JPH02258014A - Apparatus for treating flue gas - Google Patents

Apparatus for treating flue gas

Info

Publication number
JPH02258014A
JPH02258014A JP1076772A JP7677289A JPH02258014A JP H02258014 A JPH02258014 A JP H02258014A JP 1076772 A JP1076772 A JP 1076772A JP 7677289 A JP7677289 A JP 7677289A JP H02258014 A JPH02258014 A JP H02258014A
Authority
JP
Japan
Prior art keywords
electrode
flue gas
exhaust gas
reaction vessel
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076772A
Other languages
Japanese (ja)
Inventor
Seiichi Nishida
西田 聖一
Masayoshi Murata
正義 村田
Nobuaki Murakami
信明 村上
Tadashi Gengo
義 玄後
Satoshi Uchida
聡 内田
Atsushi Morii
守井 淳
Takanobu Kondou
近藤 敬宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1076772A priority Critical patent/JPH02258014A/en
Publication of JPH02258014A publication Critical patent/JPH02258014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress corrosion and abrasion of electrodes to a minimum and to operate a flue gas treatment steadily for a long time by covering the first and the second electrodes with dielectric bodies in a vessel for glow discharge plasma reaction. CONSTITUTION:A serrate electrode 10 and a plate electrode 11 are set opposite to each other in parallel to a gas flow in a reaction vessel 5, which is opened at its both ends, and dielectric bodies 12, 13 are arranged so as to cover surfaces of the electrodes 10, 11 for the purpose of preventing them from being in direct contact with a flue gas. If the flue gas is introduced into the plasma reaction vessel 5 together with ammonia and an electric power is supplied from an electric source 8 to the serrate electrode 10 and the plate electrode 11, a glow discharge plasma of the flue gas containing ammonia is generated between the dielectric bodies 12 and 13 and NO, NO2 and SO2 in the flue gas are converted into N2, S and H2O. Corrosion and abrasion of the electrodes do not take place in this case, as the flue gas containing ammonia is not in direct contact with the serrate electrode 10 and the plate electrode 11. It is possible, therefore, to generate a steady glow discharge plasma for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電プラント用ボイラー、ディーゼルエンジン
、ガスタービン及び各種燃焼炉などから排出される排ガ
ス中の窒素酸化物(NO,)及び/又は硫黄酸化物(s
Oりを効果的にかつ大容量除去することができるグロー
放電プラズマによる排ガス処理装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to reducing nitrogen oxides (NO, Oxide (s
The present invention relates to an exhaust gas treatment device using glow discharge plasma that can effectively remove oxygen in a large amount.

〔従来の技術〕[Conventional technology]

第3図及び第4図は従来から用いられているグロー放電
プラズマによる排ガス処理装置の説明図である。この装
置により、例えばディーゼルエンジンの排ガス中のNO
xを処理する場合を例にとり説明する。
FIGS. 3 and 4 are explanatory diagrams of a conventionally used exhaust gas treatment apparatus using glow discharge plasma. With this device, for example, NO in the exhaust gas of a diesel engine can be removed.
An example of processing x will be explained.

第3図において、ディーゼルエンジン101の排ガスを
排気管102を介してサイクレンコレクター103に導
入し除じん後、排気管104を経由して、プラズマ反応
容器105 K導入する。プラズマ反応容器105でN
Oxを処理して排出管101を経て排出する。
In FIG. 3, exhaust gas from a diesel engine 101 is introduced into a cycle collector 103 via an exhaust pipe 102 to remove dust, and then introduced into a plasma reaction vessel 105K via an exhaust pipe 104. N in the plasma reaction vessel 105
The Ox is treated and discharged through the discharge pipe 101.

プラズマ反応容器105は第4図に詳細を示すよ5に筒
状の絶縁体反応容器の内側に鋸歯状電極110、平板電
極111.誘電体109を備えている。
As shown in detail in FIG. 4, the plasma reaction vessel 105 has sawtooth electrodes 110, flat plate electrodes 111, . A dielectric 109 is provided.

鋸歯状電極110及び平板電極111には電源106よ
り高電圧を印加し、排ガスをプラズマ化させることによ
り、排ガス中のNOxを下記の原理により除去する。す
なわち鋸歯状電極110と平板電極1110間に発生す
る大気圧グロー放電現象で排ガスはプラズマ化される。
A high voltage is applied from the power source 106 to the sawtooth electrode 110 and the flat plate electrode 111 to turn the exhaust gas into plasma, thereby removing NOx in the exhaust gas according to the following principle. That is, the exhaust gas is turned into plasma by the atmospheric pressure glow discharge phenomenon that occurs between the sawtooth electrode 110 and the flat plate electrode 1110.

