JPH04119222A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH04119222A
JPH04119222A JP2238509A JP23850990A JPH04119222A JP H04119222 A JPH04119222 A JP H04119222A JP 2238509 A JP2238509 A JP 2238509A JP 23850990 A JP23850990 A JP 23850990A JP H04119222 A JPH04119222 A JP H04119222A
Authority
JP
Japan
Prior art keywords
rotating member
bearing device
permanent magnets
magnetic bearing
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238509A
Other languages
Japanese (ja)
Inventor
Masaharu Miki
正晴 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FERROFLUIDICS KK
Original Assignee
NIPPON FERROFLUIDICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FERROFLUIDICS KK filed Critical NIPPON FERROFLUIDICS KK
Priority to JP2238509A priority Critical patent/JPH04119222A/en
Publication of JPH04119222A publication Critical patent/JPH04119222A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To simplify constitution by providing a permanent magnet so that energizing force to push a rotary member in the specified axial direction may increase in association with increase in its displacement in the specified direction, and providing the rotary member and a support member with a superconductive member and a permanent magnet. CONSTITUTION:A pair of annular permanent magnets 6, 7 are arranged at the relatively opposite positions at the inside of a turbo blade mounting part 3 and a fixation member 5, while even on a lower end side of a rotary shaft 2 a pair of annular permanent magnets 8, 9 are arranged at the relatively opposite position between the side of a shaft 2 and the side of the fixation member 5. These magnets 6...9 support a rotary member 1 in the axial direction with their repellent force. The lower permanent magnet 9 on the side of the fixation member 5 is mounted on a freely swinging member 11 which is mounted on the fixation member 5 through a damper 12 such as of rubber, magnetic fluid, vacuum grease and the like. It is thus possible to ensure rigidity in carrying out supporting in the axial direction while improving damping performance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はターボ分子ポンプ等に使用する磁気磁気受装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic magnetic receiving device used in a turbo-molecular pump or the like.

(従来の技術及びその問題点) ターボ分子ポンプ等において、回転部材を非接触支持す
るための磁気軸受装置の従来例としては、例えば特開平
2−125106号を挙げることができる。
(Prior Art and its Problems) A conventional example of a magnetic bearing device for supporting a rotating member in a non-contact manner in a turbo molecular pump or the like is disclosed in, for example, Japanese Patent Laid-Open No. 2-125106.

二のものにおいては、回転部材の径方向支持を一対の永
久磁石の反力を利用して行う一方、軸方向支持は電磁石
でもって行う構成が採用されている。
In the second type, a configuration is adopted in which the rotating member is supported in the radial direction by using the reaction force of a pair of permanent magnets, while the rotating member is supported in the axial direction by an electromagnet.

この従来例においては、−軸制御軸受であることから、
その構成がある程度は簡素化されてはいるものの、軸方
向制御用の電磁石、センサ、及び制御回路が依然として
必要であり、構成簡素化に対する要望を充分に満たして
いるとはいい難いのが実情である。
In this conventional example, since it is a -axis control bearing,
Although the configuration has been simplified to some extent, electromagnets, sensors, and control circuits for axial control are still required, and the reality is that it cannot be said that the desire for a simplified configuration is fully satisfied. be.

そのため例えば、特開平2−125107号においては
、超電導体のマイスナー効果を利用した磁気軸受装置が
提案されている。
For this reason, for example, Japanese Patent Laid-Open No. 2-125107 proposes a magnetic bearing device that utilizes the Meissner effect of superconductors.

しかしながらこの磁気軸受装置は、無制御型の軸受であ
るため、その構成は簡素化し得るものの、剛性及び減衰
能ともに充分なものが得られず、実用に供するには至っ
ていない。
However, since this magnetic bearing device is an uncontrolled bearing, although its structure can be simplified, it cannot achieve sufficient rigidity and damping capacity, and has not been put to practical use.

