JP2764546B2 - Superconducting bearing device - Google Patents

Superconducting bearing device

Info

Publication number
JP2764546B2
JP2764546B2 JP6248409A JP24840994A JP2764546B2 JP 2764546 B2 JP2764546 B2 JP 2764546B2 JP 6248409 A JP6248409 A JP 6248409A JP 24840994 A JP24840994 A JP 24840994A JP 2764546 B2 JP2764546 B2 JP 2764546B2
Authority
JP
Japan
Prior art keywords
permanent magnet
superconductor
bearing device
force
superconducting bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6248409A
Other languages
Japanese (ja)
Other versions
JPH0886315A (en
Inventor
厚 中島
祥雄 宮川
伯夫 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP6248409A priority Critical patent/JP2764546B2/en
Publication of JPH0886315A publication Critical patent/JPH0886315A/en
Application granted granted Critical
Publication of JP2764546B2 publication Critical patent/JP2764546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、無制御で安定浮上させ
るように剛性を高めた超電導軸受装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting bearing device having increased rigidity so as to stably float without control.

【0002】[0002]

【従来の技術】液体窒素温度において超電導状態に達す
る高温超電導体は、外部磁場の大きさによって超電導体
から磁場を完全に排斥するマイスナー効果の支配する状
態と、磁場の一部が超電導体内に入り込んでピンニング
効果が混在する状態とが存在する。前者の場合は液体ヘ
リウムにより冷却された一般の超電導体と同様の性質を
発揮するが、後者の場合は超電導体部による反発力と共
にピンニングセンタ部による吸引力が発生する。
2. Description of the Related Art A high-temperature superconductor that reaches a superconducting state at the temperature of liquid nitrogen has a state in which the Meissner effect that completely eliminates the magnetic field from the superconductor depends on the magnitude of the external magnetic field, and a part of the magnetic field enters the superconductor. And the state where the pinning effect is mixed. In the former case, the same properties as those of a general superconductor cooled by liquid helium are exhibited, but in the latter case, a repulsive force by the superconductor portion and an attraction force by the pinning center portion are generated.

【0003】図4は従来の超電導軸受装置を示し、支持
側に高温超電導体1が設けられ、浮上側の軟鉄等の磁性
体2の下側の周辺部に円環状の永久磁石3が配置され、
中央部に円柱状の永久磁石4が配置されれており、周辺
部の永久磁石3はNS極性に、中央部の永久磁石4はこ
れと逆のSN極性に配設されている。従って、永久磁石
3、4の磁束分布は図4に示す磁束線図のように、マイ
スナー効果により超電導体1内には磁束は侵入できず、
軸方向に反発力を受けて永久磁石3、4及び磁性体2は
浮上する。
FIG. 4 shows a conventional superconducting bearing device, in which a high-temperature superconductor 1 is provided on a support side, and an annular permanent magnet 3 is arranged on a lower peripheral portion of a magnetic material 2 such as soft iron on a floating surface. ,
A columnar permanent magnet 4 is arranged at the center, the permanent magnet 3 at the periphery is arranged with NS polarity, and the permanent magnet 4 at the center is arranged with SN polarity opposite thereto. Therefore, the magnetic flux distribution of the permanent magnets 3 and 4 cannot enter the superconductor 1 due to the Meissner effect as shown in the magnetic flux diagram of FIG.
The permanent magnets 3, 4 and the magnetic body 2 float by receiving a repulsive force in the axial direction.

【0004】通常の使用状態において、超電導軸受装置
は上述のように浮上させて使用されるが、このとき必要
な浮上力を確保するためには数1000ガウスの磁場を
必要とする。従って、永久磁石3、4側が軸方向の反発
力により浮上している状態で、例えば横方向から力を加
えた場合に、高温超電導体1のピンニング効果による復
元力によって元の位置に戻るように力を受けるので、浮
上側の永久磁石3、4は安定して浮上することになる。
In a normal use state, the superconducting bearing device is used while being levitated as described above. At this time, a magnetic field of several thousand gauss is required to secure a necessary levitation force. Therefore, in a state where the permanent magnets 3 and 4 are levitated by the axial repulsive force, for example, when a force is applied in the lateral direction, the permanent magnets 3 and 4 return to the original position by the restoring force due to the pinning effect of the high-temperature superconductor 1. Since the permanent magnets 3 and 4 on the floating side receive the force, they are stably levitated.

