with a dielectric; a plurality of sawtooth electrodes each facing the flat electrode and having a surface covered with a dielectric; a power source connected between the flat electrode and the sawtooth electrode for applying a composite wave of high and low frequencies; An exhaust gas treatment device comprising:
JP3137728A 1991-06-10 1991-06-10 Exhaust gas treating equipment Withdrawn JPH04363115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137728A JPH04363115A (en) 1991-06-10 1991-06-10 Exhaust gas treating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137728A JPH04363115A (en) 1991-06-10 1991-06-10 Exhaust gas treating equipment

Publications (1)

Publication Number Publication Date
JPH04363115A true JPH04363115A (en) 1992-12-16

Family

ID=15205447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137728A Withdrawn JPH04363115A (en) 1991-06-10 1991-06-10 Exhaust gas treating equipment

Country Status (1)

Country Link
JP (1) JPH04363115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087622A (en) * 1999-09-24 2001-04-03 Anzai Setsu Exhaust gas cleaning apparatus
US7211227B2 (en) 2002-03-19 2007-05-01 Hyundai Motor Company Plasma reactor, production method thereof, and emission control apparatus of a vehicle
DE10026725B4 (en) * 1999-06-28 2009-05-20 Denso Corp., Kariya-shi Exhaust emission cleaning device for internal combustion engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026725B4 (en) * 1999-06-28 2009-05-20 Denso Corp., Kariya-shi Exhaust emission cleaning device for internal combustion engines
JP2001087622A (en) * 1999-09-24 2001-04-03 Anzai Setsu Exhaust gas cleaning apparatus
JP4559563B2 (en) * 1999-09-24 2010-10-06 安斎 節 Exhaust gas purification device
US7211227B2 (en) 2002-03-19 2007-05-01 Hyundai Motor Company Plasma reactor, production method thereof, and emission control apparatus of a vehicle

Similar Documents

Publication Publication Date Title
EP0366876B1 (en) Exhaust gas treating apparatus
US5458748A (en) Coronal-catalytic apparatus and method for NOx reduction
US6955790B2 (en) Apparatus for plasma-chemical production of nitrogen monoxide
EP0634954A1 (en) Exhaust treatment system and method
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
WO1994006543A1 (en) Plasmachemical process for decomposing and/or destroying pollutants, in particular for cleaning exhaust fumes of internal combustion engines or other fossil fuel driven machines, and device therefor
JP2005537419A (en) Exhaust gas treatment system including a gas ionization system using ionized air injection
JPH03275119A (en) Apparatus for treating exhaust gas with plasma
JPH06269635A (en) Waste gas treatment apparatus
JPH04363115A (en) Exhaust gas treating equipment
JPH06178914A (en) Waste gas treatment device
Yan et al. NOx removal from air streams by a superimposed AC/DC energized flow stabilized streamer corona
JPH04122417A (en) Exhaust gas treating device
JPH05115746A (en) Exhaust gas treatment apparatus
JP2001187319A (en) Method and device for cleaning gas
JPH04171022A (en) Waste gas cleaning method
EP1309389B1 (en) Plasma assisted gas reactors
JPH0515736A (en) Exhaust gas treatment device
JPH1033937A (en) Multi-step type reaction apparatus for treating waste gas
JPH04247219A (en) Exhaust gas treating device
JPH047019A (en) Exhaust gas treating device
JPH04110013A (en) Exhaust gas treating device
JPH02258014A (en) Apparatus for treating flue gas
JPH10266831A (en) Exhaust gas control system
JPH04346820A (en) Exhaust gas treatment device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903