この発明は上記従来の欠点を解決するためになされたも
のであって、その目的は、無制御型であるため、その構
成を簡素にし得ると共に、ターボ分子ポンプ、オプティ
カルスキャナー、ピームチジッパ−、フライホイール、
コンプレツサ等に通用するのに充分な剛性と減衰能とを
有する磁気軸受装置を提供することにある。
This invention has been made to solve the above-mentioned conventional drawbacks, and its purpose is to simplify the configuration because it is an uncontrolled type, and also ,
It is an object of the present invention to provide a magnetic bearing device having sufficient rigidity and damping ability for use in compressors and the like.

(問題点を解決するための手段) そこで第1請求項記載の磁気軸受装置は、軸心回りに回
転する回転部材を支持部材に対して径方向及び軸方向支
持するための磁気軸受装置において、上記回転部材と支
持部材との径方向に略相対向する位置に一対の永久磁石
を配置し、この永久磁石の反力で上記回転部材を径方向
支持すると共に、上記両永久磁石は、上記回転部材を軸
方向の特定方向に押動する付勢力が作用し、かつこの付
勢力が回転部材の特定方向への変位増大と共に増大する
よう配置する一方、上記回転部材と支持部材とには超電
導体と永久磁石とを配置して超電導体の磁束ピン止め効
果によって上記回転部材を上記特定方向とは逆方向に付
勢すべく構成して成り、さらに上記超電導体は、上記一
対の永久磁石による特定方向への付勢力を強制的に減少
させた状態で冷却・超電導化されていることを特徴とし
ている。
(Means for Solving the Problems) Therefore, the magnetic bearing device according to the first aspect is a magnetic bearing device for supporting a rotating member rotating around an axis in the radial and axial directions with respect to a supporting member. A pair of permanent magnets are disposed at positions that substantially face each other in the radial direction of the rotating member and the supporting member, and the reactive force of the permanent magnets supports the rotating member in the radial direction. The arrangement is such that a biasing force that pushes the member in a specific axial direction acts and this biasing force increases as the displacement of the rotating member increases in the specific direction. and a permanent magnet are arranged so that the rotating member is biased in a direction opposite to the specific direction by the magnetic flux pinning effect of the superconductor, and the superconductor is biased by the pair of permanent magnets. It is characterized by being cooled and made superconducting while the biasing force in the direction is forcibly reduced.

また第2請求項記載の磁気軸受装置は、上記径方向支持
用の永久磁石の一方が、径方向に揺動可能な自由揺動体
に取着され、この自由揺動体が減衰材を介して支持部材
に径方向支持されていることを特徴としている。
Further, in the magnetic bearing device according to the second aspect, one of the permanent magnets for radial support is attached to a free rocking body that can swing in the radial direction, and the free rocking body is supported via a damping material. It is characterized by being radially supported by a member.

さらに第3請求項記載の磁気軸受装置は、上記一対の永
久磁石による特定方向の付勢力を強制的に減少させるた
めに電磁石を備えていることを特徴としている。
Furthermore, the magnetic bearing device according to the third aspect is characterized in that it includes an electromagnet for forcibly reducing the biasing force in a specific direction by the pair of permanent magnets.

第4請求項記載の磁気軸受装置は、上記超電導体が、メ
ルトパウダーメルトグロース法によるYBa−Cu−0
であることを特徴としている。
In the magnetic bearing device according to a fourth aspect of the invention, the superconductor is YBa-Cu-0 formed by a melt powder melt growth method.
It is characterized by being