【0005】これは超電導体1と対向配置された永久磁
石3、4と逆の極性の起磁力の小さい疑似永久磁石が超
電導体1の内部に発生しているため、その吸引力によっ
て横方向の復元力が発生するからであり、永久磁石を対
向させて配置することにより、吸引力を制御して安定浮
上させるようにした制御型磁気軸受の復元力発生メカニ
ズムと同一である。
This is because pseudo-permanent magnets having a small magnetomotive force having a polarity opposite to that of the permanent magnets 3 and 4 disposed opposite to the superconductor 1 are generated inside the superconductor 1. This is because a restoring force is generated. This is the same as the restoring force generating mechanism of the control type magnetic bearing in which the permanent magnets are arranged to face each other to control the attraction force to stably float.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、超電導
軸受装置は無制御で安定浮上することが最大の特徴であ
り、実用化に際してはこの安定力を向上させることが必
要不可欠である。一方、上述の従来例の超電導軸受装置
では、超電導体1に対し相対的に浮上側の磁性体2が対
向する面と平行方向に大きくずれると、その復元力が十
分でなく安定性に欠ける問題点がある。
However, the most distinctive feature of the superconducting bearing device is that it floats stably without control, and it is essential to improve this stabilizing force in practical use. On the other hand, in the above-described conventional superconducting bearing device, if the magnetic material 2 floating above the superconductor 1 is largely displaced in a direction parallel to the surface facing the superconductor 1, the restoring force is not sufficient and the stability is lacking. There is a point.

【0007】本発明の目的は、上述の問題点を解消し、
ずれに対する復元力を向上させた超電導軸受装置を提供
することにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a superconducting bearing device with improved restoring force against displacement.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る超電導軸受装置は、支持側の超電導体
と浮上側の第1の永久磁石を取り付けた磁性体とから成
る超電導軸受装置において、前記第1の永久磁石よりも
外側となる前記超電導体の側面に前記第1の永久磁石と
互いに反発力が生ずるように第2の永久磁石を付加し、
前記第1の永久磁石が前記超電導体に対し向い合う面と
平行に相対的に位置ずれした場合に前記第2の永久磁石
との間で前記反発力により復元力が生ずるようにしたこ
とを特徴とする。
According to the present invention, there is provided a superconducting bearing device comprising a supporting superconductor and a magnetic body having a floating permanent magnet attached thereto. In the apparatus, a second permanent magnet is added to a side surface of the superconductor outside the first permanent magnet so that repulsive force is generated with the first permanent magnet,
When the first permanent magnet is relatively displaced in parallel with a surface facing the superconductor, a restoring force is generated by the repulsive force between the first permanent magnet and the second permanent magnet. And

【0009】[0009]

【作用】上述の構成を有する本発明の超電導軸受装置
は、浮上側の磁性体に取り付けた第1の永久磁石より外
側となる位置の支持側の超電導体の側面に第2の永久磁
石を付加しているので、磁性体が超電導体に対し向い合
う面と平行に相対的に位置ずれした場合に、第1の永久
磁石と第2の永久磁石による反発力により元に戻すよう
に作用する。
In the superconducting bearing device of the present invention having the above structure, the second permanent magnet is added to the side surface of the superconductor on the supporting side at a position outside the first permanent magnet attached to the magnetic material on the floating surface. Accordingly, when the magnetic body is relatively displaced in parallel with the surface facing the superconductor, the magnetic body is restored by the repulsive force of the first permanent magnet and the second permanent magnet.