そして、例えばNOxは次の化学反応を起こす。For example, NOx causes the following chemical reaction.

2NO,−一→2NO+ 02−山・(1)2NO+ 
02−→N2+ 20□・−−−−−(21なお、プラ
ズマは、外部電界によっ【加速された高エネルギー電子
がガス分子と衝突し、励起分子励起原子遊離基、イオン
および中性粒子などが混在した電離気体であり、上記(
1) 、 (21式では数eV〜数10 eVのエネル
ギーを得たNo工が化学的に活性な種になって、複雑な
反応を起こした結果として、N2およVO□になると考
えられる。
2NO, -1 → 2NO+ 02-Mountain・(1) 2NO+
02-→N2+ 20□・------(21) Plasma is caused by an external electric field [accelerated high-energy electrons collide with gas molecules, excited molecules, excited atoms free radicals, ions, neutral particles, etc. It is an ionized gas mixed with the above (
1) , (In formula 21, it is thought that the NO element that has obtained an energy of several eV to several tens of eV becomes a chemically active species, and as a result of a complex reaction, it becomes N2 and VO□.

さ【、上記のように、エンジンの排ガスを大気圧グラ−
放電現象を利用して、プラズマ化すると、(No + 
No□)が50〜200−程度の濃度および100It
/i程度の流量の範囲では、プラズマ発生電力、すなわ
ち電源106より供給される電力が数W−数10Wの範
囲で、NOx除去率が80〜90%を達成できる。した
がって、ボイラー ガスタービンおよびディーゼルエン
ジンなど、各種燃焼を伴5装置の排ガス対策装置として
活用されつつある。
[As mentioned above, the exhaust gas from the engine is heated to atmospheric pressure.
When plasma is generated using the discharge phenomenon, (No +
No□) concentration of about 50 to 200- and 100It
In a flow rate range of approximately /i, a NOx removal rate of 80 to 90% can be achieved when the plasma generation power, that is, the power supplied from the power supply 106 is in the range of several watts to several 10 watts. Therefore, it is being used as an exhaust gas control device for various combustion devices such as boilers, gas turbines, and diesel engines.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の装置は、長時間連続使用すると、鋸歯状電極
および平板電極が腐食・摩耗してグロー放電プラズマが
発生し難くなり、NO工除去率が著しく低下するという
問題点があった。
The above-mentioned conventional apparatus has a problem in that when used continuously for a long time, the sawtooth electrode and the flat plate electrode corrode and wear out, making it difficult to generate glow discharge plasma and significantly reducing the NO removal rate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため次の手段を講する・ すなわち、排ガス処理装置として、グロー放電プラズマ
を用いて排ガス中の窒素酸化物及び/又は硫黄酸化物を
処理する装置において、入口および出口を持つ筒状の反
応容器と、同反応容器内にガスの流れ方向に面を沿わせ
て設けられる平板状の第1の電極と、同第1の電極に対
向して設けられ鋸歯状の表面を持った第2の電極と、上
記第1の電極の表面を覆う第1の誘電体と、上記第2の
電極の表頁を覆5g2の誘電体と、上記第1の電極およ
び第2の電極に電圧を印加する手段と、上記反応容器の
入口部に結合されるアンそニア供給装置とを設ける。
In order to solve the above problems, the present invention takes the following measures. In other words, in an exhaust gas treatment device that uses glow discharge plasma to treat nitrogen oxides and/or sulfur oxides in exhaust gas, the inlet and outlet a cylindrical reaction vessel having a cylindrical shape, a flat first electrode disposed within the reaction vessel with its surface along the gas flow direction, and a serrated surface disposed opposite to the first electrode. a second electrode having a diameter of 5g2, a first dielectric covering the surface of the first electrode, a dielectric covering the front page of the second electrode, and a second electrode covering the surface of the first electrode and the second electrode. Means for applying a voltage to the electrodes and an anthonia supply device coupled to the inlet of the reaction vessel are provided.

〔作用〕[Effect]

上記手段により、化学反応を促進させるバッファガス(
緩衝ガス)として、排ガス中にアンモニアを微少量だけ
混入させた後、排ガスは反応容器に導入される。
By the above means, a buffer gas (
After a very small amount of ammonia is mixed into the exhaust gas (as a buffer gas), the exhaust gas is introduced into the reaction vessel.