(作用) 第1請求項記載の磁気軸受装置の作用について、第4図
に基づいて説明する。まず一対の永久磁石による軸方向
の特定方向、例えば上方への付勢力が少ない状態、つま
り一対の永久磁石のN−N面、S−3面を強制的に近接
させた状態(pg点)において、Y系超電導体を冷却・
超電導化する。そうするとこの22点においては、超電
導体の磁束ピン止め効果による反発力は略零となる。そ
して上記強制力を解除すると、永久磁石器こよる上方へ
の付勢力は、第4図f−gのように上昇する。またその
一方で、超電導体の磁束ピン止め効果による下方への反
発力は、曲線りのように上昇する。つまり上記永久磁石
に付勢力と上記超電導体るよる反発力とのバランスする
点qにおいて回転部材が軸方向支持されることになるの
である。
(Function) The function of the magnetic bearing device according to the first aspect will be explained based on FIG. 4. First, in a state where there is little biasing force in a specific axial direction, for example, upward, by a pair of permanent magnets, that is, in a state where the N-N plane and S-3 plane of the pair of permanent magnets are forcibly brought close together (point pg). , cooling the Y-based superconductor
Become superconducting. Then, at these 22 points, the repulsive force due to the magnetic flux pinning effect of the superconductor becomes approximately zero. Then, when the above-mentioned forcing force is released, the upward biasing force caused by the permanent magnet increases as shown in Fig. 4f-g. On the other hand, the downward repulsive force due to the magnetic flux pinning effect of the superconductor increases in a curved manner. In other words, the rotating member is supported in the axial direction at a point q where the biasing force of the permanent magnet and the repulsive force of the superconductor are balanced.

また第2請求項記載の磁気軸受装置では、永久磁石によ
る径方向支持に際しての剛性を確保しつつ、減衰能を改
善できる。
Further, in the magnetic bearing device according to the second aspect, it is possible to improve damping performance while ensuring rigidity during radial support by permanent magnets.

なお第3請求項記載の磁気軸受装置や第4請求項記載の
磁気軸受装置は、第1請求項記載の磁気軸受装置の実用
化を有利にするためのものである。
The magnetic bearing device according to the third claim and the magnetic bearing device according to the fourth claim are intended to advantageously put the magnetic bearing device according to the first claim into practical use.

(実施例) 次にこの発明の磁気軸受装置の具体的な実施例について
、図面を参照しつつ詳細に説明する。
(Embodiments) Next, specific embodiments of the magnetic bearing device of the present invention will be described in detail with reference to the drawings.

第1図には、この発明の磁気軸受装置をターボ分子ポン
プに適用した実施例を示している。同図においで、Iは
回転部材を示しているが、この回転部材は、回転シャフ
ト2、回転シャフト2に連設されたターボ翼取付部3、
ターボ翼4等によって構成されたもので、これらはケー
シングを含む固定部材5に回転可能に支持されている。
FIG. 1 shows an embodiment in which the magnetic bearing device of the present invention is applied to a turbo molecular pump. In the figure, I indicates a rotating member, which includes a rotating shaft 2, a turbo blade attachment part 3 connected to the rotating shaft 2,
It is composed of turbo blades 4 and the like, which are rotatably supported by a fixed member 5 including a casing.

上記ターボ翼取付部3の内側と上記固定部材5との相対
向する位置には一対の環状の永久磁石6.7が配置され
、また上記回転シャフト2の下端側においても、シャフ
ト2側と固定部材5側との相対向する位置に一対の環状
の永久磁石8J9が配置されている。これら各永久磁石
6・・9は、回転部材1を、その反発力でもって径方向
支持するためのものである。また上記下側における固定
部材5側の永久磁石9は、ボール10でもって径方向に
揺動自在に配置された自由揺動体11に取着され、この
自由揺動体11が、ゴム、磁性流体、真空グリス等の減
衰材12を介して固定部材5に取付けられる構造となさ
れている。これは径方向支持に際しての剛性を確保しつ
つ、減衰能を向上させるためである。
A pair of annular permanent magnets 6.7 are disposed at opposite positions between the inside of the turbo blade mounting portion 3 and the fixed member 5, and are also fixed to the shaft 2 side on the lower end side of the rotating shaft 2. A pair of annular permanent magnets 8J9 are arranged at positions opposite to the member 5 side. Each of these permanent magnets 6...9 is for supporting the rotating member 1 in the radial direction with its repulsive force. Further, the permanent magnet 9 on the fixed member 5 side on the lower side is attached to a free rocking body 11 arranged to be swingable in the radial direction with a ball 10, and this free rocking body 11 is made of rubber, magnetic fluid, etc. The structure is such that it is attached to the fixing member 5 via a damping material 12 such as vacuum grease. This is to improve damping performance while ensuring rigidity during radial support.