【0010】[0010]

【実施例】本発明を図1、図2に図示の実施例に基づい
て詳細に説明する。図1は第1の実施例のスラスト軸受
の断面図を示し、支持側の超電導体10に対向する位置
に、浮上側の軟鉄等から成り超伝導体10とほぼ同径の
円板状の磁性体11が配置されており、磁性体11の超
電導体10側に向いた面の周辺部に円環状の永久磁石1
2が設けられ、中央部に円柱状の永久磁石13が設けら
れている。このとき、永久磁石12と13の極性は互い
に反発力が生ずるように配置されている。また、超電導
体10の側面に円環状の永久磁石16が付加され、永久
磁石16は永久磁石12の外径よりも大きい内径を有
し、互いの極性は反発力が生ずるように配置されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a cross-sectional view of a thrust bearing according to a first embodiment. A disc-shaped magnetic member made of soft iron or the like floating above and having substantially the same diameter as a superconductor 10 is provided at a position facing a superconductor 10 on a support side. An annular permanent magnet 1 is provided around a surface of the magnetic body 11 facing the superconductor 10 side.
2 are provided, and a columnar permanent magnet 13 is provided at the center. At this time, the polarities of the permanent magnets 12 and 13 are arranged such that repulsive forces are generated. Further, an annular permanent magnet 16 is added to the side surface of the superconductor 10, and the permanent magnet 16 has an inner diameter larger than the outer diameter of the permanent magnet 12, and the polarities of the permanent magnets 16 are arranged so as to generate repulsive forces. .

【0011】永久磁石12、13からの磁束は従来例と
同様に分布し、マイスナー効果による反発力によって浮
上側の磁性体11は浮上する。同時に、高温超電導体1
0では、ピンニング効果により内部に生ずる疑似永久磁
石による吸引力により、復元力が発生し浮上は安定す
る。
The magnetic flux from the permanent magnets 12 and 13 is distributed in the same manner as in the conventional example, and the magnetic material 11 on the floating surface floats by the repulsive force due to the Meissner effect. At the same time, high-temperature superconductor 1
At 0, a restoring force is generated by the attractive force of the pseudo permanent magnet generated inside due to the pinning effect, and the levitation is stabilized.

【0012】本実施例においては、超電導体10の側面
に浮上側の永久磁石12よりも大きい径の第2の永久磁
石16を付加し、永久磁石12と永久磁石16とが反発
力が作用するような逆極性となるように配置することに
より、浮上側の永久磁石12が水平方向の一方に大きく
ずれた場合は、第2の永久磁石16が外側から第1の永
久磁石12を元に戻すように反発力が作用するので、水
平方向の剛性を高めることができる。このようにして、
より安定した強固な浮上を実現することができる。
In the present embodiment, a second permanent magnet 16 having a larger diameter than the floating permanent magnet 12 is added to the side surface of the superconductor 10 so that the permanent magnet 12 and the permanent magnet 16 exert a repulsive force. When the permanent magnets 12 on the floating side are largely displaced in one of the horizontal directions by arranging them so as to have the opposite polarities, the second permanent magnets 16 return the first permanent magnets 12 from the outside. The repulsive force acts as described above, so that the rigidity in the horizontal direction can be increased. In this way,
More stable and strong levitation can be realized.

【0013】図2は第2の実施例を示し、ラジアル型軸
受の断面図である。中央に円柱状又は円筒状の超電導体
20が配置され、その周りを囲むように円環状の永久磁
石21、22が互いに逆極性に配置され、永久磁石21
の上側に軟鉄等の磁性体から成る円環状のヨーク23が
設けられ、また永久磁石21と22の間にヨーク24が
設けられ、更に永久磁石22の下側にヨーク25が設け
られている。これらのヨークにより永久磁石の磁束はヨ
ーク端に集中し、磁束密度を高めている。永久磁石2
1、22、ヨーク23、24、25の外径は同一寸法と
され、ヨーク23、24、25の内径が永久磁石21、
22の内径と同等かより小さくなっている。また、超電
導体20の下部には円柱状又は円環状の第2の永久磁石
26が永久磁石22に対し反発力が作用するように逆極
性に設けられている。
FIG. 2 shows a second embodiment and is a sectional view of a radial bearing. A cylindrical or cylindrical superconductor 20 is arranged at the center, and annular permanent magnets 21 and 22 are arranged in opposite polarities so as to surround the periphery thereof.
An annular yoke 23 made of a magnetic material such as soft iron is provided on the upper side, a yoke 24 is provided between the permanent magnets 21 and 22, and a yoke 25 is provided below the permanent magnet 22. With these yokes, the magnetic flux of the permanent magnet is concentrated at the end of the yoke, thereby increasing the magnetic flux density. Permanent magnet 2
The outer diameters of the yokes 23, 24, 25 are the same, and the inner diameters of the yokes 23, 24, 25 are the same as those of the permanent magnet 21.
22 which is equal to or smaller than the inner diameter of the tube 22. Further, a columnar or annular second permanent magnet 26 is provided below the superconductor 20 with a reverse polarity so that a repulsive force acts on the permanent magnet 22.