第1の電極と第2の電極間では電源から高電圧が印加さ
れグロー放電プラズマが発生し、そのエネルギーで実施
例に記載の(31ないしく6)式の化学反応が促進され
て”x及び/又はボーが除去される。
A high voltage is applied from the power supply between the first electrode and the second electrode, generating glow discharge plasma, and the energy promotes the chemical reaction of formula (31 or 6) described in the examples, and /or the bow is removed.

このとき、第1および第2の電極は誘電体に覆われてい
るため排ガスに接解しなA1ので、腐食・摩耗しない。
At this time, since the first and second electrodes are covered with a dielectric material, they do not come in contact with the exhaust gas, so they do not corrode or wear out.

したがって長期にわたって安定な排ガス処理ができるよ
うになる。
Therefore, stable exhaust gas treatment can be performed over a long period of time.

〔実施例〕〔Example〕

本発明の一実施例を第1図と第2図(a) 、 (kl
により説明する。
An embodiment of the present invention is shown in FIGS. 1 and 2 (a), (kl
This is explained by:

なお、従来例で説明した部分は、冗長さをさけるため説
明を省略し、この発明に関する部分を主体に説明する。
Note that the description of the portions described in the conventional example will be omitted to avoid redundancy, and the description will mainly focus on the portions related to the present invention.

第1図において、1は汎用の燃焼炉で排気ガス公害対策
を講じるための対象物である。3は除じん器、2は上記
汎用の燃焼炉1の排ガスを除じん器(サイクロン・コレ
クター等)3に移送する排気管、5はプラズマ反応容器
、4は上記除じん器3の排ガスをプラズマ反応容器5に
移送する排気管、6は上記プラズマ反応容器5の電極に
プラズマ発生電力を印加する電源、7はプラズマ反応容
器5に連結された排ガス出力管、または16はアンモニ
アを数fi/−〜数101/ll1Iの範囲の所定の設
定値で供給するアンモニア供給装置、17は排出管4に
連結されたアンモニア供給管である。
In FIG. 1, reference numeral 1 indicates an object for taking measures against exhaust gas pollution in a general-purpose combustion furnace. 3 is a dust remover, 2 is an exhaust pipe that transfers the exhaust gas from the general-purpose combustion furnace 1 to the dust remover (cyclone collector, etc.) 3, 5 is a plasma reaction vessel, and 4 is a plasma reactor for the exhaust gas from the dust remover 3 An exhaust pipe for transporting ammonia to the reaction vessel 5; 6 a power source for applying plasma generation power to the electrodes of the plasma reaction vessel 5; 7 an exhaust gas output pipe connected to the plasma reaction vessel 5; 17 is an ammonia supply pipe connected to the discharge pipe 4.

第2図(a) 、 (b)によりプラズマ反応容器5に
ついて詳細に説明する。
The plasma reaction vessel 5 will be explained in detail with reference to FIGS. 2(a) and 2(b).

両端が開口した筒状のプラズマ反応容器5内には対向し
た鋸歯状電極10と板状電極11が表面をガス流れに千
行く設けられる。また誘電体し、13が鋸頗状電極10
と板状電極11の表面を覆5よ5に設けられる。これら
の誘電体12 、13の対向面は平面状になっている。
In a cylindrical plasma reaction vessel 5 with both ends open, a sawtooth electrode 10 and a plate electrode 11 facing each other are provided so as to allow gas to flow on the surface thereof. In addition, the dielectric material 13 is a sawtooth electrode 10.
The surface of the plate-shaped electrode 11 is covered with covers 5 and 5. Opposing surfaces of these dielectrics 12 and 13 are planar.

また鋸歯状電極10及び板状電極11は誘電休校、13
に覆われ、直接排ガスに接触しない構成となっている。
In addition, the sawtooth electrode 10 and the plate electrode 11 are dielectrically closed, 13
The structure is such that it does not come into direct contact with exhaust gas.

以上の構成において、アンモニアがアンモニア供給装置
16から数A/―〜数101/―の流量で排ガスととも
に、プラズマ反応容器5に導入される。
In the above configuration, ammonia is introduced from the ammonia supply device 16 into the plasma reaction vessel 5 together with the exhaust gas at a flow rate of several A/- to several 101/-.

プラズマ発生用の電源6から、鋸歯状電極1oと板状電
極11に電力を供給すると、誘電体ル、130間には、
アンモニア入り排ガスのプラズマが発生する。
When power is supplied from the plasma generation power source 6 to the sawtooth electrode 1o and the plate electrode 11, a gap between the dielectric 130 and the sawtooth electrode 1o is generated.
Plasma of exhaust gas containing ammonia is generated.