また回転シャフト2の上端部には、永久磁石I3が取着
され、これとは相対向して固定部材5には、Y系超電導
体14が取着されている。
Further, a permanent magnet I3 is attached to the upper end of the rotating shaft 2, and a Y-based superconductor 14 is attached to the fixed member 5 opposite to this.

なお同図において、15は冷却ケーシング、16は冷却
材導入路、17は温度センサ、18は電磁石、19は径
方向可動限界を定める保護用ベアリング、20.21は
軸方向可動限界を定める保護用ベアリングをそれぞれ示
しており、また永久磁石13の上面には、磁石13の磁
束を集中させ、発生磁場勾配を大きくし、後述する反発
力を高めるための部材22が取着されている。
In the figure, 15 is a cooling casing, 16 is a coolant introduction path, 17 is a temperature sensor, 18 is an electromagnet, 19 is a protective bearing that determines the limit of radial movement, and 20.21 is a protective device that determines the limit of axial movement. Each bearing is shown, and a member 22 is attached to the upper surface of the permanent magnet 13 for concentrating the magnetic flux of the magnet 13, increasing the generated magnetic field gradient, and increasing the repulsive force described later.

上記各月の永久磁石6・・9は、同極同士の反発力でも
って回転部材lを径方向に支持するためのものであるが
、さらに詳細には第2図に示すように、内外の磁極がや
やずれた状態で、つまり外側の回転部材1例の各磁極が
やや上方にずれた状態で配置されている。このような配
置をした結果、回転部材1に対しては、径方向外方への
反発力と共に、主として内外同極同士の反発力によって
軸方向上方にも付勢力が作用することになる。そしてこ
の付勢力は、回転部材1の軸方向上方への変位が大きく
なる程、大となる特性を有する。
The above-mentioned permanent magnets 6, . . . 9 of each month are used to support the rotating member l in the radial direction by the repulsive force between the same poles, but more specifically, as shown in Fig. 2, The magnetic poles are arranged in a slightly shifted state, that is, in a state in which each magnetic pole of one example of the outer rotating member is slightly shifted upward. As a result of this arrangement, not only a radially outward repulsive force but also an axially upward biasing force is exerted on the rotating member 1 mainly due to the repulsive force between the inner and outer members having the same polarity. This biasing force has a characteristic that it increases as the upward displacement of the rotating member 1 in the axial direction increases.

ところで上記Y系超電導体14としては、MPMG(メ
ルトパウダーメルトグロース)法によるY系溶融バルク
(M化物系高温超電導体)、例えば銀処理されたY B
aCu Oで、YJaCuOsが細かく分散されたもの
を使用している。このY系超電導体14は、次のような
特性を有するものである。すなわち第3図に示すように
、77°Kまで冷却したY系溶融バルク超電導体14に
、無限造から4000gaussの永久磁石を近づけて
いくと、次第に磁束がピン止めされ、反発力が曲線a−
bのように強くなっていく。また逆に、点すから永久磁
石を遠ざけていくと、今度は反発力が急激に弱まりZ曲
線b−cのようになる。ところで最初から永久磁石を点
eの位置に配置しておき、この状態から77°Kまで冷
却して超電導化すると、e点での反発力は略零となり、
そこからさらに永久磁石を超電導体14に近づけると、
曲線e−bにしたがって反発力が増大するという特性を
示すのであり、この発明では、この特性を利用する。
By the way, the Y-based superconductor 14 is a Y-based molten bulk (M compound-based high-temperature superconductor) produced by the MPMG (melt powder melt growth) method, for example, silver-treated YB.
aCuO in which YJaCuOs is finely dispersed is used. This Y-based superconductor 14 has the following characteristics. That is, as shown in FIG. 3, when a 4000 gauss permanent magnet from Mugenzo is brought close to the Y-based molten bulk superconductor 14 cooled to 77°K, the magnetic flux is gradually pinned, and the repulsive force becomes the curve a-
It becomes stronger like b. Conversely, when the permanent magnet is moved away from the light, the repulsive force suddenly weakens and becomes like the Z curve b-c. By the way, if a permanent magnet is placed at point e from the beginning and then cooled from this state to 77°K to become superconducting, the repulsive force at point e becomes approximately zero,
From there, when the permanent magnet is brought closer to the superconductor 14,
This shows a characteristic that the repulsive force increases according to the curve eb, and this invention utilizes this characteristic.