【0014】超電導体20を囲む円環状の永久磁石2
1、22は、半径方向に反発力が軸方向に復元力が作用
して安定に浮上することができる。この浮上側の永久磁
石21、22は半径方向及び軸方向の何れの方向に着磁
してもよいが、図2に示すように軸方向に着磁した円環
状の永久磁石21、22を、互いに逆の極性の磁極に組
み合わせて積層することにより、軸方向の復元力が発生
し、更に永久磁石及びヨークの積層を増せば、より大き
な軸方向の復元力及び半径方向の反発力が発生する。
Annular permanent magnet 2 surrounding superconductor 20
In the first and the second, a repulsive force acts in the radial direction and a restoring force acts in the axial direction, so that the surfaces 1 and 22 can stably float. The floating permanent magnets 21 and 22 may be magnetized in any of a radial direction and an axial direction. However, as shown in FIG. 2, annular permanent magnets 21 and 22 magnetized in the axial direction are used. By combining and laminating magnetic poles of opposite polarities, an axial restoring force is generated, and by further increasing the lamination of the permanent magnet and the yoke, a larger axial restoring force and a radial repulsive force are generated. .

【0015】超電導体20側に付加した第2の永久磁石
26は軸方向の復元力を増大させるためのものであり、
軸方向に着磁した第2の永久磁石26を永久磁石22と
逆極性に配置することにより、ヨーク23、24、25
が下方にずれた場合に、永久磁石22と永久磁石26同
士の反発力により軸方向の復元力が増大するので、回転
体の軸方向の変位を抑制することができる。
The second permanent magnet 26 added to the superconductor 20 is for increasing the axial restoring force.
By arranging the second permanent magnet 26 magnetized in the axial direction with a polarity opposite to that of the permanent magnet 22, the yokes 23, 24, 25
Is shifted downward, an axial restoring force is increased by a repulsive force between the permanent magnets 22 and 26, so that axial displacement of the rotating body can be suppressed.

【0016】図3は第2の実施例における軸方向の変位
量dと復元力Nとの関係を測定した実測値によるグラフ
図であり、超電導体20側に第2の永久磁石26を付加
しない場合の従来方式による実測値Aと、第2の永久磁
石26を付加した場合の本発明による改良方式による実
測値Bとをグラフ化したものであり、このデータから明
らかなように、軸方向の復元力の大きさは、改良方式の
方が従来方式の場合の約2倍の値を示している。
FIG. 3 is a graph of measured values obtained by measuring the relationship between the axial displacement d and the restoring force N in the second embodiment. The second permanent magnet 26 is not added to the superconductor 20 side. FIG. 9 is a graph of the actual measurement value A according to the conventional method and the actual measurement value B according to the improved method according to the present invention when the second permanent magnet 26 is added. The magnitude of the restoring force is about twice as large in the improved system as in the conventional system.

【0017】[0017]

【発明の効果】以上説明したように本発明に係る超電導
軸受装置は、支持側の超電導体に第2の永久磁石を付加
することにより、浮上側の第1の永久磁石に対して外側
から反発力を作用させて、ずれが生じた場合に復元力を
向上させ安定した浮上を達成できる。
As described above, in the superconducting bearing device according to the present invention, the second permanent magnet is added to the superconductor on the supporting side to repel the first permanent magnet on the floating surface from the outside. By applying a force, a restoring force can be improved in the event of a shift, and stable levitation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment.

【図2】第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment.

【図3】復元力と軸方向変位のグラフ図である。FIG. 3 is a graph showing a restoring force and an axial displacement.