このプラズマは、グロー放電プラズマであり、アンモニ
ア、 NOx及びSOxなどのガス分子を励起及び解離
させ、化学的に活性な状態とする。それKよって以下に
述べる化学反応がひき起こされる。
This plasma is a glow discharge plasma, which excites and dissociates gas molecules such as ammonia, NOx, and SOx, and makes them chemically active. This K causes the chemical reaction described below.

NH3+電子エネルギー約6.4 eV →N)12 
+ H60,(3)2NO2+電子エネルギー約9.5
 eV →2NO+02−(43NH2+NO−→N2
+H20・・・(5)2NH2+ So□−+ S +
 N2+ 2H20−(6)上記(3)〜(6)の式は
、プラズマ反応容器5に導入された燃焼炉1の排ガス中
のNo 、 No□及びSO2がN2.S及びH2Oに
なることを意味している。この場合、上記のようにアン
モニアを含む排ガスは鋸歯状電極10や板状電極11に
直接接触することな(、誘電体(例えばガラスやセラミ
ックスなど)12.13に接触するのみである。排ガス
(特にアンモニア)が接触しないので電極の腐食・摩耗
がなく、長時間安定したグロー放電プラズマを発生させ
ることができる。また誘電体し、130表面は平面なの
で排ガスの摩擦抵抗が少さ(、ばいじんや硫安などの副
生物の付着が少ない。
NH3+ electron energy approximately 6.4 eV →N)12
+ H60, (3) 2NO2 + electron energy approximately 9.5
eV →2NO+02-(43NH2+NO-→N2
+H20...(5)2NH2+ So□-+ S +
N2+ 2H20-(6) Equations (3) to (6) above are based on the assumption that No. This means that it becomes S and H2O. In this case, as mentioned above, the exhaust gas containing ammonia does not come into direct contact with the sawtooth electrode 10 or the plate electrode 11 (it only comes into contact with the dielectric material (e.g. glass, ceramics, etc.) 12.13). In particular, since there is no contact with ammonia), there is no corrosion or wear of the electrodes, and stable glow discharge plasma can be generated for a long time.Also, since it is a dielectric material and the surface of 130 is flat, there is little frictional resistance of exhaust gas (such as soot and dust). Less adhesion of by-products such as ammonium sulfate.

とのよ5に本実施例の装置によれば、従来装置の10倍
以上もの時間、安定した排ガス処理ができる。
According to the apparatus of this embodiment, stable exhaust gas treatment can be performed for more than 10 times as long as the conventional apparatus.

なお、上記ではNQJ:及びSoxを含む排ガスの処理
について説明したが、本実施例はNo工のみあるいはS
O工のみを含む排ガスの処理にも適用可能である。
In addition, although the treatment of exhaust gas containing NQJ: and Sox has been described above, this example deals with the treatment of exhaust gas containing NQJ: and Sox.
It can also be applied to the treatment of exhaust gas containing only O-works.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の装置によれば、従来装
置では避けられなかった電極の腐食・摩耗を最小限に抑
制することができ、長時間安定した排ガス処理ができる
。したがって排ガス出口管およびまたはSo工除去装置
としての産業上の価値が著しく高い。
As explained above, according to the device of the present invention, corrosion and wear of the electrodes, which were unavoidable in conventional devices, can be suppressed to a minimum, and exhaust gas treatment can be performed stably for a long time. Therefore, it has extremely high industrial value as an exhaust gas outlet pipe and/or a SO treatment removal device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の装置を用いた排ガス処理装
置の全体構成図。第2図は同実施例のプラズマ反応容器
の断面図。第3図は従来の装置を用いた排ガス処理装置
の全体構成図。第4図は同従来の装置のプラズマ反応容
器の断面図である。 1・・・燃焼炉、 2・・・排気管、  3・・・除じ
ん器。 4・・・排気管、5・・・プラズマ反応容器、6・・・
電源。 7・・・排ガス出口管、       10・・・鋸歯
状電極。 11・・・平板電極*       12−13・・・
誘電体。 16・・・アンモニア供給装置、17・・・アンモニア
供給管。 18・・・排ガス入口管。
FIG. 1 is an overall configuration diagram of an exhaust gas treatment apparatus using an apparatus according to an embodiment of the present invention. FIG. 2 is a sectional view of the plasma reaction vessel of the same embodiment. FIG. 3 is an overall configuration diagram of an exhaust gas treatment device using a conventional device. FIG. 4 is a sectional view of the plasma reaction vessel of the conventional apparatus. 1... Combustion furnace, 2... Exhaust pipe, 3... Dust remover. 4... Exhaust pipe, 5... Plasma reaction vessel, 6...
power supply. 7... Exhaust gas outlet pipe, 10... Serrated electrode. 11... Flat plate electrode* 12-13...
dielectric. 16... Ammonia supply device, 17... Ammonia supply pipe. 18...Exhaust gas inlet pipe.