次に上記原理に基づく軸方向の安定化操作について説明
する。まず電磁石18を作動させて、回転部材1を、保
護ベアリング20.21によって定まる軸方向可動域の
下端まで下降させる(第4図P2点)。次いで冷却材導
入路16から冷却ケーシング15に液体窒素を導入して
Y系超電導体14を冷却する。そして温度センサ17に
よる検出温度が、例えば77°に程度に達して超電導化
が行われたのが確認された状態で上記電磁石18の作動
を停止する。そうすると上記回転部材1は、永久磁石6
・・9による上方への付勢力と、Y系超電導体14の磁
束ピン止め効果による下方への反発力のバランスする点
(第4図q点)において支承されることになる。
Next, a stabilizing operation in the axial direction based on the above principle will be explained. First, the electromagnet 18 is activated to lower the rotating member 1 to the lower end of the axial movable range defined by the protective bearings 20, 21 (point P2 in FIG. 4). Next, liquid nitrogen is introduced into the cooling casing 15 from the coolant introduction path 16 to cool the Y-based superconductor 14. Then, the operation of the electromagnet 18 is stopped when the temperature detected by the temperature sensor 17 reaches, for example, 77° and it is confirmed that superconductivity has been achieved. Then, the rotating member 1 has a permanent magnet 6
... 9 and the downward repulsive force due to the magnetic flux pinning effect of the Y-based superconductor 14 are balanced (point q in Figure 4).

例えば、径方向支持用の永久磁石6・・9として、Sa
+ −Co@土類系の永久磁石を使用し、上側の永久磁
石6.7の平均直径を49an、下側の永久磁石8.9
の平均直径を20.mとして第1図の配置を採用すると
、径方向の軸受剛性を1.5 Xlo’ N/閣程度に
できる。なお径方向減衰能は、自由揺動体11、減衰材
12の選択により定まる。
For example, as the permanent magnets 6...9 for radial support, Sa
+ -Co@Earth-based permanent magnets are used, with the average diameter of the upper permanent magnet 6.7 being 49 an, and the lower permanent magnet 8.9.
The average diameter of 20. If the arrangement shown in FIG. 1 is adopted as m, the bearing rigidity in the radial direction can be approximately 1.5 Xlo'N/k. Note that the radial damping capacity is determined by the selection of the free rocking body 11 and the damping material 12.

また上記永久磁石6・・9による軸方向不安定性剛性は
、約3 Xl05N/m (3ON10.1 mm)で
、第4図に示す可動下限点P2から上限点に向けて1g
線のように上方への付勢力は増加する。
Furthermore, the axial instability stiffness due to the permanent magnets 6, .
The upward force increases like a line.

一方、Y系溶融バルク(直径30IIIlIl、厚さ2
0mm)を超電導化した場合、直径20mm、4000
gaussの永久磁石との反発力が距離0.1団で8O
N程度となるので、上記操作による反発力は第4図p2
−h線のように上昇する。したがって回転部材lはf−
g線とp2−h線との交点qにおいて安定することにな
る。この場合、軸方向剛性には、 K=8ON÷(1,5Xl0−’m) −3Xl05N
/m#2X105N/m となって充分な値となる。
On the other hand, Y-based molten bulk (diameter 30IIIlIl, thickness 2
0mm) becomes superconducting, the diameter is 20mm, 4000
The repulsive force with the Gauss permanent magnet is 80 at a distance of 0.1
Since it is about N, the repulsive force due to the above operation is shown in Figure 4 p2.
- It rises like the h line. Therefore, the rotating member l is f-
It becomes stable at the intersection q between the g line and the p2-h line. In this case, the axial stiffness is K=8ON÷(1,5Xl0-'m) -3Xl05N
/m#2X105N/m, which is a sufficient value.