【図4】従来例の断面図である。FIG. 4 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

10、20 超電導体 11 磁性体 12、13、16、21、22、26 永久磁石 23、24、25 ヨーク 10, 20 Superconductor 11 Magnetic body 12, 13, 16, 21, 22, 26 Permanent magnet 23, 24, 25 Yoke

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−272539(JP,A) 特開 平5−180226(JP,A) 特開 平5−60139(JP,A) 特開 平4−331815(JP,A) (58)調査した分野(Int.Cl.6,DB名) F16C 32/04──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-272539 (JP, A) JP-A-5-180226 (JP, A) JP-A-5-60139 (JP, A) JP-A-4- 331815 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F16C 32/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 支持側の超電導体と浮上側の第1の永久
磁石を取り付けた磁性体とから成る超電導軸受装置にお
いて、前記第1の永久磁石よりも外側となる前記超電導
体の側面に前記第1の永久磁石と互いに反発力が生ずる
ように第2の永久磁石を付加し、前記第1の永久磁石が
前記超電導体に対し向い合う面と平行に相対的に位置ず
れした場合に前記第2の永久磁石との間で前記反発力に
より復元力が生ずるようにしたことを特徴とする超電導
軸受装置。
1. A superconducting bearing device comprising a superconductor on a supporting side and a magnetic body to which a first permanent magnet on a floating surface is attached , wherein the superconducting member located outside the first permanent magnet is provided.
A repulsive force is generated on the side of the body with the first permanent magnet
A second permanent magnet is added to the first permanent magnet
The superconductor is not relatively positioned in parallel with the surface facing the superconductor.
In this case, the repulsive force is applied to the second permanent magnet.
A superconducting bearing device characterized in that more restoring force is generated .
【請求項2】 前記第1、第2の永久磁石は環状体とし
た請求項1に記載の超電導軸受装置。
2. The first and second permanent magnets are annular bodies.
The superconducting bearing device according to claim 1 .
JP6248409A 1994-09-16 1994-09-16 Superconducting bearing device Expired - Lifetime JP2764546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6248409A JP2764546B2 (en) 1994-09-16 1994-09-16 Superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248409A JP2764546B2 (en) 1994-09-16 1994-09-16 Superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH0886315A JPH0886315A (en) 1996-04-02
JP2764546B2 true JP2764546B2 (en) 1998-06-11

Family

ID=17177691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248409A Expired - Lifetime JP2764546B2 (en) 1994-09-16 1994-09-16 Superconducting bearing device

Country Status (1)

Country Link
JP (1) JP2764546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886891A1 (en) * 2013-12-20 2015-06-24 Universidad Carlos III de Madrid High-performance radial gap superconducting magnetic bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177847B2 (en) * 1990-12-18 2001-06-18 光洋精工株式会社 Superconducting bearing device
JPH0560139A (en) * 1991-08-30 1993-03-09 Canon Inc Superconducting magnetic bearing
JP3232462B2 (en) * 1991-12-27 2001-11-26 光洋精工株式会社 Superconducting bearing device
JPH05272539A (en) * 1992-03-24 1993-10-19 Ntn Corp Superconducting magnetic bearing device

Also Published As

Publication number Publication date
JPH0886315A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
US5196748A (en) Laminated magnetic structure for superconducting bearings
US5220232A (en) Stacked magnet superconducting bearing
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
EP0585351B1 (en) Magnet-superconductor systems having high thrust and high stability
US6359357B1 (en) Combination radial and thrust magnetic bearing
US3493274A (en) Magnetic support systems
US3860300A (en) Virtually zero powered magnetic suspension
US4886778A (en) Superconducting rotating assembly
US5256638A (en) Magnetically leviated superconducting bearing
JP2764546B2 (en) Superconducting bearing device
JPS6146683B2 (en)
JPH08296645A (en) Magnetic bearing device
JP3084132B2 (en) Magnetic levitation device
JP2636168B2 (en) Superconducting bearing device
JP2766552B2 (en) Superconducting bearing device
JPH05272539A (en) Superconducting magnetic bearing device
JPH062646A (en) Superconductive floating type turning gear
JPS59113316A (en) Radial magnetic bearing
JPH01234618A (en) Superconducting magnetic bearing
JPS6142978Y2 (en)
JPH05172140A (en) Bearing device
JPH1162964A (en) Magnetic bearing device using second kind superconductor
JPH05240248A (en) Superconductive magnetic bearing device
Nagaya et al. Control of resonance for a rotating shaft levitated by the high temperature super conductor by using a rotating magnetic damper
JP3385771B2 (en) Superconducting magnetic bearing device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term