Claims (1)

【特許請求の範囲】[Claims] グロー放電プラズマを用いて排ガス中の窒素酸化物及び
/又は硫黄酸化物を処理する装置において、入口および
出口を持つ筒状の反応容器と、同反応容器内にガスの流
れ方向に面を沿わせて設けられる平板状の第1の電極と
、同第1の電極に対向して設けられ鋸歯状の表面を持っ
た第2の電極と、上記第1の電極の表面を覆う第1の誘
電体と、上記第2の電極の表面を覆う第2の誘電体と、
上記第1の電極および第2の電極に電圧を印加する手段
と、上記反応容器の入口部に結合されるアンモニア供給
装置とを備えてなることを特徴とする排ガス処理装置。
An apparatus for treating nitrogen oxides and/or sulfur oxides in exhaust gas using glow discharge plasma, which includes a cylindrical reaction vessel having an inlet and an outlet, and a surface parallel to the gas flow direction within the reaction vessel. a first electrode in the form of a flat plate, provided opposite to the first electrode and having a sawtooth surface; and a first dielectric covering the surface of the first electrode. and a second dielectric covering the surface of the second electrode;
An exhaust gas treatment device comprising means for applying a voltage to the first electrode and the second electrode, and an ammonia supply device coupled to an inlet of the reaction vessel.
JP1076772A 1989-03-30 1989-03-30 Apparatus for treating flue gas Pending JPH02258014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076772A JPH02258014A (en) 1989-03-30 1989-03-30 Apparatus for treating flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076772A JPH02258014A (en) 1989-03-30 1989-03-30 Apparatus for treating flue gas

Publications (1)

Publication Number Publication Date
JPH02258014A true JPH02258014A (en) 1990-10-18

Family

ID=13614878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076772A Pending JPH02258014A (en) 1989-03-30 1989-03-30 Apparatus for treating flue gas

Country Status (1)

Country Link
JP (1) JPH02258014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698090A1 (en) * 1992-10-29 1994-05-20 Czernichowski Albin Process for converting pollutant oxides of sulfur and nitrogen from gaseous effluents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698090A1 (en) * 1992-10-29 1994-05-20 Czernichowski Albin Process for converting pollutant oxides of sulfur and nitrogen from gaseous effluents

Similar Documents

Publication Publication Date Title
Gentile et al. Reaction chemistry and optimization of plasma remediation of N x O y from gas streams
EP0366876B1 (en) Exhaust gas treating apparatus
Chang The role of H2O and NH3 on the formation of NH4NO3 aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases
JPH0615143A (en) Plasma reaction vessel for nitrogen oxide decomposition device
JP2005537419A (en) Exhaust gas treatment system including a gas ionization system using ionized air injection
Hong et al. Interaction between NO and SO2 removal processes in a pulsed corona discharge plasma (PCDP) reactor and the mechanism
JPH05115746A (en) Exhaust gas treatment apparatus
JPH02258014A (en) Apparatus for treating flue gas
JP3101744B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JPH06178914A (en) Waste gas treatment device
JPH04219123A (en) Device for treating waste gas with glow discharge plasma
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JPH02211219A (en) Waste gas treatment apparatus
JP3156185B2 (en) Exhaust gas treatment method and apparatus
JPH07116460A (en) Apparatus for treating exhaust gas
JPH04338215A (en) Exhaust gas treating device
JPH05261242A (en) Exhaust gas treating device
Zhang et al. Removal of SO2 from simulated flue gases using non-thermal plasma-based microgap discharge
JP2554161B2 (en) Exhaust gas treatment device
JPH047019A (en) Exhaust gas treating device
JPH02241519A (en) Waste gas treatment apparatus
JPH04247219A (en) Exhaust gas treating device
JPH03161015A (en) Exhaust gas treatment apparatus
JPH02131123A (en) Waste gas treatment apparatus
JPH05309231A (en) Device for treating exhaust gas