(発明の効果) 以上のように第1請求項によれば、無制御型であるため
、その構成を簡素にし得ると共に、ターボ分子ポンプ、
オプティカルスキャナー、ビームチョッパー、フライホ
イール、コンプレッサ等に適用するのに充分な剛性と減
衰能とを有する磁気軸受装置を提供することが可能とな
る。
(Effects of the Invention) As described above, since the first claim is an uncontrolled type, the configuration can be simplified, and the turbo-molecular pump,
It becomes possible to provide a magnetic bearing device having sufficient rigidity and damping ability to be applied to optical scanners, beam choppers, flywheels, compressors, etc.

また第2請求項記載の磁気軸受装置では、永久磁石によ
る径方向支持に際しての剛性を確保しつつ、減衰能を改
善できるという利点が生じる。
Further, the magnetic bearing device according to the second aspect has the advantage that damping capacity can be improved while ensuring rigidity during radial support by permanent magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の磁気軸受装置をターボ分子ポンプに
適用した実施例の説明図、第2図は上記における環状の
永久磁石の配置例の説明図、第3図はY系超電導体の磁
束ビン止め効果による反発力を説明するためのグラフ、
第4図は回転部材の軸方向安定化操作を説明するための
グラフである。 1・・・回転部材、5・・・固定部材、6.7.8.9
.13・・・永久磁石、11・・・自由揺動体、12・
・・減衰材、14・・・Y系超電導体、18・・・電磁
石。 特許出願人    日本フェロ−フルイデイクス株式会
社 第 図 第 図
Fig. 1 is an explanatory diagram of an embodiment in which the magnetic bearing device of the present invention is applied to a turbo-molecular pump, Fig. 2 is an explanatory diagram of an example of the arrangement of the annular permanent magnets in the above, and Fig. 3 is an explanatory diagram of the magnetic flux of the Y-based superconductor. A graph to explain the repulsive force due to the bottle stopper effect,
FIG. 4 is a graph for explaining the axial stabilization operation of the rotating member. 1... Rotating member, 5... Fixed member, 6.7.8.9
.. 13... Permanent magnet, 11... Free rocking body, 12.
... Damping material, 14... Y-based superconductor, 18... Electromagnet. Patent applicant Nippon Ferrofluidics Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 1.軸心回りに回転する回転部材を支持部材に対して径
方向及び軸方向支持するための磁気軸受装置において、
上記回転部材と支持部材との径方向に略相対向する位置
に一対の永久磁石を配置し、この永久磁石の反力で上記
回転部材を径方向支持すると共に、上記両永久磁石は、
上記回転部材を軸方向の特定方向に押動する付勢力が作
用し、かつこの付勢力が回転部材の特定方向への変位増
大と共に増大するよう配置する一方、上記回転部材と支
持部材とには超電導体と永久磁石とを配置して超電導体
の磁束ピン止め効果によって上記回転部材を上記特定方
向とは逆方向に付勢すべく構成して成り、さらに上記超
電導体は、上記一対の永久磁石による特定方向への付勢
力を強制的に減少させた状態で冷却・超電導化されてい
ることを特徴とする磁気軸受装置。
1. In a magnetic bearing device for radially and axially supporting a rotating member rotating around an axis relative to a supporting member,
A pair of permanent magnets are disposed at positions substantially facing each other in the radial direction of the rotating member and the supporting member, and the rotating member is supported in the radial direction by the reaction force of the permanent magnets, and both of the permanent magnets
A biasing force that pushes the rotating member in a specific axial direction acts on the rotating member, and the rotating member and the supporting member are arranged so that the biasing force increases as the displacement of the rotating member increases in the specific direction. A superconductor and a permanent magnet are arranged so that the rotating member is biased in a direction opposite to the specific direction by the magnetic flux pinning effect of the superconductor, and the superconductor is further arranged in a direction opposite to the specific direction. A magnetic bearing device characterized by being cooled and made superconducting while forcibly reducing the biasing force in a specific direction.
2.上記径方向支持用の永久磁石の一方が、径方向に揺
動可能な自由揺動体に取着され、この自由揺動体が減衰
材を介して支持部材に径方向支持されていることを特徴
とする第1請求項記載の磁気軸受装置。
2. One of the permanent magnets for radial support is attached to a free rocking body that can swing in the radial direction, and the free rocking body is radially supported by the support member via a damping material. A magnetic bearing device according to claim 1.
3.上記一対の永久磁石による特定方向の付勢力を強制
的に減少させるために電磁石を備えていることを特徴と
する第1請求項又は第2請求項記載の磁気軸受装置。
3. The magnetic bearing device according to claim 1 or 2, further comprising an electromagnet to forcibly reduce the urging force in a specific direction by the pair of permanent magnets.
4.上記超電導体が、メルトパウダーメルトグロース法
によるY−Ba−Cu−Oであることを特徴とする第1
請求項、第2請求項又は第3請求項記載の磁気軸受装置
4. A first characterized in that the superconductor is Y-Ba-Cu-O produced by a melt powder melt growth method.
A magnetic bearing device according to claim 1, second claim, or third claim.
JP2238509A 1990-09-07 1990-09-07 Magnetic bearing device Pending JPH04119222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238509A JPH04119222A (en) 1990-09-07 1990-09-07 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238509A JPH04119222A (en) 1990-09-07 1990-09-07 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH04119222A true JPH04119222A (en) 1992-04-20

Family

ID=17031309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238509A Pending JPH04119222A (en) 1990-09-07 1990-09-07 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH04119222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537810A (en) * 1993-12-14 1996-07-23 Skf Textilmaschinen-Komponenten Gmbh Magnetic-gas bearing for a shaftless spinning rotor for an open-end spinning machine
GB2583374A (en) * 2019-04-26 2020-10-28 Edwards Ltd High vacuum and ultra-high vacuum pumps
WO2024033319A1 (en) * 2022-08-09 2024-02-15 Leybold Gmbh Magnetic bearing and vacuum pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537810A (en) * 1993-12-14 1996-07-23 Skf Textilmaschinen-Komponenten Gmbh Magnetic-gas bearing for a shaftless spinning rotor for an open-end spinning machine
GB2583374A (en) * 2019-04-26 2020-10-28 Edwards Ltd High vacuum and ultra-high vacuum pumps
WO2024033319A1 (en) * 2022-08-09 2024-02-15 Leybold Gmbh Magnetic bearing and vacuum pump

Similar Documents

Publication Publication Date Title
JP2968999B2 (en) High thrust and high stability magnet-superconductor system
US6806604B2 (en) Centrifuge with a magnetically stabilized rotor for centrifugal goods
US5256638A (en) Magnetically leviated superconducting bearing
WO1995020264A1 (en) Magnetic levitation device
JPH04119222A (en) Magnetic bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JP3084132B2 (en) Magnetic levitation device
JPH09501761A (en) Thin film superconductor magnetic bearing
JPH08296645A (en) Magnetic bearing device
JP3599763B2 (en) Magnetic support device
JP3595567B2 (en) Magnetic levitation device
JPH08298745A (en) Flywheel device
JP3168596B2 (en) Superconducting bearing device
Takimura et al. Basic characteristics of the yoke equipped rotors in the magnetic bearing using HTS pinning effect
JPH06313427A (en) Oxide superconducting bearing
JPH05272539A (en) Superconducting magnetic bearing device
JPH05172145A (en) Super-conductive magnetic bearing device
JP3324319B2 (en) Magnetic bearing device
JP3577559B2 (en) Flywheel equipment
JPH01193612A (en) Gyroscope
JP3385771B2 (en) Superconducting magnetic bearing device
JP2764546B2 (en) Superconducting bearing device
JPH04191520A (en) Superconducting bearing device
JPH08170645A (en) Superconductive magnetic bearing
JPH02125107A (en) Turning device